
Combinatorics of Beacon-based Routing in Three1

Dimensions?,??2

Jonas Cleve, Wolfgang Mulzer3

Institut für Informatik, Freie Universität Berlin, Berlin, Germany4

Abstract5

A beacon b ∈ Rd is a point-shaped object in d-dimensional space that can exert6

a magnetic pull on any other point-shaped object p ∈ Rd. This object p then7

moves greedily towards b. The motion stops when p gets stuck at an obstacle8

or when p reaches b. By placing beacons inside a d-dimensional polyhedron9

P , we can implement a scheme to route point-shaped objects between any two10

locations in P . We can also place beacons to guard P , which means that any11

point-shaped object in P can reach at least one activated beacon.12

The notion of beacon-based routing and guarding was introduced in 2011 by13

Biro et al. [FWCG’11]. The two-dimensional setting is discussed in great detail14

in Biro’s 2013 PhD thesis [SUNY-SB’13].15

Here, we consider combinatorial aspects of beacon routing in three dimensions.
We show that b(m+ 1)/3c beacons are always sufficient and sometimes necessary
to route between any two points in a given polyhedron P , where m is the smallest
size of a tetrahedral decomposition of P . This is one of the first results to show
that beacon routing is also possible in higher dimensions.

Keywords: beacon routing, three dimensions, polytopes16

1. Introduction17

Visibility in the presence of obstacles is a classic notion in combinatorial and18

computational geometry [11]. Given a simple polygon P in the plane, two points19

p and q in P can see each other if and only if the line segment between p and q20

lies in P (considered as a closed region). The visibility region of a point p ∈ P21

consists of all points q ∈ P such that p and q can see each other. These basic22

definitions and their variants have spawned an active subarea of computational23

geometry, with whole textbooks devoted to it [11,16].24

In 2011, Biro et al. [6] introduced the concept of beacon-based visibility, where25

the objects take a more active role. A beacon b ∈ Rd is a point-shaped object in26

d-dimensional space. The beacon b can be enabled or disabled. Once b is enabled,27

it exerts a magnetic pull on any other point-shaped object p in Rd. Then, the28

object p moves in the direction that most rapidly decreases the distance between29

b and p. In the simplest case, this motion proceeds along the line segment pb.30

?Supported in part by DFG grant MU 3501/1 and ERC StG 757609.
??A preliminary version appeared as J. Cleve and W. Mulzer. Combinatorics of Beacon-based

Routing in Three Dimensions. Proc. 13th LATIN, pp. 346–360.
Email addresses: jonascleve@inf.fu-berlin.de (Jonas Cleve),

mulzer@inf.fu-berlin.de (Wolfgang Mulzer)

Preprint submitted to Elsevier May 22, 2020

b1

b2

b1

b2

Figure 1: Attraction is not symmetric. In this two-dimensional example b1 attracts b2 (left)
but b2 does not attract b1 (right).

If p encounters an obstacle that blocks the direct path along pb, then p slides31

along the boundary of the obstacle in the direction that most rapidly decreases32

the distance to b. If this is not possible, the motion ends, and we say that p gets33

stuck. If p does not get stuck, then it reaches b, and we say that p is attracted by34

b. See Fig. 1 for examples. The attraction region of b consists of all points that35

are attracted by b. This is an extension of classic visibility: the visibility region36

of b is a subset of the attraction region of b. However, unlike classic visibility,37

beacon attraction is not symmetric. Thus, it makes also sense to consider the38

inverse attraction region of a point p, i.e., the set of all beacon positions b such39

that b attracts p. Two examples of these regions can be found in Fig. 2.40

The PhD thesis of Biro [5] constitutes the first in-depth study of beacon-41

based visibility. In particular, it considers beacon-based routing and guarding in42

(two-dimensional) polygonal domains. The idea of beacon-based routing is as43

follows: suppose we have a polygonal domain P that contains a set B of beacons,44

and suppose we want to route a point-shaped object p towards a target t. We45

assume that t can also act as a beacon, even if it is not contained in B. The46

routing proceeds by successive activation of beacons in B ∪ {t}: a first beacon47

b1 ∈ B is enabled to attract p until it reaches b1. Subsequently, b1 is disabled,48

and a second beacon b2 ∈ B is switched on, again attracting p until it reaches49

b2. This is repeated until the last (implicit) beacon at t is enabled and finally50

attracts p to its location. The challenge is to devise a strategy for placing the51

beacons in P and for choosing a sequence of beacon activations such that it52

becomes possible to route between any two locations s and t in P . The size of53

B should be minimized. Note that we require that every activated beacon must54

attract p until it reaches the beacon’s location. Only then are we allowed to55

enable the next beacon. Thus, if p gets stuck, the process ends and the routing56

b p

Figure 2: The attraction region of a beacon b (left) and the inverse attraction region of a point
p (right).

2

is considered to be unsuccessful.57

In beacon-based guarding (or coverage), the goal is to choose a minimum-size58

set B of beacons such that the union of the attraction regions for B covers59

the whole polygonal domain P . In this case, we say that B covers P . This is60

analogous to the classic art-gallery problem [16], using beacon-based visibility61

instead of straight-line visibility.62

1.1. Related Work63

Two dimensions. As mentioned above, a large part of the pioneering work on64

beacon-based routing and guarding was done by Biro and his co-authors [6–8].65

An extensive collection of results can be found in Biro’s PhD thesis [5].66

Biro and his co-authors showed that bn/2c − 1 beacons always suffice and67

sometimes are necessary for routing in a simple polygon with n vertices [7,68

Theorem 1]. We will discuss this result in more detail in Section 2. More generally,69

to route in a polygon with n vertices and h holes, bn/2c − h − 1 beacons are70

sometimes necessary and bn/2c+h−1 beacons are always sufficient [7, Theorem 2].71

For orthogonal polygons1, they showed only a loose lower bound of bn/4c − 172

beacons, leaving a larger gap for the routing problem [7, Theorem 3].73

For beacon-based guarding of a simple polygon and of a polygon with h holes,74

they showed that b4n/13c beacons are sometimes necessary, while b(n+ h)/3c75

beacons are always sufficient [7, Theorem 5]. In particular, the upper bound76

for simple polygons is bn/3c. For orthogonal polygons, they obtained an upper77

bound of bn/4c and a lower bound of b(n+ 4)/8c [7, Section 6].78

Bae et al. [3] improved some of these bounds by showing that bn/6c beacons79

are sometimes needed and always sufficient for beacon-based guarding in orthog-80

onal polygons. They also proved that if the polygon is monotone and orthogonal,81

the bound reduces to b(n+ 4)/8c. The gap for routing in simple orthogonal82

polygons was finally closed by Shermer [18] who showed that b(n− 4)/3c beacons83

are always sufficient and sometimes necessary.84

Aldana-Galván et al. [1] extended the notion of coverage to both the interior85

and the exterior of a given polygon. They proved that bn/4c+ 1 vertex beacons86

always suffice to simultaneously cover the interior and exterior of an orthogonal87

polygon with n vertices (possibly with holes) [1, Theorem 1]. Table 1 gives an88

overview of the currently best results for routing and guarding in two dimensions.89

So far, we have only discussed results that give combinatorial bounds on the90

number of beacons needed to guard or to route in certain classes of polygons.91

Naturally, the notions of beacon-based routing and guarding also lead to interest-92

ing algorithmic questions. As is to be expected, several optimization problems93

associated with beacons are hard: Biro [5, Theorems 6.2.2, 6.2.3, and 6.2.4]94

showed that the All-Pair, All-Sink, and All-Source variants of the optimal95

beacon routing problem are NP-hard. In these problems, we are given a simple96

polygon P , and we need to find a minimum set B of beacons such that we can97

route between any pair of points in P ; from a given location s ∈ P to all other98

1A planar polygon is orthogonal if all its edges are parallel to the x- or the y-axis.

