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Abstract
Suppose we are given a set D of n pairwise intersecting disks in the plane. A planar point set P

stabs D if and only if each disk in D contains at least one point from P . We present a deterministic
algorithm that takes O(n) time to find five points that stab D. Furthermore, we give a simple example
of 13 pairwise intersecting disks that cannot be stabbed by three points. Moreover, we present a
simple argument showing that eight disks can be stabbed by at most three points.

This provides a simple—albeit slightly weaker—algorithmic version of a classical result by Danzer
that such a set D can always be stabbed by four points.

1 Introduction
The maximum clique problem is a classic problem in combinatorial optimization [15]: given a simple graph
G = (V,E), find a maximum-cardinality set C ⊆ V of vertices such that any two distinct vertices in C
are adjacent. In 1972, Karp proved that the maximum clique problem is NP-hard [15]. Even worse, a
subsequent line of research showed that the maximum clique problem is hard to approximate. In particular,
we now know that for any fixed ε > 0, if there is a polynomial-time algorithm that approximates maximum
clique in an n-vertex graph up to a factor of n1−ε, then P = NP [22]

However, if the input graph has additional structure, the problem can become easier. For example, if
the input is the intersection graph of a set of disks in the plane, the maximum clique problem admits
efficient (approximation) algorithms: for unit disk graphs, it can be solved in polynomial time [8], while
for general disk intersection graphs, there is a randomized EPTAS [3]. Earlier, Ambühl and Wagner [2]
presented a polynomial-time algorithm that computes a τ/2-approximation for the maximum clique in a
general disk intersection graph, where τ is the minimum stabbing number of any arrangement of pairwise
intersecting disks in the plane, i.e., the minimum number of points that are needed to stab every disk in
such an arrangement. Motivated by this application, our goal here is to understand this stabbing number
better.

Let D be a set of n disks in the plane. If every three disks in D intersect, then Helly’s theorem shows
that the whole intersection

⋂
D of D is nonempty [13,14,17]. In other words, there is a single point p

that lies in all disks of D, that is, p stabs D. More generally, when we know only that every pair of disks
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Figure 1: Left: At least one lens angle is large. Right: D1 and E have the same radii and lens angle 2π/3.
By Lemma 2.2, D2 is a subset of E. {c1, c, p, q} is the set P from Lemma 2.4.

in D intersect, there must be a point set P of constant size such that each disk in D contains at least one
point in P – the minimum cardinality of P is the stabbing number of D. It is indeed not surprising that
D can be stabbed by a constant number of points, but for some time, the exact bound remained elusive.
Eventually, in July 1956 at an Oberwolfach seminar, Danzer presented the answer: four points are always
sufficient and sometimes necessary to stab any finite set of pairwise intersecting disks in the plane. Danzer
was not satisfied with his original argument, so he never formally published it. In 1986, he presented
a new proof [9]. Previously, in 1981, Stachó had already given an alternative proof [21], building on a
previous construction of five stabbing points [20]. This line of work was motivated by a result of Hadwiger
and Debrunner, who showed that three points suffice to stab any finite set of pairwise intersecting unit
disks [12]. In later work, these results were significantly generalized and extended, culminating in the
celebrated (p, q)-theorem that was proven by Alon and Kleitman in 1992 [1]. See also a recent paper by
Dumitrescu and Jiang that studies generalizations of the stabbing problem for translates and homothets
of a convex body [10].

Danzer’s published proof [9] is fairly involved. It uses a compactness argument that does not seem
to be constructive, and one part of the argument relies on an underspecified verification by computer.
Therefore, it is quite challenging to check the correctness of the argument, let alone to derive any intuition
from it. There seems to be no obvious way to turn it into an efficient algorithm for finding a stabbing
set of size four. The proof of Stachó [21] is simpler, but it is obtained through a lengthy case analysis
that requires a very disciplined and focused reader. Here, we present a new argument that yields five
stabbing points. Our proof is constructive, and it lets us find the stabbing set in deterministic linear
time. Following the conference version of this paper, Carmi, Katz, and Morin published a manuscript in
which they present an algorithm that can find four stabbing points in linear time [4].

As for lower bounds, Grünbaum gave an example of 21 pairwise intersecting disks that cannot be
stabbed by three points [11]. Later, Danzer reduced the number of disks to ten [9]. This example is close
to optimal, because every set of eight disks can be stabbed by three points, as mentioned by Stachó [20]
and formally proved in Section 5 below. However, it is hard to verify Danzer’s lower bound example—even
with dynamic geometry software, the positions of the disks cannot be visualized easily.

We present a new and simple proof that shows that the stabbing number of D is upper bounded by 5.
Moreover, we obtain a linear time algorithm that can find these 5 stabbing points. Finally, we present a
simple construction of 13 pairwise intersecting disks that cannot be stabbed by 3 points, and work out a
proof of Stachó’s eight-disk claim.

2 The Geometry of Pairwise Intersecting Disks
Let D be a set of n pairwise intersecting disks in the plane. A disk Di ∈ D is given by its center ci and
its radius ri. To simplify the analysis, we make the following assumptions: (i) the radii of the disks are
pairwise distinct; (ii) the intersection of any two disks has a nonempty interior; and (iii) the intersection
of any three disks is either empty or has a nonempty interior. A simple perturbation argument can then
handle the degenerate cases.
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The lens of two disks Di, Dj ∈ D is the set Li,j = Di ∩ Dj . Let u be any of the two intersection
points of the boundary of Di and the boundary of Dj . The angle ∠ciucj is called the lens angle of Di

and Dj . It is at most π. A finite set C of disks is Helly if their common intersection
⋂
C is nonempty.

Otherwise, C is non-Helly. We present some useful geometric lemmas.

