Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A110368
Integers with mutual residues of 9.
1
10, 19, 199, 37819, 1429936399, 2044718092315659619, 4180872077042990313463432060226288599, 17479691324597767931283328689425028720038746822457352536058485868000785419
OFFSET
1,1
COMMENTS
This is the special case k=9 of sequences with exact mutual k-residues. In general, a(1)=k+1 and a(n)=min{m | m>a(n-1), mod(m,a(i))=k, i=1,...,n-1}. k=1 gives Sylvester's sequence A000058 and k=2 Fermat sequence A000215.
LINKS
A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437, alternative link.
Stanislav Drastich, Rapid growth sequences, arXiv:math/0202010 [math.GM], 2002.
S. W. Golomb, On certain nonlinear recurring sequences, Amer. Math. Monthly 70 (1963), 403-405.
FORMULA
a(n) ~ c^(2^n), where c = 1.9324294501525084771045650938374200605001383645783351474944965038078432359... . - Vaclav Kotesovec, Dec 17 2014
MATHEMATICA
RecurrenceTable[{a[1]==10, a[n]==a[n-1]*(a[n-1]-9)+9}, a, {n, 1, 10}] (* Vaclav Kotesovec, Dec 17 2014 *)
CROSSREFS
Column k=9 of A177888.
Sequence in context: A073222 A110463 A121725 * A006050 A045646 A334137
KEYWORD
nonn
AUTHOR
Seppo Mustonen, Sep 04 2005
STATUS
approved