3

Bound
Problem Polygon type Lower Upper Reference

Simple bn/2c − 1 [7, Thm 1]
Routing With holes bn/2c − h− 1 (*) bn/2c+ h− 1 [7, Thm 2]

Orthogonal b(n− 4)/3c [18]

Simple b4n/13c bn/3c (*) [7, Thm 5]

Guarding With holes b4n/13c
⌊
(n+ h)/3

⌋
(*) [7, Thm 5]

Orthogonal bn/6c [3]

Table 1: The currently best results in two dimensions. The bounds marked (*) were conjectured
to be tight by Biro [5, Conjectures 6.3.3, 7.3.7, and 7.3.9]

points in P ; or from all points in P to a given location t ∈ P , respectively. Biro99

also showed that given a simple polygon P , it is NP-hard to find a minimum set100

of beacons that covers P [5, Theorem 7.2.1].101

On the positive side, Biro et al. [8, Theorem 6] presented an algorithm to102

compute the attraction region of a given beacon in a polygon P with n vertices103

and h holes in O(n+ h log1+ε h) time and O(n) space, for any fixed ε > 0. They104

also described how to find the inverse attraction region of a point in a polygon105

P with n vertices in O(n2) time [8, Theorem 8]. More generally, the inverse106

attraction region of a polygonal region R in P with m vertices can be computed107

in O(n2m2) time [8, Theorem 8]. As for routing, Biro et al. show how to find a108

minimum-hop-beacon path between two points s and t in a polygon with n vertices109

and h holes from a given set of m beacons in O(m(n + h log1+ε h + m log h))110

time [8, Theorem 11]. They also provide a O(n3)-time 2-approximation algorithm111

for the case that the beacons can be placed arbitrarily inside the polygon. As the112

authors point out, this approximation algorithm can also be applied repeatedly113

to obtain a PTAS. More recently, Kostitsyna et al. [13] gave an optimal algorithm114

to compute the inverse beacon attraction region of a point in a simple polygon115

in O(n log n) time. Further algorithmic results can be found in Kouhestani’s116

PhD thesis [14].117

Three dimensions. This work is based on the Master’s thesis of the first au-118

thor [10] who presented the first combinatorial bounds for beacon-based routing119

in three dimensions. In his thesis, Cleve also showed that Biro’s NP-hardness and120

APX-hardness results for optimum beacon routing extend to three dimensions,121

by a simple lifting argument [10, Section 4.3]. Finally, he constructed a three-122

dimensional polyhedron that cannot be guarded by placing a beacon at every123

vertex [10, Lemma 6.1]. Independently, and almost at the same time, Aldana-124

Galván et al. [2, Section 2] obtained a stronger result: there exists an orthogonal125

polyhedron that cannot be covered by beacons at every vertex. Furthermore,126

4

Aldana-Galván et al. [2, Theorem 1] showed that every orthotree2 with n vertices127

can be covered by bn/8c beacons. They described a family of orthotrees where128

this number of beacons is needed. They also proved a tight bound of bn/12c129

becons for well-separated orthotrees.3 Shortly afterwards, Aldana-Galván et130

al. [1] introduced the notion of edge beacons. Here, every point of an edge e may131

exert a magnet pull on a point-shaped object p, and p always moves towards the132

point on e closest to it. Aldana-Galván et al. prove that bm/12c edge beacons are133

always sufficient and sometimes bm/21c edge beacons are necessary to cover an134

orthogonal polyhedron with m edges [1, Theorems 3 and 4]. If both the interior135

and the exterior of an orthogonal polyhedron should be covered simultaneously,136

bm/6c is a tight bound for the number of edge beacons required [1, Theorem 5].137

2. Preliminaries138

We begin by reviewing the proof that bn/2c−1 beacons are needed for routing139

in a simple polygon with n vertices [7, Theorem 1]. This serves two purposes: on140

the one hand, the argument serves as a starting point for our three-dimensional141

bound; on the other hand, it provides an opportunity to correct a slight gap in142

the published proof by Biro et al. [7].4143

2.1. Two-dimensional Upper Bound144

The following theorem states the main result for beacon-based routing in145

two dimensions.146

Theorem 1 (Biro et al. [7, Theorem 1]). Let P be a simple polygon with n147

vertices. Then, bn/2c − 1 beacons are sometimes necessary and always sufficient148

to route between any two points in P .149

The strategy of Biro et al. [7] is as follows: they triangulate P to obtain150

a partition into n − 2 triangles. Then, they place the beacons in P with an151

inductive strategy. In each step, one beacon b is placed, and at least two triangles152

are removed. They claim that there is always a way to position b on the boundary153

of the remaining polygon such that the whole interior of the removed triangles154

can be seen from b. The inductive procedure ends as soon as no more triangles155

are left. Biro et al. conclude that bn/2c − 1 beacons suffice for routing.156

The technical heart of the argument lies in an analysis of different triangle157

configurations. The goal is to show that by placing a single beacon, at least158

two triangles can be removed. One configuration is as follows:5 we have a159

2An orthotree is an orthogonal polyhedron made out of boxes that are glued face to face
and whose dual graph is a tree.

3An orthotree is well-separated if its dual graph has the property that all neighbors of a
vertex with degree strictly greater than 2 have degree at most 2.

4This issue and a possible fix have also been discovered by Tom Shermer, a fact personally
communicated to us by Irina Kostitsyna [12], but as far as we know, no updated version of the
proof has been published to date.

5We follow the notation of the original work [7].

5

A

B

C

D

E

F

σ1 σ2

σ4

σ3

b

Figure 3: The situation analyzed by Biro et al. [7]. Here, b can be placed near D so that b can
see every point inside ABDFC. The edges AB, AC, CF , and DF are boundary edges and
BD is a diagonal.

central triangle σ2 = 4BCD with two adjacent triangles σ1 = 4ABC and160

σ3 = 4CDF . Biro et al. [7] would like to argue that one can position a beacon161

b on the free edge BD of σ2 such that the whole polygon ABDFC is completely162

visible to b; see Fig. 3. More precisely, their reasoning goes like this:163

The location b along BD is chosen so the pentagon ABDFC is164

visible to b. This is always possible, by placing b on the correct side165

of lines CF and AC. Then, any point in triangles 4ABC, 4BCD,166

4CDF can be routed to or from b as b is visible to each point in167

those triangles. — [7, p. 2]168

However, the condition that b lies to the right of AC and to the left of FC169

is not sufficient for the whole pentagon ABDFC to be visible from b. For this,170

b must also be to the left of AB and to the right of FD, i.e., in the visibility171

cone of both σ1 and σ3. Figure 4a shows a situation where this cannot be done:172

the line through B and D limits the visibility of any beacon b in the relative173

interior of the line segment BD. Moreover, if we place b at B or at D, then b174

still cannot see the full pentagon.175

Nonetheless, visibility is not actually required; mutual attraction would be176

enough for the argument to go through. In fact, we can always place b so that it177

attracts all points inside the pentagon ABDFC. Unfortunately, the inverse does178

not hold. Consider Fig. 4b: unless b is placed at B, a point-shaped object at b179

that is attracted by A will get stuck on the line segment BG; and analogously180

for D and F . Since b cannot be placed simultaneously at both B and D, the181

requirement that b is attracted by both A and F cannot be fulfilled.182

Nevertheless, Theorem 1 still holds, as we will show in the following lemma.183

For completeness, we present the proof in full detail, and we indicate where we184

depart from the original argument of Biro et al. [7, Theorem 1].185

Lemma 2 (Two-dimensional upper bound). Let P be a simple polygon186

with n ≥ 2 vertices. Then, bn/2c − 1 beacons are always sufficient to route187

between any two points in P .188

6

A

B

C

D

E

F

σ1
σ2

σ4

σ3

(a) Here, b cannot be placed on BD to see
the full pentagon.

A

B

C

D

E

F

G

H

b

(b) No matter where b lies on BD, it cannot
be attracted by both A and F .

Figure 4: It is not always possible to place one beacon b on the line segment BD such that it
attracts and is attracted by all points inside the pentagon ABDFC.

Proof. The proof proceeds by induction on n. For the base case, we assume189

that 2 ≤ n ≤ 4. If n ∈ {2, 3}, then P is either a line segment or a single triangle.190

In both cases, P is convex and no beacon is needed. For n = 4, we let d be a191

diagonal of P .6 We place one beacon at an arbitrary point b on d. Then, every192

point p ∈ P can see b, which means that p and b mutually attract. Thus, we193

can route from every s ∈ P to every t ∈ P via b.194

Now suppose that n > 4 and assume that Lemma 2 holds for all simple195

polygons with at most n− 1 vertices. We triangulate P and consider the dual196

graph T of the triangulation: the triangles constitute the nodes, and two nodes197

are adjacent if and only if the corresponding triangles share an edge in the198

triangulation. As P is simple, T is a tree with n− 2 nodes and maximum degree199

3. We take an arbitrary leaf of T , and we declare it the root. Let σ1 be a triangle200

that corresponds to a deepest leaf in T . Let σ2 be the parent triangle of σ1.201

There are two cases:202

Case 1: the triangle σ1 is the only child of σ2. Let σ3 be the parent triangle203

of σ2. Then, the triangles σ1, σ2, and σ3 share a common vertex v, and we place204

a beacon b at v; see Fig. 5a. Next, we remove from P the parts of σ1 and σ2205

that do not belong to another triangle of P . This gives a simple polygon P1 with206

n1 = n− 2 vertices. By the inductive hypothesis, there is a set B1 of at most207 ⌊n1
2

⌋
− 1 =

⌊
n− 2

2

⌋
− 1 =

⌊n
2

⌋
− 2

beacons that allows us to route between any two points in P1. We setB = B1∪{b}.208

Then, we have |B| ≤ bn/2c − 1.209

It remains to show that we can use B to route between any two points in210

P . By the inductive hypothesis and because b lies in σ3 which remains in P1,211

we can route between b and any point in P1. Furthermore, due to convexity of212

6A diagonal is a line segment whose endpoints are vertices of P and whose relative interior
lies in the interior of P .