Lemma 2.1. Let {D1, D2, D3} be a set of three pairwise intersecting disks that is non-Helly. Then, the
set contains two disks with lens angle larger than 2π/3.

Proof. Since {D1, D2, D3} is non-Helly, the lenses L1,2, L1,3 and L2,3 are pairwise disjoint. Let u be the
vertex of L1,2 nearer to D3, and let v, w be the analogous vertices of L1,3 and L2,3 (see Figure 1, left).
Consider the simple hexagon c1uc2wc3v, and write ∠u, ∠v, and ∠w for its interior angles at u, v, and w.
The sum of all interior angles is 4π. Thus, ∠u+∠v+∠w < 4π, so at least one angle is less than 4π/3. It
follows that the corresponding lens angle, which is the exterior angle at u, v, or w must be larger than
2π/3.

Lemma 2.2. Let D1 and D2 be two intersecting disks with r1 ≥ r2 and lens angle at least 2π/3. Let E
be the unique disk with radius r1 and center c, such that

(i) the centers c1, c2, and c are collinear and c lies on the same side of c1 as c2; and

(ii) the lens angle of D1 and E is exactly 2π/3 (see Figure 1, right).

Then, if c2 lies between c1 and c, we have D2 ⊆ E.

Proof. Let x ∈ D2. Since c2 lies between c1 and c, the triangle inequality gives

|xc| ≤ |xc2|+ |c2c| = |xc2|+ |c1c| − |c1c2|. (1)

Since x ∈ D2, we get |xc2| ≤ r2. Also, since D1 and E have radius r1 each and lens angle 2π/3, it
follows that |c1c| =

√
3 r1. Finally, |c1c2| =

√
r2

1 + r2
2 − 2r1r2 cosα, by the law of cosines, where α is the

lens angle of D1 and D2. As α ≥ 2π/3 and r1 ≥ r2, we get cosα ≤ −1/2 = (
√

3 − 3/2) −
√

3 + 1 ≤
(
√

3− 3/2)r1/r2 −
√

3 + 1, As such, we have

|c1c2|2 = r2
1 + r2

2 − 2r1r2 cosα ≥ r2
1 + r2

2 − 2r1r2

((√
3− 3/2

)r1

r2
−
√

3 + 1
)

= r2
1 − 2

(√
3− 3/2

)
r2

1 + 2(−
√

3 + 1)r1r2 + r2
2

= (1− 2
√

3 + 3)r2
1 + 2(−

√
3 + 1)r1r2 + r2

2 =
(
r1(
√

3− 1) + r2
)2
.

Plugging this into Equation 1 gives |xc| ≤ r2 +
√

3r1 − (r1
(√

3− 1) + r2
)

= r1, i.e., x ∈ E.

Lemma 2.3. Let D1 and D2 be two intersecting disks with equal radius r and lens angle 2π/3. There is
a set P of four points so that any disk F of radius at least r that intersects both D1 and D2 contains a
point of P .

Proof. Consider the two tangent lines of D1 and D2, and let p and q be the midpoints on these lines
between the respective two tangency points. We set P = {c1, c2, p, q}; see Figure 2.

Given the disk F that intersects both D1 and D2, we shrink its radius, keeping its center fixed, until
either the radius becomes r or until F is tangent to D1 or D2. Suppose the latter case holds and F is
tangent to D1. We move the center of F continuously along the line spanned by the center of F and c1
towards c1, decreasing the radius of F to maintain the tangency. We stop when either the radius of F
reaches r or F becomes tangent to D2. We obtain a disk G ⊆ F with center c = (cx, cy) so that either:
(i) radius(G) = r and G intersects both D1 and D2; or (ii) radius(G) ≥ r and G is tangent to both D1
and D2. Since G ⊆ F , it suffices to show that G ∩ P 6= ∅.

We introduce a coordinate system, setting the origin o midway between c1 and c2, so that the y-axis
passes through p and q. Then, as in Figure 2, we have c1 = (−

√
3 r/2, 0), c2 = (

√
3 r/2, 0), q = (0, r),

and p = (0,−r).

3



D2
2

D2
1

p

c2

q

D2D1
c1

γ

Qt1

t2s1

s2

Figure 2: Left: P = {c1, c2, p, q} is the stabbing set. The green arc γ = ∂D2
1 ∩Q is covered by D2 ∪Dq.
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Figure 3: Proof of Lemma 2.4. Left (Case (i)): x is an arbitrary point in D2∩F \k+ and y is an arbitrary
point in D1 ∩ F . Right (Case (ii)): x is an arbitrary point in D2 ∩ F ∩ k+. The angle at c in the triangle
∆xcc2 is ≥ π/2.

For case (i), let D2
1 be the disk of radius 2r centered at c1, and D2

2 the disk of radius 2r centered at c2.
Since G has radius r and intersects both D1 and D2, its center c has distance at most 2r from both c1
and c2, i.e., c ∈ D2

1 ∩D2
2. Let Dp and Dq be the two disks of radius r centered at p and q. We will show

that D2
1 ∩D2

2 ⊆ D1 ∪D2 ∪Dp ∪Dq. Then it is immediate that G ∩ P 6= ∅. By symmetry, it is enough to
focus on the upper-right quadrant Q = {(x, y) | x ≥ 0, y ≥ 0}. We show that all points in D2

1 ∩Q are
covered by D2 ∪Dq. Without loss of generality, we assume that r = 1. Then, the two intersection points
of D2

