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Let G be a set of n generals. Each general g ∈ G has a choice cg ∈ {A,R}, and the generals must reach
a common consensus c∗ that is close to the majority vote. Unfortunately, there are t traitors among the
generals. We describe how the loyal generals can reach a common agreement despite the presence of traitors.
For this, each loyal general executes the following algorithm. The local variable me stores the id of the
current general. The associative arrays rC and mC contain the current general’s views on the other generals’
choices. The function majority receives a multi-set of choices and returns the most popular choice among
them (breaking ties in favor of R).

1 rC[⊥]← cme
2 for i := 0, . . . , t do
3 for all pairwise distinct generals g1 → · · · → gi+1 in G \ {me} do
4 send

(
me, gi+1, rC[g1 → · · · → gi]

)
5 for all pairwise distinct generals g1 → · · · → gi+1 in G \ {me} do
6 receive

(
gi+1, rC[g1 → · · · → gi+1]

)
7 for i := t+ 1, . . . , 0 do
8 for all pairwise distinct generals g1 → · · · → gi in G \ {me} do
9 mC[g1 → · · · → gi] = majority

(
rC[g1 → · · · → gi] ∪ mC[g→ · · · → gi →?]

)
10 c∗ ← mC[⊥]

Algorithm 1: The Byzantine Generals Algorithm.

Lemma 1. Let n ≥ 3t+ 1. The Byzantine Generals algorithm has the following two properties:

(a) For all i = 1, . . . , t + 1 and for all pairwise distinct generals g1 → · · · → gi: if gi is loyal, then for all
loyal generals g 6∈ {g1, . . . , gi}, we have:

g.mC[g1 → · · · → gi] = g.rC[g1 → · · · → gi] = gi.rC[g1 → · · · → gi−1].

(b) For all i = 1, . . . , t and for all pairwise distinct generals g1 → · · · → gi: if g1, . . . , gi are all traitors, then
for all loyal generals g, g′ 6∈ {g1, . . . , gi}, we have:

g.mC[g1 → · · · → gi] = g′.mC[g1 → · · · → gi].

Proof. We begin with property (a). The proof is by reverse induction on i. First, let i = t+ 1. In this case,
by Line 9 from Algorithm 1, we have for any loyal general g 6∈ {g1, . . . , gt+1},

g.mC[g1 → · · · → gt+1] = g.rC[g1 → · · · → gt+1] = gt+1.rC[g1 → · · · → gt],

since gt+1 is loyal. Next, we perform the inductive step from i + 1 to i. Since gi is loyal, general gi sends
the same value gi.rC[g1 → · · · → gi−1] to all generals g′ 6∈ {g1, . . . , gi} in Line 4 of Algorithm 1. Thus, using
the inductive hypothesis, for all loyal generals g′ /∈ {g, g1, . . . , gi}, we have

g.mC[g1 → · · · → gi → g′] = g.rC[g1 → · · · → gi → g′] = gi.rC[g1 → · · · → gi−1] = g.rC[g1 → · · · → gi].
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Since n ≥ 3t + 1 and since i ≤ t, the set G \ {g, g1, . . . , gi} contains at least t loyal generals and at most t
traitors. Thus, according to line 9 in Algorithm 1,

g.mC[g1 → · · · → gi] = majority
(
g.rC[g1 → · · · → gi] ∪ g.mC[g1 → · · · → gi →?]

)
= g.rC[g1 → · · · → gi].

This concludes the proof of (a), and we continue with the proof of property (b). Again, we use reverse
induction on i. For the base case, let i = t. Since g1 → · · · → gt are all traitors, and since there are only t
traitors overall, all generals in G \ {g1, . . . , gt} are loyal. Thus, the multisets

g.rC[g1 → · · · → gt] ∪ g.mC[g1 → · · · → gt →?]

and
g′.rC[g1 → · · · → gt] ∪ g′.mC[g1 → · · · → gt →?]

are identical, so g.mC[g1 → · · · → gt] = g′.mC[g1 → · · · → gt], as claimed. Next, we perform the inductive
step from i+ 1 to i. By (a), we have

g.mC[g1 → · · · → gi → g′] = g.rC[g1 → · · · → gi → g′] = g′.rC[g1 → · · · → gi]

and
g′.mC[g1 → · · · → gi → g] = g′.rC[g1 → · · · → gi → g] = g.rC[g1 → · · · → gi]

Let h ∈ G \ {g1, . . . , gi, g, g′}. If h is loyal, then again by (a), we have

g.mC[g1 → · · · → gi → h] = g.rC[g1 → · · · → gi → h] = h.rC[g1 → · · · → gi]

= g′.rC[g1 → · · · → gi → h] = g′.mC[g1 → · · · → gi → h].

If h is a traitor, then g1, . . . , gi, h are all traitors, and by the inductive hypothesis, we have

g.mC[g1 → · · · → gi → h] = g′.mC[g1 → · · · → gi → h] =

By line 9 from Algorithm 1, it follows that g.mC[g1 → · · · → gi] = g′.mC[g1 → · · · → gi], as claimed.

Satz 2. Suppose that n ≥ 3t+1. For any two loyal generals g, g′ ∈ G, Algorithm 1 ensures that g.mC[g′] = cg′ ,
g′.mC[g] = cg, and g.mC[h] = g′.mC[h], for any h ∈ G \ {g, g′}.

Proof. This is a direct consequence of Lemma 1, by setting i = 1.
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