7

b

σ1 σ2

σ3

σ5
σ6

(a) The beacon b
covers at least three
triangles: σ1, σ2, σ3.

b1

b2
σ1 σ2

σ4

σ3

σ5
σ6

(b) The two beacons b1 and b2
cover σ1, σ2, σ3, and σ4 and
both neighbors of σ4.

b1

b2

P1

P2

(c) After removing σ1 to σ4
two (possibly empty) polygons
P1 and P2 remain.

Figure 5: The two possible configurations in the inductive step are shown in (a) and (b). (c)
shows the situation of (b) after removing the triangles.

triangles, every point p ∈ σ1 ∪ σ2 can see b, and thus p can attract b and can be213

attracted by it. Hence, we can route between any pair of points in P using B.214

Case 2: the triangle σ2 has a second child σ3. This is the erroneous case215

in Biro et al. [7, Theorem 1]. Let σ4 be the parent triangle of σ2. Since σ1216

is a deepest leaf in T , if follows that σ3 is also a leaf; see Fig. 5b. Instead of217

placing a single beacon and removing three triangles, as suggested by Biro et218

al. [7, Theorem 1], we place two beacons b1, b2 and remove four triangles. The219

beacon b1 is placed at the common vertex of σ1, σ2, and σ4 (marked red), and220

b2 is placed at the common vertex of σ3, σ2, and σ4 (marked blue). If σ4 has221

more neighbors, they are also covered by {b1, b2}, see Fig. 5b.222

We remove from P the set (σ1∪σ2∪σ3)\{b1, b2} and the interior of σ4. This
gives two polygons P1 and P2 with one common vertex, see Fig. 5c. Possibly, P1

or P2 (or both) degenerates to a line segment from b1 or b2 to the common vertex.
Let n1 ≥ 2 be the number of vertices of P1, and n2 ≥ 2 the number of vertices
of P2. We have n1 + n2 = n− 2, since we removed three vertices, and since P1

and P2 share one vertex to be counted twice. As n1 ≤ n− 1 and n2 ≤ n− 1, we
can apply the inductive hypothesis to P1 and P2. This gives two sets B1 ⊂ P1

and B2 ⊂ P2 of beacons with |B1| ≤ bn1/2c − 1 and |B2| ≤ bn2/2c − 1. We set
B = B1 ∪B2 ∪ {b1, b2}. Then,

|B| = |B1|+ |B2|+ 2 ≤
⌊n1

2

⌋
− 1 +

⌊n2
2

⌋
− 1 + 2

=
⌊n1

2

⌋
+
⌊n2

2

⌋
≤
⌊
n1 + n2

2

⌋
=

⌊
n− 2

2

⌋
=
⌊n

2

⌋
− 1.

It remains to show that we can route between any two points in P . By the223

inductive hypothesis, and since b1 lies on the boundary of P1 and b2 on the224

boundary of P2, we can route between b1 and any point in P1, and between b2225

and any point in P2. Moreover, since b1 and b2 both lie in σ2, they can see and226

thus attract each other. Also, since every removed triangle σ1, σ2, σ3, and σ4227

contains either b1 or b2, every point in
⋃4

i=1 σi can attract and be attracted by228

b1 or b2. It follows that for every point p ∈ P , we can route between p and b1 or229

between p and b2. Since we also can route between b1 and b2, it follows that we230

8

A

B

C

D

E

F

b

(a) ∠FCB > 3π/2 and b is placed at C.
However, despite ∠EBC ≤ 3π/2, a beacon
at E cannot attract an object at b.

A B = b1

C = b2

D

E

F

(b) ∠FCB ≤ 3π/2 and ∠EBC ≤ 3π/2. The
beacon is to be placed arbitrarily at B or C.
However, for both positions it cannot be
attracted by either F or E.

Figure 6: Two counterexamples for the alternative proof of Biro et al. [6].

can route between any two points in P . �231

Remark. The extended abstract for the original paper by Biro et al. from232

2011 [6], available on Irina Kostitsyna’s ResearchGate profile, contains an al-233

ternative proof for Theorem 1. This version handles Case 2 slightly differently.234

However, we believe that it is susceptible to the same issues as the more recent235

version of the proof [7]. More precisely, in the alternative proof, the authors use236

the same notation as in Fig. 3. They say that if ∠FCB > 3π/2, the beacon b237

should be placed at C. From this, it follows that ∠CBE ≤ 3π/2. The authors238

claim that then, “all points inside 4BDE can reach b and vice versa”. However,239

Fig. 6a shows a case where E cannot attract b. A similar counterexample applies240

for the symmetric case where ∠EBC > 3π/2 and b is placed at B. If both241

∠FCB ≤ 3π/2 and ∠EBC ≤ 3π/2, then b is to be placed “arbitrarily at either242

B or C”, but Fig. 6b shows a configuration where both positions cannot be243

attracted by all points inside the four triangles.244

2.2. Tetrahedral Decompositions245

To generalize the proof strategy from Theorem 1 to R3, we need a three-246

dimensional analogue of polygon triangulation: the decomposition of a bounded247

polyhedron into tetrahedra. This creates several difficulties that are not present248

in the two-dimensional case. In 1911, Lennes [15] showed that there are polyhedra249

that cannot be decomposed into tetrahedra without additional Steiner points. In250

fact, it is NP-complete to decide whether a tetrahedral decomposition without251

Steiner points exists [17]. The size of a tetrahedral decomposition is the number252

of tetrahedra contained in it. Unlike in two dimensions, the size of a tetrahedral253

decomposition may significantly exceed the number of vertices in the polyhedron.254

Chazelle [9] showed that for any n, there exists a polyhedron with Θ(n) vertices255

for which any decomposition into convex parts needs at least Ω(n2) pieces.256

On the other hand, Bern and Eppstein [4, Theorem 13] described how to257

decompose any polyhedron into O(n2) tetrahedra using O(n2) Steiner points.258

Furthermore, a tetrahedral decomposition clearly must have size at least n− 3.259

A single polyhedron may have different tetrahedral decompositions of varying260

9

sizes. For example, the triangular bipyramid can be decomposed into two or261

three tetrahedra [17, p. 228]. Thus, our bounds will be in terms of the minimum262

size of a decomposition rather than the number of vertices. Steiner points are263

allowed.264

To extend the ideas for two dimensions to R3, we must understand the dual265

graph of a tetrahedral decomposition. This graph is defined as follows:266

Definition 3. Given a tetrahedral decomposition Σ = {σ1, . . . , σm} of a three-267

dimensional polyhedron, the dual graph D(Σ) of Σ is the undirected graph with268

vertex set {σ1, . . . , σm} in which there is an edge between two distinct tetrahedra269

σi and σj if and only if σi and σj share a triangular facet.270

Similarly to the two-dimensional case, the dual graph D(Σ) of a tetrahedral271

decomposition has maximum degree 4. However, unlike in two dimensions, D(Σ)272

is not necessarily a tree. The following lemma provides a tool for placing beacons273

in connected subgraphs of D(Σ).274

Lemma 4. Let Σ be a tetrahedral decomposition of a three-dimensional polyhe-275

dron, and let D(Σ) be the dual graph of Σ. Consider a set S ⊆ Σ of tetrahedra276

such that the induced subgraph D(S) of D(Σ) is connected. Then,277

(i) if |S| = 2, the tetrahedra in S share a triangular facet;278

(ii) if |S| = 3, the tetrahedra in S share one edge; and279

(iii) if |S| = 4, the tetrahedra in S share at least one vertex.280

Proof. We consider the three cases separately.281

Case (i): this follows directly from Definition 3.282

Case (ii): since D(S) is connected and since |S| = 3, there is a tetrahedron283

σ ∈ S adjacent to the other two. By Definition 3, this means that σ shares a284

facet with each of the other two tetrahedra. Since σ is a tetrahedron, any two285

facets in σ share an edge. The claim follows.286

Case (iii): see Fig. 7. Let S′ ⊂ S be three tetrahedra in S so that D(S′)287

is connected. By (ii), the tetrahedra in S′ share an edge e. By Definition 3,288

the remaining tetrahedron in S \ S′ shares a facet f with a tetrahedron σ ∈ S′.289

Since e contains two vertices of σ while f contains three vertices, e and f must290

share at least one vertex. The claim follows. �291

3. An Upper Bound for Beacon-based Routing292

We now give an upper bound on the number of beacons needed to route293

within a polyhedron, extending the strategy of Biro et al. [7], as described in294

Section 2, to three dimensions. We want to show the following:295

Theorem 5. Let P be a three-dimensional polyhedron, and let Σ be a tetrahedral296

decomposition of P of size m. There is a set of at most b(m+ 1)/3c beacons297

that allows us to route between any pair of points in P .298

10

(a) One tetrahedron in the
center has all other
tetrahedra as neighbors.

