OFFSET
0,2
COMMENTS
(s,t)-sequences; the case s=3, t=2.
REFERENCES
Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
LINKS
A. S. Fraenkel, Heap games, numeration systems and sequences, Annals of Combinatorics, 2 (1998), 197-210.
Wen An Liu and Xiao Zhao, Adjoining to (s,t)-Wythoff's game its P-positions as moves, Discrete Applied Mathematics, 27 August 2014; see Table 5.
FORMULA
a(n) = 3*A045774(n)+2*n.
MATHEMATICA
s=3; t=2;
mex:=First[Complement[Range[1, Max[#1]+1], #1]]&;
a[0]=0; b[n_]:=b[n]=s*a[n]+t*n;
a[n_]:=a[n]=mex[Flatten[Table[{a[i], b[i]}, {i, 0, n-1}]]];
Table[a[n], {n, 200}] (* A045774 *)
Table[b[n], {n, 200}] (* A045775 *)
(* From Clark Kimberling, Apr 02 2011 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved