Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A059540
Beatty sequence for 3^(1/3)/(3^(1/3)-1).
3
3, 6, 9, 13, 16, 19, 22, 26, 29, 32, 35, 39, 42, 45, 48, 52, 55, 58, 61, 65, 68, 71, 75, 78, 81, 84, 88, 91, 94, 97, 101, 104, 107, 110, 114, 117, 120, 123, 127, 130, 133, 136, 140, 143, 146, 150, 153, 156, 159, 163, 166, 169, 172, 176, 179, 182, 185, 189, 192
OFFSET
1,1
LINKS
Aviezri S. Fraenkel, Jonathan Levitt, Michael Shimshoni, Characterization of the set of values f(n)=[n alpha], n=1,2,..., Discrete Math. 2 (1972), no.4, 335-345.
Eric Weisstein's World of Mathematics, Beatty Sequence
FORMULA
a(n) = floor(n/(1 - A072365)). - Paolo Xausa, Jul 17 2024
MATHEMATICA
Floor[Range[100]/(1 - 3^(-1/3))] (* Paolo Xausa, Jul 17 2024 *)
PROG
(PARI) { default(realprecision, 100); b=3^(1/3)/(3^(1/3) - 1); for (n = 1, 2000, write("b059540.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009
CROSSREFS
Beatty complement is A059539.
Cf. A072365.
Sequence in context: A022853 A198264 A186516 * A190363 A379408 A059550
KEYWORD
nonn,easy
AUTHOR
Mitch Harris, Jan 22 2001
STATUS
approved