(b) Two tetrahedra with
one and two tetrahedra
with two neighbors.

(c) All four tetrahedra
share one edge.

Figure 7: The three possible configuration for a polyhedron with a decomposition into four
tetrahedra. The shared vertex or edge is marked.

The rest of this section is dedicated to the inductive proof of Theorem 5. The299

following lemma constitutes the base case of the induction.300

Lemma 6 (Base case). Let P be a three-dimensional polyhedron, and let Σ301

be a tetrahedral decomposition of P of size m ≤ 4. There is a set of at most302

b(m+ 1)/3c beacons that allows us to route between any pair of points in P .303

Proof. If m = 1, then P is a convex tetrahedron, and no beacon is needed. If304

m ∈ {2, 3, 4}, we apply Lemma 4 to obtain a vertex v that is common to all305

tetrahedra in Σ. We place one beacon b at v. By convexity, every point in P306

can attract and be attracted by b, and the claim follows. �307

We proceed to the inductive step. For this, we consider a tetrahedral308

decomposition Σ of size m > 4. Our goal is to place k beacons, for some k ≥ 1,309

such that the beacons lie in at least 3k + 1 tetrahedra and therefore can attract310

and can be attracted by all points in those tetrahedra. Then, we remove at least311

3k tetrahedra, leaving a polyhedron with a tetrahedral decomposition of size312

strictly less than m. We apply induction, and then show how to route between313

the smaller polyhedron and the removed tetrahedra.314

To do this, we look at the dual graph D(Σ) of Σ, as in Definition 3. Let T315

be a spanning tree of D(Σ), rooted at an arbitrary leaf. We do not distinguish316

between nodes of T and the corresponding tetrahedra. Let σ1 be a deepest leaf317

of T . If there are multiple such leaves, we choose σ1 such that its parent σ2318

has the largest number of children, breaking ties arbitrarily. Fig. 8 shows the319

different cases how T can look like around σ1 and σ2. First, we focus on Figs. 8a320

to 8e. In all five cases, T must have at least one additional root node—either321

because m ≥ 5 or because T is rooted at a leaf. The situation in Fig. 8f will be322

dealt with in Lemma 9.323

Lemma 7 (Inductive step I). Let P be a three-dimensional polyhedron, and324

Σ a tetrahedral decomposition of P of size m ≥ 5. Let T be a spanning tree of325

the dual graph D(Σ), rooted at a leaf of T . Let σ1 be a deepest leaf of T with326

the maximum number of siblings, and σ2 its parent. Assume that one of the327

following conditions holds:328

11

σ1

σ2

σ3 σ4

to
ro

ot

(a) Remove σ1, σ3, and σ4
by placing a beacon where
all four tetrahedra meet.

σ1

σ2

σ3

σ4

to
ro

ot

(b) Remove σ1, σ2, and σ3
by placing a beacon where
all four tetrahedra meet.

σ1

σ2
σ3

σ4
to

root

(c) Remove σ1, σ2, and σ3
by placing a beacon where
all four tetrahedra meet.

σ1

σ2
σ3

σ4

σ5 σ6

to root

(d) Remove σ1, σ2, and σ4
by placing a beacon where
all four tetrahedra meet.

σ1

σ2
σ3

σ4

σ5

σ6 σ7

to root

(e) Remove σ1, σ2, σ4, and
σ5 by placing a beacon
where σ1 to σ5 meet.

σ1

σ2

σ3

σ4

σ5

σ6

to
ro

ot

(f) The number and
configuration of σ6’s
children must be looked at.

Figure 8: The possible configurations in the first part of the inductive step.

(i) σ2 has exactly three children σ1, σ3, and σ4 (see Fig. 8a);329

(ii) σ2 has exactly two children σ1 and σ3, and a parent σ4 (Fig. 8b);330

(iii) σ2 has exactly one child σ1 and is the only child of its parent σ3, whose331

parent is σ4 (Fig. 8c);332

(iv) σ2 has exactly one child σ1 and its parent σ3 has two or three children at333

least one of which, say σ4, is a leaf (Fig. 8d); or334

(v) σ2 has exactly one child σ1 and its parent σ3 has three children, each of335

which has a single leaf child (Fig. 8e).336

Then, we can place a beacon b at a vertex of σ1 such that b lies in at least four337

tetrahedra. After that, we can remove at least three of these tetrahedra so that T338

stays a tree and at least one remaining tetrahedron in T contains b.339

Proof. We consider the cases individually.340

Cases (i–iv): in each case, the induced subgraph on {σ1, σ2, σ3, σ4} is341

connected. Thus, Lemma 4(iii) implies that the four tetrahedra share a vertex342

v. We place b at v. After that, we remove either σ1, σ3, and σ4 (case (i)); σ1,343

σ2, and σ3 (cases (ii) and (iii)); or σ1, σ2, and σ4 (case (iv)). In each case, we344

remove either only leaves or inner nodes with all their children. This means that345

the tree structure of T is preserved. Moreover, we only remove three of the four346

tetrahedra that contain b, so one of them remains in T .347

12

σ6

σ3

σ4

σ5

σ2

σ1

(a) The dual graph
of the tetrahedral
decomposition.

σ5

σ1

σ4

σ2

σ3

σ6

(b) The four tetrahedra on the
left share a common vertex while
the four tetrahedra on the right
share a common edge.

σ5 σ1

σ4 σ2

σ3

σ6

(c) All tetrahedra but the
rearmost tetrahedron σ6
share one common vertex,
marked in orange.

Figure 9: A tetrahedron σ6 with a subtree of five tetrahedra. Figures (b) and (c) depict
configurations that satisfy cases (ii) and (i) of Lemma 8, respectively.

Case (v): as shown in Fig. 8e, we have three connected sets, each containing348

σ3, a child σi of σ3, and σi’s child: {σ1, σ2, σ3}, {σ5, σ4, σ3}, and {σ7, σ6, σ3}.349

By Lemma 4(ii), each set has a common edge. These three edges all occur in350

σ3, and since σ3 is a tetrahedron, at least two of them share an endpoint v.351

Without loss of generality, let these be the common edges of {σ1, σ2, σ3} and of352

{σ5, σ4, σ3}. We place b at v, and we remove σ1, σ2, σ4, and σ5. The beacon b353

is also contained in σ3, which remains in T . �354

The final configuration is shown in Fig. 8f. The following lemma provides an355

analysis of how the tetrahedra can intersect in this case.356

Lemma 8. Let Σ be a tetrahedral decomposition of size 6, and suppose that357

D(Σ) has a spanning tree as in Fig. 9a. Then at least one of the following holds:358

(i) σ1, σ2, σ3, σ4, and σ5 have a common vertex; or359

(ii) σ3, σ4, σ5, and σ6 share a common vertex v; σ1, σ2, σ3, and σ6 share a360

common edge e; and v ∩ e = ∅. A symmetric situation is also possible.361

Proof. Let S1 = {σ3, σ4, σ5, σ6} and S2 = {σ1, σ2, σ3, σ6}. By Lemma 4, each362

set shares at least a vertex, but it may also share an edge. There are three cases:363

Case 1: both S1 and S2 share an edge. These edges must belong to the364

triangular facet that connects σ3 and σ6. Thus, they share a common vertex,365

and (i) holds.366

Case 2: exactly one of S1, S2 shares an edge e, while the other shares only367

a vertex v. If v ∩ e = v, then (i) applies, and if v ∩ e = ∅, then (ii) holds—see368

Fig. 9b for an example.369

Case 3: both S1 and S2 share only a vertex; see Fig. 9c. Let v be the vertex370

of σ3 that is not in the facet shared by σ3 and σ6. In Fig. 9c, v is marked orange.371

Since σ2 is adjacent to σ3, it follows that σ2 contains v and three of its four372

13

facets contain v. One of these facets is the shared facet with σ3, and we claim373

that σ1 is placed at one of the other two. Indeed, σ1 cannot be located at the374

fourth facet of σ2, since otherwise it would share an edge with σ2, σ3 and σ6,375

which is ruled out by the current case. Thus, v ∈ σ1, and a symmetric argument376

shows that v ∈ σ5. It follows that (i) holds. �377

Now, we can proceed with the inductive step for the configuration from Fig. 8f.378

The problem is that to remove {σ1, . . . , σ5}, we need two beacons. However, this379

does not meet our goal of handling at least 3k tetrahedra by placing k beacons,380

for a k ≥ 1. If we removed σ6 and if σ6 had additional children, the remaining381

dual graph might no longer be connected, and we could not continue with our382

induction. Thus, we must look at the (additional) subtrees of σ6.383

Since there are many possibilities, we wrote a short Python program to384

generate all the cases. Our program enumerates all rooted, ordered, ternary385

trees of height at most three. To each such tree, the program repeatedly applies386