1 and Dq are t1 = ( 5
√

3−2
√

87
28 , 38+3

√
29

28 ) ≈ (−0.36, 1.93) and t2 = ( 5
√

3+2
√

87
28 , 38−3

√
29

28 ) ≈ (0.98, 0.78),
and the two intersection points of D2

1 and D2 are s1 = (
√

3
2 , 1) ≈ (0.87, 1) and s2 = (

√
3

2 ,−1) ≈ (0.87,−1).
Let γ be the boundary curve of D2

1 in Q. Since t1, s2 6∈ Q and since t2 ∈ D2 and s1 ∈ Dq, it follows that
γ does not intersect the boundary of D2 ∪Dq and hence γ ⊂ D2 ∪Dq. Furthermore, the subsegment of
the y-axis from o to the start point of γ is contained in Dq, and the subsegment of the x-axis from o to
the endpoint of γ is contained in D2. Hence, the boundary of D2

1 ∩Q lies completely in D2 ∪Dq, and
since D2 ∪Dq is simply connected, it follows that D2

1 ∩Q ⊆ D2 ∪Dq, as desired.
For case (ii), since G is tangent to D1 and D2, the center c of G is on the perpendicular bisector of c1

and c2, so the points p, o, q and c are collinear. Suppose without loss of generality that cy ≥ 0. Then, it
is easily checked that c lies above q, and radius(G) + r = |c1c| ≥ |oc| = r + |qc|, so q ∈ G.

Lemma 2.4. Consider two intersecting disks D1 and D2 with r1 ≥ r2 and lens angle at least 2π/3. Then,
there is a set P of four points such that any disk F of radius at least r1 that intersects both D1 and D2
contains a point of P .

Proof. Let ` be the line through c1 and c2. Let E be the disk of radius r1 and center c ∈ ` that satisfies
the conditions (i) and (ii) of Lemma 2.2. Let P = {c1, c, p, q} as in the proof of Lemma 2.3, with respect
to D1 and E (see Figure 1, right). We claim that

D1 ∩ F 6= ∅ ∧ D2 ∩ F 6= ∅ ⇒ E ∩ F 6= ∅. (*)
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Once (*) is established, we are done by Lemma 2.3. If D2 ⊆ E, then (*) is immediate, so assume that
D2 6⊆ E. By Lemma 2.2, c lies between c1 and c2. Let k be the line through c perpendicular to `, and
let k+ be the open halfplane bounded by k with c1 ∈ k+ and k− the open halfplane bounded by k with
c1 6∈ k−. Since |c1c| =

√
3 r1 > r1, we have D1 ⊂ k+; see Figure 3. Recall that F has radius at least r1

and intersects D1 and D2. We distinguish two cases: (i) there is no intersection of F and D2 in k+, and
(ii) there is an intersection of F and D2 in k+; see Figure 3 for the two cases.

For case (i), let x be any point in D1 ∩ F . Since we know that D1 ⊂ k+, we have x ∈ k+. Moreover,
let y be any point in D2 ∩F . By assumption, y is not in k+, but it must be in the infinite strip defined by
the two tangents of D1 and E. Thus, the line segment xy intersects the diameter segment k ∩E. Since F
is convex, the intersection of xy and k ∩ E is in F , so E ∩ F 6= ∅.

For case (ii), fix x ∈ D2 ∩ F ∩ k+ arbitrarily. Consider the triangle ∆xcc2. Since x ∈ k+, the angle at
c is at least π/2. Thus, |xc| ≤ |xc2|. Also, since x ∈ D2, we know that |xc2| ≤ r2 ≤ r1. Hence, |xc| ≤ r1,
so x ∈ E and (*) follows, as x ∈ E ∩ F .

3 Existence of Five Stabbing Points
With these tools we can now show that there is a stabbing set with five points.

Theorem 3.1. Let D be a set of n pairwise intersecting disks in the plane. There is a set P of five points
such that each disk in D contains at least one point from P .

Proof. If D is Helly, there is a single point that lies in all disks of D. Thus, assume that D is non-Helly,
and let D1, D2, . . . , Dn be the disks in D ordered by increasing radius. Let i∗ be the smallest index
with

⋂
i≤i∗ Di = ∅. By Helly’s theorem [13,14,17], there are indices j, k < i∗ such that {Di∗ , Dj , Dk} is

non-Helly. By Lemma 2.1, two disks in {Di∗ , Dj , Dk} have lens angle at least 2π/3. Applying Lemma 2.4
to these two disks, we obtain a set P ′ of four points so that every disk Di with i ≥ i∗ contains at least
one point from P ′. Furthermore, by definition of i∗, we have

⋂
i<i∗ Di 6= ∅, so there is a point q that

stabs every disk Di with i < i∗. Thus, P = P ′ ∪ {q} is a set of five points that stabs every disk in D, as
desired.

Remark. A weakness in our proof is that it combines two different stages, one of finding the point q
that stabs all the small disks, and one of constructing the four points of Lemma 2.4 that stab all the
larger disks. It is an intriguing challenge to merge the two arguments so that altogether they only require
four points. The proof of Carmi et al. [4] uses a different approach.

4 Algorithmic Considerations
The proof of Theorem 3.1 leads to a simple O(n logn) time algorithm for finding a stabbing set of size
five. For this, we need an oracle that decides whether a given set of disks is Helly. This has already been
done by Löffler and van Kreveld [16], in a more general context:

Lemma 4.1 (Theorem 6 in [16]). Given a set of n disks, the problem of choosing a point in each disk
such that the smallest enclosing circle of the resulting point set has minimum radius can be solved in O(n)
deterministic time.

