Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A027644
Denominators of poly-Bernoulli numbers B_n^(k) with k=2.
6
1, 4, 36, 24, 450, 40, 2205, 168, 350, 120, 38115, 88, 40990950, 10920, 5005, 24, 130180050, 136, 1935088155, 3192, 177827650, 1320, 1539340803, 184, 304521767550, 10920, 37182145, 24, 2814316555050, 1160
OFFSET
0,2
LINKS
K. Imatomi, M. Kaneko, E. Takeda, Multi-Poly-Bernoulli Numbers and Finite Multiple Zeta Values, J. Int. Seq. 17 (2014) # 14.4.5
Masanobu Kaneko, Poly-Bernoulli numbers, Journal de théorie des nombres de Bordeaux, 9 no. 1 (1997), Pages 221-228.
FORMULA
a(n) = denominator of Sum_{j=0..n} (-1)^(n+j) * j! * Stirling2(n, j) * (j+1)^(-k), for k = 2.
MAPLE
a := n -> denom(add((-1)^(n-m)*m!*Stirling2(n, m)/(m+1)^2, m=0..n)):
seq(a(n), n = 0..29);
MATHEMATICA
f[n_]:= (-1)^n*Sum[(-1)^m*m!*StirlingS2[n, m]/(m + 1)^2, {m, 0, n}];
Table[Denominator[f[n]], {n, 0, 30}] (* Robert G. Wilson v, Oct 28 2004 *)
PROG
(Magma)
A027644:= func< n, k | Denominator( (&+[(-1)^(j+n)*Factorial(j)*StirlingSecond(n, j)/(j+1)^k: j in [0..n]]) ) >;
[A027644(n, 2): n in [0..30]]; // G. C. Greubel, Aug 02 2022
(SageMath)
def A027644(n, k): return denominator( sum((-1)^(n+j)*factorial(j)*stirling_number2(n, j)/(j+1)^k for j in (0..n)) )
[A027644(n, 2) for n in (0..30)] # G. C. Greubel, Aug 02 2022
CROSSREFS
Cf. A027643.
Sequence in context: A323515 A374371 A144153 * A174426 A198642 A327998
KEYWORD
nonn,frac
STATUS
approved