Lemma 7 to prune subtrees. If this results in an empty tree, the case does not387

need to be considered. If not, we save the remaining tree for manual consideration,388

eliminating isomorphic copies of the same tree. The source code is in Appendix A.389

The program leaves us with nine different cases, shown in Fig. 10. In each case,390

the subtree from Fig. 8f is present. The following lemma explains how to place391

the beacons.392

Lemma 9 (Inductive step II). Let P be a three-dimensional polyhedron, with393

a tetrahedral decomposition Σ of size m ≥ 5. Let T be a spanning tree of the394

dual graph D(Σ), rooted at an arbitrary leaf. Let T ′ ⊆ T be a subtree of T with395

height 3 for which Lemma 7 cannot be applied; see Fig. 10.396

Then, there is a set B of k ≥ 2 beacons that are vertices in at least 3k + 1397

tetrahedra from T ′, such that the induced subgraph for B on Σ is connected.398

Furthermore, we can remove at least 3k tetrahedra, each containing a beacon from399

B, so that T remains connected and so that at least one remaining tetrahedron400

contains a beacon from B401

Proof. We say that two beacons b1 and b2 share an edge or are neighbors if a402

a tetrahedron of Σ contains an edge between the vertices where b1 and b2 are403

placed. We go through the cases.404

Fig. 10a: by Lemma 4(iii) the sets {σ1, σ2, σ3, σ6} and {σ6, σ3, σ4, σ5} each405

share one vertex, say v1 and v2, respectively. If v1 6= v2, we set B = {v1, v2}. If406

v1 = v2, we set B = {v1, w}, where w is any of the three other vertices of σ6.407

If σ6 has a parent tetrahedron, the shared facet contains three vertices of σ6408

and hence at least one beacon from B. Thus, by placing k = 2 beacons, we can409

remove the 6 = 3k tetrahedra {σ1, . . . , σ6}.410

Fig. 10b: we have the same situation as in Fig. 10a, except for the additional411

tetrahedron σ7. We choose B as in Fig. 10a, and we observe that σ6 contains412

two beacons. Thus, σ7 contains at least one beacon from B. Hence, by placing413

k = 2 beacons, we can remove the 7 > 3k tetrahedra {σ1, . . . , σ7}.414

14

σ6

σ3

σ2

σ1

σ4

σ5

(a)

σ6

σ3

σ2

σ1

σ4

σ5

σ7

(b)

σ6

σ3

σ2

σ1

σ4

σ5

σ7 σ8

(c)

σ6

σ3

σ2

σ1

σ4

σ5

σ7

σ8

(d)

σ6

σ3

σ2

σ1

σ4

σ5

σ7

σ8

σ9

σ10

(e)

σ6

σ3

σ2

σ1

σ4

σ5

σ7

σ8

σ9

σ10

σ11

(f)

σ6

σ3

σ2

σ1

σ4

σ5

σ7

σ8

σ9

σ10

σ11

σ12

(g)

σ6

σ3

σ2

σ1

σ4

σ5

σ7

σ8

σ9

σ10

σ11

σ12

σ13

(h)

σ6

σ3

σ2

σ1

σ4

σ5

σ7

σ8

σ9

σ10

σ11

σ12

σ13

σ14

σ15

σ16

(i)

Figure 10: The “nontrivial” configurations of children of σ6. The tree in (a) is a subtree of
all configurations. In all cases, σ6 has no other children than those shown here. Furthermore,
since T is rooted at a leaf node, σ6 needs to have an additional parent (except in case (a)).

15

Fig. 10c: we apply the same argument as for Fig. 10b, observing that σ8415

must also contain a beacon from B. Thus, by placing k = 2 beacons, we can416

remove the 8 > 3k tetrahedra σ1 to σ8.417

Fig. 10d: by Lemma 4(ii), the set {σ6, σ7, σ8} shares an edge e. We apply418

Lemma 8 to {σ1, . . . , σ6}. This gives two cases. Case (i): {σ1, . . . , σ5} share419

a vertex v. As v is in σ3, and as σ3 shares a facet with σ6, three neighboring420

vertices of v are in σ6. The edge e contains at least one of those three neighbors.421

We call it w. We set B = {v, w}. Case (ii): we obtain a vertex v and an edge e′422

in σ6, with v ∩ e′ = ∅. This covers three vertices of σ6, so the edge e shares at423

least one vertex with v or with e′. To obtain B, we choose two vertices of σ6424

such that v, e′, and e each contain at least one. In both cases, the beacons in B425

are neighbors. We place k = 2 beacons, and we remove the 7 > 3k tetrahedra426

{σ1, . . . , σ5, σ7, σ8}.427

Fig. 10e: by Lemma 4(ii), the sets {σ6, σ7, σ8} and {σ6, σ9, σ10} share edges428

e1 and e2, respectively. We apply Lemma 8 to {σ1, . . . , σ6}. This again gives429

two cases. Case (i): {σ1, . . . , σ5} share a vertex v. We set B = {v, w1, w2} such430

that w1 and w2 are vertices of σ6, |B| = 3, and both edges e1 and e2 contain431

at least one beacon. As in Fig. 10d, v is a neighbor of w1 or w2. Furthermore,432

w1 and w2 are neighbors because they are vertices of σ6. Case (ii): we obtain433

a vertex v and an edge e in σ6, with v ∩ e = ∅. We set B = {v, w1, w2}, where434

w1 and w2 are vertices of σ6, such that |B| = 3 and such that all edges e, e1,435

and e2 contain at least one beacon. Since all beacons lie in σ6, they are mutual436

neighbors. In both cases, we place k = 3 beacons such that every tetrahedron437

contains at least one. We remove the 9 = 3k tetrahedra {σ1, . . . , σ10} \ {σ6}.438

Fig. 10f : we apply Lemma 8 to {σ1, . . . , σ6} and to {σ6, . . . , σ11}. There439

are several cases. Case (i): each of {σ1, . . . , σ5} and {σ7, . . . , σ11} share a vertex,440

say v1 and v2, respectively. By the argument from Fig. 10d, three neighboring441

vertices of v1 and three neighboring vertices of v2 are vertices of σ6. Thus, there442

is a vertex v of σ6 that is a neighbor of v1 and of v2. We set B = {v, v1, v2}.443

Case (ii): without loss of generality, the set {σ1, . . . , σ5} shares a vertex v1 and444

the set {σ6, . . . , σ11} has a vertex v2 and an edge e in σ6, with v2 ∩ e = ∅. Then,445

at least one of the three vertices of σ6 that are neighbors of v1 is covered by v2∪e.446

We set B = {v1, v2, w}, where w is an endpoint of e. Case (iii): {σ1, . . . , σ6}447

have a vertex v1 and an edge e1 in σ6 and {σ6, . . . , σ11} have a vertex v2 and448

an edge e2 in σ6. We choose for B three vertices of σ6 such that v1, v2, e1, and449

e2 each contain at least one beacon. In all cases, we place k = 3 beacons, so450

that B is connected and every tetrahedron in {σ1, . . . , σ11} contains at least one451

beacon. We remove 10 > 3k tetrahedra: all but σ6.452

Fig. 10g: this is similar to Fig. 10f. We only describe how to ensure that B453

contains a vertex of σ12. In Case (i), v can be placed at two vertices. We choose454

the vertex that lies in σ12. This is always possible, as σ12 contains three of the455

four vertices of σ6. In Case (ii), we choose w as an endpoint of e that lies in σ12.456

The same argument as before applies. In Case (iii), B must contain a vertex of457

σ12, since three beacons are at vertices of σ6. Thus, by placing k = 3 beacons,458

we remove 11 > 3k tetrahedra: all but σ6.459

Fig. 10h: initially, we choose a set of beacons B′ as in Fig. 10f, at first460

16

ignoring σ12 and σ13. By Lemma 4(ii), {σ6, σ12, σ13} shares an edge e′. If e′461

is covered by B′, we set B = B′. If not, we set B = B ∪ {w}, where w is462

an endpoint of e′. Thus, by placing k ≤ 4 beacons, we may remove 12 ≥ 3k463

tetrahedra: all but σ6.464

Fig. 10i: let S1 = {σ1, . . . , σ6}, S2 = {σ6, . . . , σ11}, S3 = {σ6, σ12, . . . , σ16}.465

Also, let S′1 = S1 \{σ6}, S′2 = S2 \{σ6}, and S′3 = S3 \{σ6}. We apply Lemma 8466

to S1, to S2, and S3. There are several cases. Case (i): S′1, S′2, and S′3 each share467

a vertex, say v1, v2, and v3. By the argument of Fig. 10d, each of v1, v2, v3 has468

three neighbors that are vertices of σ6. Thus, they have one common neighbor469

vertex w in σ6. We set B = {v1, v2, v3, w}. Case (ii): without loss of generality,470