Now, an O(n logn)-time algorithm for finding the five stabbing points is based on the analysis in the
proof of Theorem 3.1. It works as follows: first, we sort the disks in D by increasing radius. This takes
O(n logn) time. Let D = 〈D1, . . . , Dn〉 be the resulting order. Next, we use binary search with the oracle
from Lemma 4.1 to determine the smallest index i∗ such that the prefix {D1, . . . , Di∗} is non-Helly. This
yields the disk Di∗ . We have to invoke the oracle O(logn) times, which gives a total time of O(n logn)
for this step. After that, we use another binary search with the oracle from Lemma 4.1 to determine the
smallest index k < i∗ such that {Di∗ , D1, . . . , Dk} is non-Helly. This costs O(n logn) time as well. Then,
we perform a linear search to find an index j < k such that {Dj , Dk, Di∗} is a non-Helly triple. This step
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works in O(n) time. Finally, we use Lemma 4.1 to obtain in O(n) time a stabbing point q for the Helly
set {D1, . . . , Di∗−1} and the method from the proof of Theorem 3.1 to extend q to a stabbing set for the
whole set D. This last step works in O(1) time since the result depends solely on {Dj , Dk, Di∗}. Hence,
we can state our claimed theorem.

Theorem 4.2. Given a set D of n pairwise intersecting disks in the plane, we can find in O(n logn)
time a set P of five points such that every disk of D contains at least one point of P .

The proof of Lemma 4.1 uses the LP-type framework by Sharir and Welzl [6, 19]. As we will see next,
a more sophisticated application of the framework directly leads to a deterministic linear time algorithm
to find a stabbing set with five points.

The LP-type framework. An LP-type problem (H, w,≤) is an abstract generalization of a low-
dimensional linear program. It consists of a finite set of constraints H, a weight function w : 2H →W,
and a total order (W,≤) on the weights. The weight function w assigns a weight to each subset of
constraints. It must fulfill the following two axioms:

• Monotonicity: for any H′ ⊆ H and H ∈ H, we have w
(
H′ ∪ {H}

)
≤ w(H′);

• Locality: for any B ⊆ H′ ⊆ H with w(B) = w(H′) and for any H ∈ H, we have that if
w
(
B ∪ {H}

)
= w(B), then also w

(
H′ ∪ {H}

)
= w(H′).

Given a subset H′ ⊆ H, a basis for H′ is an inclusion-minimal set B ⊆ H′ with w(B) = w(H′). The
combinatorial dimension of (H, w,≤) is the maximum size of any basis of any subset of H. The goal in
an LP-type problem is to determine w(H) and a corresponding basis B for H. Next, given a set B ⊆ H
and a constraint H ∈ H, we say that H violates B if w

(
B ∪ {H}

)
< w(B).

A generalization of Seidel’s algorithm for low-dimensional linear programming [18,19] shows that we
can solve an LP-type problem in O(|H|) expected time, provided that a constant time algorithm for the
following problem is available. Here and below, the constant factor in the O-notation may depend on the
combinatorial dimension.

• Violation test: Given a basis B and a constraint H ∈ H, determine whether H violates B and
return an error message if B is not a basis for any H′ ⊆ H.1

For a deterministic solution, we need an additional computational assumption. Let B ⊆ H be a basis
of any subset H′ ⊆ H, we use vio(B) to denote the set of all constraints H ∈ H that violate B, i.e., that
have w(B ∪ {H}) < w(B). Consider the range space (H,R = {vio(B) | B is a basis for some H′ ⊆ H}).
For a subset Y ⊆ H, we let (Y,RY) be the induced range space, that is, RY = {Y ∩R | R ∈ R}. Chazelle
and Matoušek [7] have shown that an LP-type problem can be solved in O(|H|) deterministic time if
there is a constant-time violation test as stated above and the following computational assumption holds:

• Oracle: Given a subset Y ⊆ H, we can compute some superset R′ ⊇ RY in time |Y|O(1).

During the following discussion, we will show that the problem of finding a non-Helly triple as in
Theorem 3.1 is LP-type and fulfills the four requirements for the algorithm of Chazelle and Matoušek.

Remark. Löffler and van Kreveld provide proofs that the underlying problem in Lemma 4.1 is of
LP-type, but they do not give arguments for the two computational assumptions, see [16]. However, it is
not difficult to also verify the two missing statements.

1Here, we follow the presentation of Chazelle and Matoušek [7]. Sharir and Welzl [19] use a violation test without the
error message. Instead, they need an additional basis computation primitive: given a basis B and a constraint H ∈ H, find
a basis for B ∪ {H}. If a violation test with error message exists and if the combinatorial dimension is a constant, a basis
computation primitive can easily be implemented by brute-force enumeration.
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Figure 4: Left: The disks D3 and D4 are destroyers of the Helly set {D1, D2}. Moreover, D3 is the smallest
destroyer of the whole set {D1, D2, D3, D4}. Right: The disks without D∞ form a Helly set C. The
smallest destroyer of C is D∞ and the point v is the extreme point for C and D∞, i.e., dist(C) = d(v,D∞).

Geometric observations. The distance between two closed sets A,B ⊆ R2 is defined as d(A,B) =
min {|ab| | a ∈ A, b ∈ B}. From now on, we assume that all points in

⋃
D have positive y-coordinates.

This can be ensured with linear overhead by an appropriate translation of the input. We denote by D∞
the closed halfplane below the x-axis. It is interpreted as a disk with radius ∞ and center at (0,−∞).
First, observe that for any subsets C1 ⊆ C2 ⊆ D ∪ {D∞}, we have that if C1 is non-Helly, then C2 is
non-Helly. For any C ⊆ D ∪ {D∞}, we say that a disk D destroys C if C ∪ {D} is non-Helly. Observe that
D∞ destroys every non-empty subset of D. Moreover, if C is non-Helly, then every disk is a destroyer.
See Figure 4 for an example. We can make the following two observations.

Lemma 4.3. Let C ⊆ D be Helly and D a destroyer of C. Then, the point v ∈
⋂
C with minimum

distance to D is unique.

Proof. Suppose there are two distinct points v 6= w ∈
⋂
C with d(v,D) = d

(⋂
C, D

)
= d(w,D). Since⋂

C is convex, the segment vw lies in
⋂
C. Now, if D 6= D∞, then every point in the relative interior of

vw is strictly closer to D than v and w. If D = D∞, then all points in vw have the same distance to D,
but since

⋂
C is strictly convex, the relative interior of vw lies in the interior of

⋂
C, so there must be a

point in
⋂
C that is closer to D than v and w. In either case, we obtain a contradiction to the assumption

v 6= w and d(v,D) = d
(⋂
C, D

)
= d(w,D). The claim follows.

Let C ⊆ D be Helly and D a destroyer of C. The unique point v ∈
⋂
C with minimum distance to D

is called the extreme point for C and D (see Figure 4, right).

Lemma 4.4. Let C1 ⊆ C2 ⊆ D be two Helly sets and D a destroyer of C1 (and thus of C2). Let
v ∈

⋂
C1 be the extreme point for C1 and D. We have d

(⋂
C1, D

)
≤ d

(⋂
C2, D

)
. In particular, if

v ∈
⋂
C2, then d

(⋂
C1, D

)
= d
(⋂
C2, D

)
and v is also the extreme point for C2 and D. If v 6∈

⋂
C2, then

d
(⋂
C1, D

)
< d
(⋂
C2, D

)
.

Proof. The first claim holds trivially: let w ∈
⋂
C2 be the extreme point for C2 and D. Since C1 ⊆ C2,

it follows that w ∈
⋂
C1, so d

(⋂
C1, D

)
≤ d(w,D) = d

(⋂
C2, D

)
. If v ∈

⋂
C2, then d

(⋂
C1, D

)
≤

d
(⋂
C2, D

)
≤ d(v,D) = d

(⋂
C1, D

)
, so v = w, by Lemma 4.3. If v /∈

⋂
C2, then d

(⋂
C1, D

)
< d
(⋂
C2, D

)
,

by Lemma 4.3 and the fact that C1 ⊆ C2. See Figure 5.

Let C be a subset of D. For 0 < r ≤ ∞ we define C<r as the set of all disks in C with radius smaller
than r. Recall that we assume that all the radii are pairwise distinct. A disk D with radius r, 0 < r ≤ ∞,
is called smallest destroyer of C if (i) D ∈ C or D = D∞, (ii) D destroys C<r, and (iii) there is no disk
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D2
D1

D4
D3

v

D2

D1
D4

D3

vw

Figure 5: Left: The disk D4 is a destroyer for the Helly sets {D1, D2} and {D1, D2, D3}. The extreme
point v for {D1, D2} is also the extreme point for {D1, D2, D3}. Right: The disk D4 is a destroyer for
the Helly sets {D1, D2} and {D1, D2, D3}. The extreme point v for {D1, D2} is not in D3. The distance
to D4 increases.

D2
D1

E

D3

D2

D1 D3

E

Figure 6: Monotonicity: In both cases, {D1, D2, D3} is non-Helly with smallest destroyer D3. Adding a
disk E either decreases the radius of the smallest destroyer (left) or increases the distance to the smallest
destroyer (right).

D′ ∈ C<r that destroys C<r. Observe that Property (iii) is the same as saying that C<r is Helly. See
Figure 4 for an example.

Let C be a subset of D and D the smallest destroyer of C. We write rad(C) for the radius of D and
dist(C) for the distance between D and the set

⋂
C<rad(C), i.e., dist(C) = d

(⋂
C<rad(C), D

)
. Now, if C is

Helly, then D = D∞ and thus rad(C) =∞. If C is non-Helly, then D ∈ C and thus rad(C) <∞. In both
cases, dist(C) is the distance between D and the extreme point for C<rad(C) and D. We define the weight
of C as w(C) = (rad(C),−dist(C)), and we denote by ≤ the lexicographic order on R2. Chan observed,
in a slightly different context, that (D, w,≤) is LP-type [5]. However, Chan’s paper does not contain a
detailed proof for this fact. Thus, in the following lemmas, we show the two LP-type axioms, present
a constant time violation test, and a polynomial-time oracle. We start with the monotonicity axiom
followed by the locality axiom.

Lemma 4.5. For any C ⊆ D and E ∈ D, we have w
(
C ∪ {E}

)
≤ w(C).

Proof. Set C∗ = C ∪ {E}. Let D be the smallest destroyer of C, and let r = rad(C) be the radius of D.
Since D destroys C<r, the set C<r ∪ {D} is non-Helly. Moreover, since C<r ∪ {D} ⊆ C∗<r ∪ {D}, we know
that C∗<r ∪ {D} is also non-Helly. Therefore, D destroys C∗<r and we can derive rad(C∗) ≤ rad(C). If
we have rad(C∗) < rad(C), we are done. Hence, assume that rad(C∗) = rad(C). Then D is the smallest
destroyer of C∗, and Lemma 4.4 gives − dist(C∗) = −d

(⋂
C∗<r, D

)
≤ −d(

⋂
C<r, D) = −dist(C). Hence,

w
(
C∗) ≤ w(C). See Figure 6 for an illustration.
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F
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v

v

v

D∞

EE
F

Figure 7: A basis can either be a non-Helly triple (left), a pair of intersecting disks E and F where the
point of minimum y-coordinate in E ∩ F is a vertex (middle), or a single disk (right).

Lemma 4.6. Let B ⊆ C ⊆ D with w(B) = w(C) and let E ∈ D. Then, if w
(
B ∪ {E}

)
= w(B), we also

have w
(
C ∪ {E}

)
= w(C).