S′1 and S′2 each share a common vertex, say v1 and v2, and for S3 we obtain a471

vertex v3 and an edge e3 in σ6, with e3 ∩ v3 = ∅. We set B = {v1, v2, v3, w},472

where w is an endpoint of e. Since v3 and w are in σ6, it follows that v1 and v2473

have a neighboring beacon in σ6. Case (iii): without loss of generality, S′1 has474

a common vertex v1 and S2 and S3 each have a vertex v2 and v3 as well as an475

edge e2 and e3, all four in σ6. We place a beacon at v1 and three beacons at476

vertices of σ6 such that v2, v3, and both edges e1 and e2 contain at least one477

beacon. Since three neighbors of v1 are in σ6, the beacon at v1 has at least one478

beacon neighbor in σ6. Case (iv): S1, S2, and S3 each have a vertex and an edge479

in σ6. We place three beacons so that all of them are covered. In all cases, we480

place k ≤ 4 beacons to remove 15 > 3k tetrahedra: all but σ6. �481

We are now ready to prove Theorem 5:482

Proof (of Theorem 5). We use induction on the size of the tetrahedral de-483

composition. The base case is in Lemma 6. Next, we assume that the inductive484

hypothesis (Theorem 5) holds for all polyhedra that have a tetrahedral decom-485

position of size less than m. Consider a spanning tree T of the dual graph D(Σ)486

of the tetrahedral decomposition Σ, rooted at an arbitrary leaf. Let σ1 be a487

deepest leaf. If σ1 is not unique, choose one with the largest number of siblings,488

breaking ties arbitrarily. We can then apply either Lemma 7 or Lemma 9, to489

obtain the following:490

(i) we have placed a set B of k ≥ 1 beacons at vertices of Σ, and we have491

removed at least 3k tetrahedra;492

(ii) every removed tetrahedron contains at least one beacon in B;493

(iii) the induced subgraph on B on the vertices and edges of Σ is connected;494

(iv) there is a beacon b ∈ B in the remaining polyhedron P ′.495

By (i), the new polyhedron P ′ has a tetrahedral decomposition of size496

m′ ≤ m− 3k < m. Thus, by the inductive hypothesis, we need497

k′ =

⌊
m′ + 1

3

⌋
≤
⌊
m− 3k + 1

3

⌋
=

⌊
m+ 1

3

⌋
− k

17

beacons to route between any pair of points in P ′. Since k′ + k = b(m+ 1)/3c,498

we do not exceed the claimed amount of beacons. By the inductive hypothesis499

and (iv), it follows in particular that we can route from any point in P ′ to the500

beacon b ∈ B and vice versa. From (ii), we know that for every point p in501

the removed tetrahedra, there is a beacon b′ ∈ B such that p attracts b′ and502

b′ attracts p. Finally, due to (iii), we can route between all beacons in B. In503

conclusion, we can route between any pair of points in P . This completes the504

inductive step. �505

Observation 10. Theorem 5 also implies that max{1, b(m+ 1)/3c} beacons506

are sufficient to guard a polyhedron with a tetrahedral decomposition of size m.507

We need at least one beacon to cover the polyhedron, and placing them as in508

the previous proof is enough.509

4. A Lower Bound for Beacon-based Routing510

Our next goal is to obtain a lower bound for the number of beacons needed511

to route in three-dimensional polyhedra. We first give an alternative proof512

for the lower bound of bn/2c − 1 beacons for routing in two dimensions. Our513

construction is similar to the one by Shermer [18] for orthogonal polygons. We514

present a family of spiral-shaped polygons for which we will then argue that515

bn/2c − 1 beacons are needed for routing between a specific pair of points.516

Definition 11. Given c ∈ N>0 the c-corner spiral polygon is a simple polygon517

with n = 2c+ 2 vertices s = r0, r1, . . . , rc, t = rc+1, qc, qc−1, . . . , q1, in clockwise518

order. The polar coordinates of the vertices are as follows:519

• rk =
(⌊
k/3
⌋

+ 1; k · 2π/3
)
, for k = 0, . . . , c+ 1; and520

• qk =
(⌊
k/3
⌋

+ 1.5; k · 2π/3
)
, for k = 1, . . . , c.521

The trapezoids rkqkqk+1rk+1, for k = 1, . . . , c−1 and the two triangles 4sr1q1522

and 4trcqc are called the hallways.523

An example for c = 5 is shown in Fig. 11, with a placement of five beacons524

to route from s to t.525

Lemma 12 (Two-dimensional lower bound). Let c ∈ N>0 and let P be a526

c-corner spiral polygon. Let B ⊂ P be a set of beacons that lets us route from s527

to t. Then, we have |B| ≥ c.528

Proof. We shoot three rays from the origin with angles π/3π, π, and 5π/3; see529

Fig. 11. Each edge of P is intersected by exactly one ray. For k = 1, . . . , c+1, the530

intersection of a ray with the edge rk−1rk is called ak and the intersection with531

the edge qk−1qk is called bk. We divide P into c+ 2 subpolygons C0, . . . , Cc+1532

by drawing the line segments akbk, for k = 1, . . . , c+ 1. This gives two triangles533

C0 and Cc+1, with s and t, respectively, and c subpolygons C1, . . . , Cc, called534

18

0π

2
3π

4
3π

s t

Figure 11: A 5-corner spiral polygon for which five beacons (marked in red) are necessary to
route from s to t.

rk−1

rk

qk−1

qk

ak

bk

ak+1bk+1

αk

αk−1

(a) Notation for the triangular spiral.

Ak
drk

qk

ak

bk

ak+1bk+1

Ck−1

Ck+1

(b) The complete corner Ck.

Figure 12: A more detailed look at the parts of the spiral polygon.

19

0π

2
3π

4
3π

s t

A1

A2

A3

A4

A5

a1

b1

a2
b2

a3
b3

a4

b4

a5
b5

a6

b6

Figure 13: A 5-corner spiral polygon which shows the possible locations of the needed beacons
to route through each corner when routing from s to t.

the complete corners of P ; see Fig. 12a. We show that for k = 1, . . . , c, there535

must be at least one beacon from B in Ck \ (akbk ∪ ak+1bk+1).536

Suppose we route a point-shaped object p from s to t with the help of B.537

Fix a complete corner Ck, 1 ≤ k ≤ c, as in Fig. 12b. Consider the last time the538

object p crosses akbk. At this point, p is attracted by a beacon b ∈ B, and as we539

require that p moves all the way to b, the beacon b must lie in a complete corner540

C`, with ` ≥ k (and b is not on the line segment akbk). In fact, b can only be in541

Ck or in Ck+1, since otherwise it is clearly not possible that p reaches b along an542

attraction path. Thus, for p to reach b, it must be the case that either akbk is543

directly visible from b, or that the closest point to b on rkak is rk. Otherwise, p544

would get stuck on rkak, see Fig. 12b. The hatched region Ak in Fig. 12b shows545

the possible positions of b under these constraints. If this region is disjoint from546

akbk ∪ ak+1bk+1 the claim follows immediately.547

In Fig. 13 we can see all Ak for 1 ≤ k ≤ c+ 1 for c = 5. Clearly none of the548

Ak intersect akbk. We show that none of the Ak intersect ak+1bk+1 for each of549

the three directions:550

(i) k = 1, 4, 7, . . .: The Ak are congruent since the angle αk is always exactly551

20

π/3. Hence, as can be observed in Fig. 13, for increasing k the distance552

from Ak to ak+1bk+1 increases. Since A1 does not intersect a2b2 the same553

holds true for all k = 1, 4, 7,554

(ii) k = 2, 5, 8, . . .: The boundary edge of Ak which could intersect ak+1bk+1555

is always horizontal. As long as bk+1 lies above this boundary edge no556

intersection is possible. This is the case for A2 (as visible in Fig. 13). Since557

the length of the hallways increases and the angle αk decreases for increasing558

k it is always the case that bk+1 lies above the horizontal bounding edge559

of Ak. Hence, none of the Ak intersect ak+1bk+1 for k = 2, 5, 8,560

(iii) k = 3, 6, 9, . . .: A3 clearly does not intersect a4b4. However, as k grows,561

the angle αk increases towards π/3 and the Ak grow towards a shape that562

is congruent with A1. Since the hallways become larger and larger, even563

putting a rotated copy of A1 at A3 would not give an intersection with564

a4b4.565

It follows that |B| ≥ c. �566

We now extend this proof to three dimensions. For this, we first define a567

c-corner spiral polyhedron.568

Definition 13. Given c ∈ N>0 the c-corner spiral polyhedron is a polyhedron569

with n = 3c+2 vertices s = r0, r1, . . . , rc, t = rc+1, q1, . . . , qc, and z1, . . . , zc. The570

coordinates of s, t, qk, and rk, for k = 1, . . . , c, are the same as in Definition 11,571

with the z-coordinate set to 0. The zk are positioned above the corresponding572

rk, i.e., zk = rk +
(
0
0
1

)
, for k = 1, . . . , c. The edges and facets are given by the573

following tetrahedral decomposition:574

• The start and end tetrahedra are r1q1z1s and rcqczct.575

• The hallway between two triangles4rkqkzk and4rk+1qk+1zk+1 consists of576

the three tetrahedra rkqkzkrk+1, rk+1qk+1zk+1qk, and qkzkrk+1zk+1,577

for k = 1, . . . , c− 1.578

For c = 1, the c-corner spiral polyhedron has two tetrahedra. For c > 1,579

we add c− 1 hallways, each with three tetrahedra. This means that a c-corner580

spiral polyhedron has a tetrahedral decomposition of size m = 3c− 1. Thus, by581

Definition 13, the number of tetrahedra in terms of the number of vertices is582

m = 3 · (n− 2)/3− 1 = n− 3, the smallest number possible for a given n.583

Lemma 14 (Lower bound). Let c ∈ N>0 and let P be a c-corner spiral poly-584

hedron. Let B be a set of beacons that lets us route from s to t. Then, |B| ≥ c.585