Proof. Set C∗ = C ∪ {E}, B∗ = B ∪ {E}. Let r = rad(C) and D be the smallest destroyer of C. Since
w(C) = w(B) = w(B∗), we have that D is also the smallest destroyer of B and of B∗. If the radius of E is
larger than r, then E cannot be the smallest destroyer of C∗, so w

(
C∗
)

= w(C). Thus, assume that E
has radius less than r. Let v be the extreme point of C<r and D. Since w(B∗) = w(B), we know that
d
(⋂
B<r, D

)
= d
(⋂
B∗<r, D

)
= d(v,D). Now, Lemma 4.4 implies that v ∈ E, since E ∈ B∗<r. Thus, the

set C∗<r = C<r ∪ {E} is Helly and therefore, there is no disk D′ ∈ C∗<r that destroys C∗<r. Furthermore,
since D destroys C<r and C<r ⊂ C∗<r, the disk D also destroys C∗<r. Therefore, D is also the smallest
destroyer of C∗, so rad(C∗) = r = rad(C). Finally, since B∗<r ⊆ C∗<r we can use Lemma 4.4 to derive

d
(⋂

C<r, D
)

= d
(⋂

B∗<r, D
)
≤ d
(⋂

C∗<r, D
)
≤ d(v,D) = d

(⋂
C<r, D

)
.

The claim follows.

Next, we are going to describe the violation test for (D, w,≤): given a basis B ⊆ D and a disk E ∈ D,
check whether E violates B, i.e., whether w

(
B ∪ {E}

)
< w(B), and return an error message if B is not a

basis. But first, we show that the combinatorial dimension of (D, w,≤) is at most 3.

Lemma 4.7. For each C ⊆ D, there is a set B ⊆ C with |B| ≤ 3 and w(B) = w(C).

Proof. Let D be the smallest destroyer of C. Let r = rad(C) be the radius of D, and let v ∈
⋂
C<r be the

extreme point for C<r and D. First of all, we observe that v cannot be in the interior of
⋂
C<r, since

v minimizes the distance to D. Thus, there has to be a non-empty subset A ⊆ C<r such that v lies on
the boundary of each disk of A. Let A be a minimal set such that d(

⋂
A, D) = d(v,D). It follows that

|A| ≤ 2. See Figure 7 for an illustration.
First, assume that A = {E}. Then, since d(E,D) = d(v,D) > 0, we know that E∩D = ∅. As the disks

in C intersect pairwise, we derive D /∈ C and hence D = D∞. Setting B = A, we get rad(C) =∞ = rad(B)
and dist(C) = d(v,D) = d(E,D) = dist(B). Thus, |B| ≤ 3 and w(B) = w(C).

Second, assume that A = {E,F}. Then, v is one of the two vertices of the lens L = E ∩ F . Next,
we show that d(L,D) ≥ d(v,D). Assume for the sake of contradiction that there is a point w ∈ L with
d(w,D) < d(v,D). By general position and since v is the intersection of two disk boundaries, there is
a relatively open neighborhood N around v in

⋂
C<r such that N is also relatively open in L. Since L

is convex, there is a point x ∈ N that also lies in the relative interior of the line segment wv. Then,
d(x,D) < d(v,D) and x ∈

⋂
C<r. This yields a contradiction, as v is the extreme point for C<r and D.

Thus, we have d(L,D) ≥ d(v,D) which also shows hat D ∩ E ∩ F = ∅.
We set B = {E,F}, if C is Helly (i.e., D = D∞), and B = {D,E, F}, if C is non-Helly (i.e., D ∈ C).

In both cases, we have B ⊆ C and |B| ≤ 3. Moreover, we can conclude that D destroys B<r = {E,F},
and since B<r is Helly, D is the smallest destroyer of B. Hence, we have rad(C) = r = rad(B).
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To obtain dist(B) = dist(C), it remains to show d(
⋂
B<r, D) = d(

⋂
C<r, D). Since B<r ⊆ C<r, we can

use Lemma 4.4 as well as d(L,D) ≥ d(v,D) to derive

d
(⋂

C<r, D
)
≥ d
(⋂

B<r, D
)
,= d(L,D) ≥ d(v,D) = d

(⋂
C<r, D

)
as desired. We conclude that w(B) = w(C).

We remark that the set B is actually a basis for C: if B is a non-Helly triple, then removing any disk
from B creates a Helly set and increases the radius of the smallest destroyer to ∞. If |B| ≤ 2, then D∞ is
the smallest destroyer of B and the minimality follows directly from the definition.

Following the argument of the last proof, the violation test is now immediate. We present pseudo-code
in Algorithm 1. It obviously needs constant time. Finally, to apply the algorithm of Chazelle and
Matoušek, we still need to check that there is a polynomial-time oracle that computes a superset of RY
for a given set of disks Y.

Algorithm 1 The violation test.
1: procedure violates(set B ⊆ D, disk E ∈ D with radius r′)
2: if |B| > 3 or |B| = 3 and B is Helly then return “B is not a basis.”
3: if |B| = 2 and the y-minimum of

⋂
B is also the y-minimum of a single disk of B then

4: return “B is not a basis.”
5: if B = {D1} then
6: if the y-minimum in E ∩D1 differs from the y-minimum in D1 then
7: return “E violates B.”
8: else return “E does not violate B.”
9: if B = {D1, D2} then
10: v = argmin {wy | w ∈ D1 ∩D2}
11: if v /∈ E then return “E violates B.”
12: else return “E does not violate B.”
13: else . B is of size 3, non-Helly, and does not contain D∞.
14: D = smallest destroyer of B
15: {D1, D2} = B \ {D}
16: r = rad(B)
17: if r′ > r then return “E does not violate B.”
18: else
19: v = argmin {d(w,E) | w ∈ D1 ∩D2}
20: if v /∈ E then return “E violates B.”
21: else return “E does not violate B.”

Lemma 4.8. Given a set Y ⊆ D of disks, we can compute a superset of RY in time O(|Y|4).

Proof. Let v ∈ R2 and r > 0. First, we let Rv = {D ∈ Y | v /∈ D} be the range of all disks that
do not contain v. Second, let Rv,r be the range of all disks of diameter smaller than r that do not
contain the point v, i.e., Rv,r = {D ∈ Y | v /∈ D and rD < r}. We define R′ to be the set of all
ranges Rv over all v and subsequently, we let R′′ be the set of all ranges Rv,r over all v and r, that is,
R′′ = {Rv,r | v ∈ R2 and r > 0}.

The discussion from the previous lemmas shows that for any basis B, there is a point vB ∈ R2 and a
radius rB > 0 such that a disk E ∈ D with radius rE violates B if and only if vB 6∈ E and rE < rB. Hence,
we have R′′ ⊇ RY . We show how to compute R′′ in polynomial time. For this, we first construct R′.

For the given set Y of disks, we compute the arrangement A(Y) and then focus on the facets of
A(Y). Since the arrangement has O(|Y|2) facets, we can compute A(Y) in time O(|Y|3) using a simple
brute-force approach (faster algorithms exist, but are not needed here). Clearly, for two points v and w
of the same facet of A(Y), we have Rv = Rw. Therefore, for a given facet f , we pick an arbitrary point
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v ∈ f , and we compute Rv by a linear scan of Y. Summing over all facets, we can thus compute R′ in
time O(|Y|3).

Finally, to compute R′′, we iterate over all O(|Y|2) ranges in R′. Given a range Rv ∈ R′, we get all
Rv,r for r > 0 by first sorting Rv by increasing radii and then taking every prefix of the sorted list of
disks. For a fixed v, this can be done in time O(|Y|2). Hence, R′′ can be computed in O(|Y|4) time. The
claim follows.

The following lemma summarizes the discussion so far.

Lemma 4.9. Given a set D of n pairwise intersecting disks in the plane, we can decide in O(n)
deterministic time whether D is Helly. If so, we can compute a point in

⋂
D in O(n) deterministic time.

If not, we can compute the smallest destroyer D of D and two disks E,F ∈ D<r that form a non-Helly
triple with D. Here, r is the radius of D.

Proof. Since (i) (D, w,≤) is LP-type, (ii) the violation test needs constant time, and (iii) the oracle
needs polynomial time, we can apply the deterministic algorithm of Chazelle and Matoušek [7] to
compute w(D) = (rad(D),− dist(D)) and a corresponding basis B in O(n) time. Then, D is Helly if
and only if rad(D) = ∞. If D is Helly, then |B| ≤ 2. We compute the unique point v ∈

⋂
B with

d(v,D∞) = d
(⋂
B, D∞

)
. Since B ⊆ D and d

(⋂
B, D∞

)
= d
(⋂
D, D∞

)
, we have v ∈

⋂
D by Lemma 4.4.

We output v. If D is non-Helly, we simply output B, because B is a non-Helly triple with the smallest
destroyer D of D and two disks E,F ∈ D<r, where r is the radius of D.

Theorem 4.10. Given a set D of n pairwise intersecting disks in the plane, we can find in deterministic
O(n) time a set P of five points such that every disk of D contains at least one point of P .

Proof. Using the algorithm from Lemma 4.9, we decide whether D is Helly. If so, we return the extreme
point computed by the algorithm. Otherwise, the algorithm gives us a non-Helly triple {D,E, F}, where
D is the smallest destroyer of D and E,F ∈ D<r, with r being the radius of D. Since D<r is Helly, we
can obtain in O(n) time a stabbing point q ∈

⋂
D<r by using the algorithm from Lemma 4.9 again. Next,

by Lemma 2.1, there are two disks in {D,E, F} whose lens angle is at least 2π/3. Let P ′ be the set of
four points from the proof of Lemma 2.4. Then, P = P ′ ∪ {q} is a set of five points that stabs every disk
in D.

5 Simple Bounds
We now provide some easy lower and upper bounds on the number of disks for which a certain number of
stabbing points is necessary or sufficient.

Eight disks can be stabbed by three points. For the proof that any set of eight pair-wise intersecting
disks can be stabbed by at most three points, we show the following lemma.

Lemma 5.1. Let D be a set of at least 5 pairwise intersecting disks. Then, D contains a Helly-triple.

Proof. Let D be a set of exactly 5 pairwise intersecting disks. We assume that no three centers of the
disks are on a line, since otherwise these three disks are a Helly-triple. Since the complete graph K5
does not have a planar embedding, there have to be four different disks D1, . . . , D4 ∈ D with centers
c1, . . . , c4 and radii r1, . . . , r4 such that the line segments c1c3 and c2c4 intersect, see Figure 8. Let x be
the intersection point. Moreover, let α (resp., β) be the intersection of the lens L1,3 (resp., L2,4) and the
line segment c1c3 (resp., c2c4). If x is in α or β, we are done. Otherwise, let y be the point of α that
is closest to x and let z be the point of β closest to x. We can assume without loss of generality that
|xy| ≤ |xz| and x /∈ D4. Using the triangle inequality, We can derive

|c2y| ≤ |c2x|+ |xy| ≤ |c2x|+ |xz| ≤ r2

to conclude that y ∈ D1 ∩D2 ∩D3.
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Figure 8: Proof of Lemma 5.1.

Now consider a set D of 8 pairwise intersecting disks. Using Lemma 5.1, we can find a Helly-triple in
D. Among the remaining 5 disks, we find a second Helly-triple. The remaining two disks can be stabbed
by one point. This reasoning yields the following corollary, which was already mentioned by Stachó [20].