Proof. We show that a projection B′ of B onto the xy-plane maintains the586

attraction regions. It then follows from Lemma 12 that |B| = |B′| ≥ c.587

Note that the only reflex edges in P are the edges ek = rkzk for all k = 1, . . . , c.588

Look at a beacon b ∈ B and its projection b′ ∈ B′. If a point p is visible from589

21

b it must be visible from b′ as well: Since the hallways are convex objects and590

the only edges that could prevent visibility are the vertical reflex edges rkzk a591

vertical translation of b to b′ cannot inhibit visibility.592

If a point p is attracted by b (but not visible from b) it must be attracted by593

b′ as well. Each such attraction goes through exactly one reflex edge: at least594

one since p is not visible and at most one since two reflex edges in P together595

form angles larger than π. The movement of p is a movement (possibly of length596

zero) until it hits a face fk = rkzkrk+1zk+1 at point q. It then slides along fk597

until it hits one of the boundary edges w.l.o.g. ek = rkzk at point u. It then598

moves directly towards b.599

Since fk is orthogonal to the xy-plane if p is attracted by b′ it will hit fk at600

a point q′ which can be obtained by moving q down along the z-axis. Hence601

the point then slides from q′ along fk towards ek where it reaches at a point u′602

which (again due to ek being orthogonal to the xy-plane) can be obtained by603

moving u down along the z-axis. It then moves directly towards b′.604

Thus the set B can only attract what B′ can. Since B′ lies in the xy-plane605

and a cross section of P along the xy-plane gives exactly a c-corner spiral polygon606

P ′. By Lemma 12 we obtain then that |B| = |B′| ≥ c, as claimed. �607

5. A Tight Bound for Beacon-based Routing608

We combine the results from Section 3 and Section 4 into a tight bound:609

Theorem 15. Let P be a three-dimensional polyhedron, and m the smallest size610

of a tetrahedral decomposition of P . Then, it is always sufficient and sometimes611

necessary to place b(m+ 1)/3c beacons to route between any pair of points in P .612

Proof. The upper bound was shown in Theorem 5. For the lower bound,613

we consider the c-corner spiral polyhedron Pc with c = b(m+ 1)/3c. By Def-614

inition 13, Pc has a smallest tetrahedral decomposition of size m′ = 3c − 1.615

Furthermore, by Lemma 14, we need at least c beacons to route in Pc. This also616

shows that Pc does not have a tetrahedral decomposition with size strictly less617

than m′, since otherwise Theorem 5 would yield a contradiction.618

Due to the rounding we might have m′ = m − 1 or m − 2. We then look619

at the (c + 1)-corner spiral Pc+1 that consists of three tetrahedra more than620

Pc. More specifically, the last hallway of Pc+1 consists of the three tetrahedra621

σ1 = rcqczcrc+1, σ2 = qczcrc+1zc+1, and σ3 = qcrc+1qc+1zc+1. The622

tetrahedron σ1 is already present in Pc. Hence, for m′ = m− 1, we add σ2, and623

for m′ = m− 2, we add σ2 and σ3 to Pc. Since for each additional tetrahedron624

we also need to add one additional vertex (zc+1 for σ2 and qc+1 for σ3), there is625

no decomposition of the resulting polyhedron into less than m tetrahedra.626

Additionally, the resulting polyhedron also needs at least c beacons because627

the added tetrahedra cannot lower the number of beacons needed. �628

22

6. Conclusion629

We have shown that, given a tetrahedral decomposition of a polyhedron P630

of size m, we can place b(m+ 1)/3c beacons to route between any pair of points631

in P . We also constructed a family of polyhedra where this is also necessary.632

A lot of questions that have been studied in two dimensions remain open for633

the three-dimensional case. For example, the complexity of finding an optimal634

beacon set to route between a given pair of points remains open. Additional open635

questions concern the efficient computation of attraction regions (computing the636

set of all points attracted by a single beacon) and of beacons kernels (all points637

at which a beacon can attract all points in the polyhedron).638

Furthermore, Cleve [10] showed that not all polyhedra can be covered by639

vertex beacons and Aldana-Galván et al. [1, 2] showed that this is even true for640

orthogonal polyhedra. Given a polyhedron P with a tetrahedral decomposition641

of size m, it remains open whether it is possible to guard P with fewer than642

max{1, b(m+ 1)/3c} beacons as in Observation 10.643

References644

[1] I. Aldana-Galván, J. L. Álvarez Rebollar, J. C. Catana Salazar,645

N. Maŕın Nevárez, E. Soĺıs Villarreal, J. Urrutia, and C. Velarde. Beacon646

coverage in orthogonal polyhedra. In Proc. 29th Canad. Conf. Comput.647

Geom. (CCCG), pages 166–171, 2017.648

[2] I. Aldana-Galván, J. L. Álvarez-Rebollar, J. C. Catana-Salazar, N. Maŕın-649

Nevárez, E. Soĺıs-Villarreal, J. Urrutia, and C. Velarde. Covering orthotrees650

with guards and beacons. In Proc. 17th Spanish Meeting Comput. Geom.651

(EGC), pages 29–32, 2017.652

[3] S. W. Bae, C.-S. Shin, and A. Vigneron. Tight bounds for beacon-based653

coverage in simple rectilinear polygons. In Proc. 12th Lat. Am. Symp. Theor.654

Inf. (LATIN), pages 110–122, 2016.655

[4] M. Bern and D. Eppstein. Mesh generation and optimal triangulation.656

Computing in Euclidean geometry, 4:47–123, 1995.657

[5] M. Biro. Beacon-Based Routing and Guarding. PhD thesis, State University658

of New York at Stony Brook, 2013.659

[6] M. Biro, J. Gao, J. Iwerks, I. Kostitsyna, and J. S. B. Mitchell. Beacon-660

based routing and coverage. In Proc. 21st Fall Workshop Comput. Geom.661

(FWCG), 2011.662

[7] M. Biro, J. Gao, J. Iwerks, I. Kostitsyna, and J. S. B. Mitchell. Combina-663

torics of beacon-based routing and coverage. In Proc. 25th Canad. Conf.664

Comput. Geom. (CCCG), pages 129–134, 2013.665

23

[8] M. Biro, J. Iwerks, I. Kostitsyna, and J. S. B. Mitchell. Beacon-based666

algorithms for geometric routing. In Proc. 13th Int. Symp. Algorithms Data667

Struct. (WADS), pages 158–169, 2013.668

[9] B. Chazelle. Convex partitions of polyhedra: A lower bound and worst-case669

optimal algorithm. SIAM J. Comput., 13(3):488–507, 1984.670

[10] J. Cleve. Combinatorics of beacon-based routing and guarding in three671

dimensions. Master’s thesis, Freie Universität Berlin, 2017.672

[11] S. K. Ghosh. Visibility Algorithms in the Plane. Cambridge University673

Press, 2007.674

[12] I. Kostitsyna. Personal communication. 2019.675

[13] I. Kostitsyna, B. Kouhestani, S. Langerman, and D. Rappaport. An optimal676

algorithm to compute the inverse beacon attraction region. In Proc. 34th677

Int. Symp. Comput. Geom. (SoCG), pages 55:1–14, 2018.678

[14] B. Kouhestani. Efficient algorithms for beacon routing in polygons. PhD679

thesis, Queen’s University, Kingston, Ontario, 2013.680

[15] N. J. Lennes. Theorems on the simple finite polygon and polyhedron. Am.681

J. Math., 33(1/4):37, 1911.682

[16] J. O’Rourke. Art gallery theorems and algorithms. Oxford University Press,683

1987.684

[17] J. Ruppert and R. Seidel. On the difficulty of triangulating three-dimensional685

nonconvex polyhedra. Discrete Comput. Geom., 7(3):227–253, 1992.686

[18] T. C. Shermer. A combinatorial bound for beacon-based routing in orthog-687

onal polygons. In Proc. 27th Canad. Conf. Comput. Geom. (CCCG), pages688

213–219, 2015.689

Appendix A. Program Code to Generate Trees690

1 #!/usr/bin/env python3691

2 """ Generate all dual graph configurations we need to look at."""692

3693

4 from itertools import product694

5695

6 from graphviz import Digraph696

7697

8698

9 ###699

10 # Tree structure.700

11 ###701

12 class Node:702

13 """A tree structure which allows pruning of unneeded subtrees."""703

14704

15 # ===705

16 # General tree structure.706

24

17 # ===707

18708

19 def __init__(self):709

20 """A new node is simply a leaf."""710

21 self.nodes = []711

22712

23 def add(self , n=1):713

24 """ Append n additional children and return self."""714

25 for _ in range(n):715

26 self.nodes.append(Node ())716

27 return self717

28718

29 def append(self , node):719

30 """ Append a node or an iterable of nodes and return self."""720

31 try:721

32 for n in node:722

33 self.nodes.append(n)723

34 except TypeError:724

35 self.nodes.append(node)725

36 return self726

37727

38 def is_leaf(self):728

39 """ Return whether this node is a leaf , i.e., has no children."""729

40 return not self.nodes730

41731

42 # ===732

43 # Graphviz.733

44 # ===734

45735

46 def to_dot(self , graph=None , prefix=’’):736

47 """ Return a Graphviz representation of the tree."""737

48 if graph is None:738

49 graph = Digraph ()739

50 self._dot_recursion(graph , 1, prefix)740

51 return graph741

52742

53 def _dot_recursion(self , graph , current , prefix=’’):743

54 """ Recursively create Graphviz tree."""744

55 graph.node(prefix + str(current), label=str(current))745

56 this_number = current746

57 current = current + 1747

58 for child in self.nodes:748

59 current , child_number = child._dot_recursion(graph , current ,749

60 prefix)750

61 graph.edge(prefix + str(this_number), prefix + str(child_number))751

62 return current , this_number752

63753

64 # ===754

65 # Pruning of "easy" cases.755

66 # ===756

67757

68 def prune(self):758

69 """ Remove subtrees that are easily removed."""759

70 # First try to remove subtrees.760

71 if self._prune () is None:761

72 return None762

73763

74 # Call prune() for all children and filter out children that were.764

75 # removed765

76 self.nodes = list(filter(lambda x: x is not None ,766

77 map(Node.prune , self.nodes)))767

78768

79 # Sort children after pruning to have a canonical structure.769

80 self.nodes.sort()770

81771

82 # Try pruning easy subtrees again. Maybe pruning the children created772

83 # a prunable configuration again.773

84 return self._prune ()774

25

85775

86 def _prune(self):776

87 """ Remove subtrees that are easily removed."""777

88 if len(self.nodes) == 3:778

89 if all(n.is_leaf () for n in self.nodes):779

90 # Case (i): Figure 5.4(a): This is s2780

91 # Three children that are leaf nodes: Remove all of them.781

92 self.nodes = []782

93 elif all(len(n.nodes) == 1 and n.nodes [0]. is_leaf ()783

94 for n in self.nodes):784

95 # Case (iii)(3): Figure 5.4(e): This is s3785

96 # Three children with one child leaf each: Remove two786

97 # children.787

98 self.nodes.pop()788

99 self.nodes.pop()789

100 if len(self.nodes) == 2:790

101 if all(n.is_leaf () for n in self.nodes):791

102 # Case (ii): Figure 5.4(b): This is s2792

103 # Two children that are leaf nodes: Remove both including793

104 # the parent node.794

105 return None795

106 if len(self.nodes) == 1:796

107 if len(self.nodes [0]. nodes) == 1:797

108 if self.nodes [0]. nodes [0]. is_leaf ():798

109 # Case (iii)(1): Figure 5.4(c): This is s3799

110 # A chain of three nodes: Remove all of them.800

111 return None801

112 if len(self.nodes) >= 2:802

113 leaves = [n for n in self.nodes if n.is_leaf ()]803

114 leaves2 = [n for n in self.nodes if len(n.nodes) == 1 and804

115 n.nodes [0]. is_leaf ()]805

116 if leaves and leaves2:806

117 # Case (iii)(2): Figure 5.4(d): This is s3807

118 # One leaf child and one child with a single leaf child:808

119 # Remove both children.809

120 self.nodes.remove(leaves [0])810

121 self.nodes.remove(leaves2 [0])811

122812

123 # Return self to indicate that the node itself is not to be removed.813

124 return self814

125815

126 # ===816

127 # Make trees comparable.817

128 # ===818

129819

130 def __eq__(self , other):820

131 """821

132 Compare equality of two nodes.822

133823

134 Two nodes are equal if they have the same number of children and824

135 every child is equal to the respective child of the other node.825

136 """826

137 if other is None:827

138 return False828

139 if len(other.nodes) != len(self.nodes):829

140 return False830

141 for this , that in zip(self.nodes , other.nodes):831

142 if this != that:832

143 return False833

144 return True834

145835

146 def __lt__(self , other):836

147 """837

148 Compare whether a node is smaller than another node.838

149839

150 A node is smaller then another node if it has more direct children or840

151 if any of the children is smaller than the respective other child.841

152 """842

26

153 if len(self.nodes) != len(other.nodes):843

154 return len(self.nodes) > len(other.nodes)844

155845

156 for this , that in zip(self.nodes , other.nodes):846

157 if this < that:847

158 return True848

159 if that < this:849

160 return False850

161851

162 return True852

163853

164 # ===854

165 # String representation and hash value for uniqueness.855

166 # ===856

167857

168 def __str__(self):858

169 """ Generate a bracket term representing the tree."""859

170 return ’(’ + ’’.join(str(n) for n in self.nodes) + ’)’860

171861

172 def __repr__(self):862

173 """ Terminal representation."""863

174 return str(self)864

175865

176 def __hash__(self):866

177 """ Hash value for uniqueness."""867

178 return hash(str(self))868

179869

180870

181 ###871

182 # Generate all trees with certain maximum depth.872

183 ###873

184 def all_trees(depth):874

185 """875

186 Yield all trees with a given maximum depth.876

187877

188 The trees are created recursively by appending combinations of trees of878

189 depth -1 to a node.879

190 """880

191 if depth == 1:881

192 # Create a node with 0, 1, 2, and 3 children.882

193 for i in range (4):883

194 yield Node ().add(i)884

195 else:885

196 # Append 0, 1, 2, or 3 children.886

197 for number_of_children in range (4):887

198 # Create as many iterators of the next lower depth as there888

199 # should be children appended.889

200 next_level_iterators = []890

201 for _ in range(number_of_children):891

202 next_level_iterators.append(all_trees(depth - 1))892

203893

204 # Combine all possible combinations of the iterators and add them894

205 # to a new node.895

206 for subtrees in product (* next_level_iterators):896

207 yield Node (). append(subtrees)897

208898

209899

210 def iterator_len(iterator):900

211 """901

212 Return the number of elements in an iterator.902

213903

214 The iterator is consumed by calling this function.904

215 """905

216 length = 0906

217 for _ in iterator:907

218 length += 1908

219 return length909

220910

27

221911

222 ###912

223 # Main program.913

224 ###914

225 if __name__ == ’__main__ ’:915

226 # The maximum depth of the tree is 3916

227 depth = 3917

228 number_of_combinations = iterator_len(all_trees(depth))918

229 # Start with the first tree919

230 current = 1920

231921

232 # A container for all distinct non -prunable trees922

233 trees = set()923

234924

235 # Iterate through all different trees of maximum depth925

236 for tree in all_trees(depth):926

237 # Prune "easy" cases927

238 tree = tree.prune()928

239 # Add tree to set of trees if it was not pruned completely929

240 if tree is not None:930

241 trees.add(tree)931

242932

243 # Debug output933

244 print(’\r{percent :.2f}% ({ current} / {all}) - trees: {trees}’934

245 .format(percent =100 * current / number_of_combinations ,935

246 current=current ,936

247 all=number_of_combinations ,937

248 trees=len(trees)),938

249 end=’’, flush=True)939

250 current += 1940

251941

252 # Sum up the number of trees942

253 print()943

254 print(len(trees), ’trees ’)944

255945

256 # Create a document with all non -prunable trees946

257 g = Digraph ()947

258 prefix = 1948

259 for tree in trees:949

260 tree.to_dot(g, str(prefix) + ’_’)950

261 prefix += 1951

262 g.render(’trees’)952

28