Corollary 5.2. Every set D of at most 8 pairwise intersecting disks can be stabbed by 3 points.

13 disks with 4 stabbing points. Danzer presented a set of 10 pairwise intersecting pseudo-disks
with stabbing number four [9]. However, it is not clear to us how these 10 pseudo-disks can be realized
as pairwise intersecting Euclidean disks achieving the same stabbing number. Moreover, it is another
open problem whether 9 pairwise intersecting disks can be stabbed by three points. Instead, we want to
describe a set of 13 pairwise intersecting disks in the plane such that no point set of size three can pierce
all of them.

The construction begins with an inner disk A of radius 1 and three larger disks D1, D2, D3 of equal
radius, so that each pair of disks in {A,D1, D2, D3} is tangent. For i = 1, 2, 3, we denote the contact
point of A and Di by ξi.

We add six more disks as follows. For i = 1, 2, 3, we draw the two common outer tangents to A and
Di, and denote by T−i and T+

i the halfplanes that are bounded by these tangents and are openly disjoint
from A. The labels T−i and T+

i are chosen such that the points of tangency between A and T−i , Di, and
T+

i , appear along the boundary of A in this counterclockwise order. One can show that the nine points of
tangency between A and the other disks and tangents are pairwise distinct (see Figure 9). We regard the
six halfplanes T−i , T+

i , for i = 1, 2, 3, as (very large) disks; in the end, we can apply a suitable inversion
to turn the disks and halfplanes into actual disks, if so desired.

Finally, we construct three additional disks A1, A2, A3. To construct Ai, we slightly expand A into a
disk A′i of radius 1 + ε1, while keeping the tangency with Di at ξi. We then roll A′i clockwise along Di,
by a tiny angle ε2 � ε1, to obtain Ai.

This gives a set of 13 disks. For sufficiently small ε1 and ε2, we can ensure the following properties for
each Ai: (i) Ai intersects all other 12 disks; (ii) the nine intersection regions Ai ∩Dj , Ai ∩ T−j , Ai ∩ T+

j ,
for j = 1, 2, 3, are pairwise disjoint; and (iii) ξi /∈ Ai.

Theorem 5.3. The construction yields a set of 13 disks that cannot be stabbed by 3 points.

Proof. Consider any set P of three points. Set A∗ = A∪A1 ∪A2 ∪A3. If P ∩A∗ = ∅, we have unstabbed
disks, so suppose that P ∩A∗ 6= ∅. For p ∈ P ∩A∗, property (ii) implies that p stabs at most one of the
nine remaining disks Dj , T+

j and T−j , for j = 1, 2, 3. Thus, if P ⊂ A∗, we would have unstabbed disks, so
we may assume that |P ∩A∗| ∈ {1, 2}.

Suppose first that |P ∩A∗| = 2. As just argued, at most two of the remaining disks are stabbed by
P ∩A∗. The following cases can then arise.

(a) None of D1, D2, D3 is stabbed by P ∩A∗. Since {D1, D2, D3} is non-Helly and a non-Helly set must
be stabbed by at least two points, at least one disk remains unstabbed.
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Figure 9: Each common tangent ` between A and Di represents a very large disk, whose interior is disjoint
from A. The nine points of tangency are pairwise distinct.

(b) Two disks among D1, D2, D3 are stabbed by P ∩A∗. Then the six unstabbed halfplanes form many
non-Helly triples, e.g., T−1 , T−2 , and T−3 , and again, a disk remains unstabbed.

(c) The set P ∩ A∗ stabs one disk in {D1, D2, D3} and one halfplane. Then, there is (at least) one
disk Di such that Di and its two tangent halfplanes T−i , T+

i are all unstabbed by P ∩ A∗. Then,
{Di, T

−
i , T

+
i } is non-Helly, and at least 2 more points are needed to stab it.

Suppose now that |P ∩A∗| = 1, and let P ∩A∗ = {p}. We may assume that p stabs all four disks A, A1,
A2, A3, since otherwise a disk would stay unstabbed. By property (iii), we can derive p 6∈ {ξ1, ξ2, ξ3}.
Now, since p ∈ A \ {ξ1, ξ2, ξ3}, the point p does not stab any of D1, D2, D3. Moreover, by property (ii),
the point p can only stab at most one of the remaining halfplanes. Since {D1, D2, D3} is non-Helly, it
requires two stabbing points. Moreover, since |P \ {p}| = 2, it must be the case that one point q of
P \A∗ is the point of tangency of two of these disks, say q = D2 ∩D3. Then, q stabs only two of the six
halfplanes, say, T−1 and T+

1 . But then, {D1, T
+
2 , T

−
3 } is non-Helly and does not contain any point from

{p, q}. At least one disk remains unstabbed.

6 Conclusion
We gave a simple linear-time algorithm, based on techniques for solving LP-type problems, to find five
stabbing points for a set of pairwise intersecting disks in the plane. The arXiv manuscript by Carmi,
Katz, and Morin [4] claims a similar linear-time algorithm for finding four stabbing points. It would now
be interesting to see whether these results, the ones by Danzer, Stachó, and ours, could be used to find
new deterministic approximation algorithms for computing large cliques in disk graphs; refer to [2, 3] for
the known algorithms. On the lower-bound side, it is still not known whether nine disks can always be
stabbed by three points or not. For eight disks, we provided a proof that three points always suffice, as
already mentioned by Stachó [20]. The lower bound construction of Danzer with ten disks [9] can easily
be verified for pseudo-disks. However, the example is not easy to draw, even with the help of geometry
processing software. Until now, we were not able to check whether his pseudo-disk arrangement can be
realized as a Euclidean disk arrangement.
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