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Abstract. A beacon is a point-like object which can be enabled to exert
a magnetic pull on other point-like objects in space. Those objects then
move towards the beacon in a greedy fashion until they are either stuck
at an obstacle or reach the beacon’s location. Beacons placed inside
polyhedra can be used to route point-like objects from one location to
another. A second use case is to cover a polyhedron such that every
point-like object at an arbitrary location in the polyhedron can reach at
least one of the beacons once the latter is activated.
The notion of beacon-based routing and guarding was introduced by
Biro et al. [FWCG’11] in 2011 and covered in detail by Biro in his PhD
thesis [SUNY-SB’13], which focuses on the two-dimensional case.
We extend Biro’s result to three dimensions by considering beacon routing
in polyhedra. We show that

⌊
m+1

3

⌋
beacons are always sufficient and

sometimes necessary to route between any pair of points in a given
polyhedron P , where m is the number of tetrahedra in a tetrahedral
decomposition of P . This is one of the first results that show that beacon
routing is also possible in three dimensions.

1 Introduction

A beacon b is a point-like object in a polyhedron P which can be enabled to exert
a magnetic pull on all points inside P . Those points then move in the direction in
which the distance to b decreases most rapidly. As long as the distance decreases,
points can also move along obstacles they hit on their way.

The resulting attraction path alternates between unrestricted movement inside
P and restricted movement on the boundary of P . If the attraction path of a
point p towards a beacon b ends in b we say that b covers p. On the other hand,
p is stuck if it is in a position where it cannot decrease its distance to b.

A point p can be routed via beacons towards a point q if there exists a
sequence of beacons b1, b2, . . . , bk = q such that b1 covers p and bi+1 covers bi for
all 1 ≤ i < k. In our model at most one beacon can be enabled at any time and a
point has to reach the beacon’s location before the next beacon can be enabled.

The notion of beacon attraction was introduced by Biro et al. [4, 5] for two
dimensions. This extends the classic notion of visibility [9]: the visibility region
of a point is a subset of the attraction region of a point.
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Here, we study the case of three-dimensional polyhedra. A three-dimensional
polytope or polyhedron is a compact connected set bounded by a piecewise linear
2-manifold. The results in this work are based on the master’s thesis of the first
author [8] in which various aspects of beacon-based routing and guarding were
studied in three dimensions. Simultaneously, Aldana-Galván et al. [1, 2] looked
at orthogonal polyhedra and introduced the notion of edge beacons.

For two dimensions, Biro [4] provided bounds on the number of beacons for
routing in a polygon. He also showed that it is NP-hard and APX-hard to find a
minimum set of beacons for a given polygon such that it is possible to (a) route
between any pair of points, (b) route one specific source point to any other point,
(c) route any point to one specific target point, or (d) cover the polygon.

It is easy to reduce the two-dimensional problems to their three-dimensional
counterparts by lifting the polygon into three dimensions. It thus follows that
the corresponding problems in three dimensions are also NP-hard and APX-hard.
More details can be found in [8, Chapter 4].

2 Preliminary Thoughts on Tetrahedral Decompositions

To show an upper bound on the number of beacons necessary to route between
any pair of points in two dimensions Biro et al. [5] look at a triangulation of the
polygon. They show that for every two additional triangles at most one beacon is
needed. Even though there is a slight flaw in the case analysis of their proof, this
can be easily repaired, see [8, Chapter 3.1] for more details and the working proof.
We extend this approach to three dimensions by looking at the decomposition of
a polyhedron into tetrahedra.

The tetrahedral decomposition is no general solution: Lennes [10] has shown
in 1911 that a polyhedron cannot, in general, be decomposed into tetrahedra
if no additional vertices are allowed. The problem of deciding whether such a
decomposition exists is, in fact, NP-complete as shown by Ruppert and Seidel [11].

In the two-dimensional case, every simple polygon with n vertices has a
triangulation with exactly n− 2 triangles; a polygon with h holes has a triangu-
lation of n− 2 + 2h triangles. In contrast, for three dimensions the number of
tetrahedra in a tetrahedral decomposition is not directly related to the number of
vertices. Chazelle [7] showed that for arbitrary n there exists a polyhedron with
Θ(n) vertices for which at least Ω

(
n2

)
convex parts are needed to decompose it.

Naturally, this is also a worst-case lower bound on the number of tetrahedra. On
the other hand, Bern and Eppstein [3, Theorem 13] show that any polyhedron
can be triangulated with O

(
n2

)
tetrahedra with the help of O

(
n2

)
Steiner points.

Furthermore, it is clear that every tetrahedral decomposition consists of at least
n− 3 tetrahedra.

One polyhedron can have different tetrahedral decompositions with different
numbers of tetrahedra. An example of such a polyhedron is a triangular bipyramid
which can be decomposed into two or three tetrahedra, see [11, p. 228]. Due to
this, we will prove bounds on the number of beacons needed for routing relative to
the number of tetrahedra m rather than the number of vertices n. Since we accept



any kind of decomposition and do not have any general position assumption
tetrahedral decompositions with Steiner points are allowed.

To successfully apply the ideas for two dimensions to three dimensions we
need the following preliminary definition and lemma.

Definition 2.1 (Dual graph of tetrahedral decompositions). Given a
polyhedron with a tetrahedral decomposition Σ = {σ1, . . . , σm} into m tetra-
hedra, its dual graph is an undirected graph D(Σ) = (V,E) where

(i) V = {σ1, . . . , σm} and
(ii) E = {{σi, σj} ∈ (V2 ) | σi and σj share exactly one triangular facet}.

Observation 2.2. Unlike in two dimensions, the dual graph of a tetrahedral
decomposition is not necessarily a tree. We can still observe that each node in
the dual graph has at most 4 neighbors—one for each facet of the tetrahedron.

Lemma 2.3. Given a tetrahedral decomposition Σ of a polyhedron together with
its dual graph D(Σ) and a subset S ⊆ Σ of tetrahedra from the decomposition
whose induced subgraph D(S) of D(Σ) is connected, then

(i) |S| = 2 implies that the tetrahedra in S share one triangular facet,
(ii) |S| = 3 implies that the tetrahedra in S share one edge, and

(iii) |S| = 4 implies that the tetrahedra in S share at least one vertex.

Proof. We show this seperately for every case.

(i) This follows directly from Definition 2.1.
(ii) In a connected graph of three nodes there is one node neighboring the other

two. By Definition 2.1 the dual tetrahedron shares one facet with each of the
other tetrahedra. In a tetrahedron every pair of facets shares one edge.

(iii) By case (ii) there is a subset of three (connected) tetrahedra that shares
one edge e. This edge is therefore part of each of the three tetrahedra. By
Definition 2.1, the fourth tetrahedron shares a facet f with at least one of
the other three (called σ). Since f contains three and e two vertices of σ they
share at least one vertex. A depiction of the possible configurations of four
tetrahedra can be seen in Fig. 1. ut

3 An Upper Bound for Beacon-based Routing

After the preparatory work, we can now show an upper bound on the number of
beacons needed to route within a polyhedron with a tetrahedral decomposition.
The idea of the proof is based on the proof by Biro et al. [5] for (two-dimensional)
polygons. We want to show the following

Hypothesis 3.1. Given a polyhedron P with a tetrahedral decomposition Σ with
m = |Σ| tetrahedra it is always sufficient to place

⌊
m+1
3

⌋
beacons to route

between any pair of points in P .

Since the proof is quite long and consists of many cases it is split up into various
lemmas which are finally combined in Theorem 3.7.



(a) One tetrahedron in
the center has all other
tetrahedra as neighbors.

(b) Two tetrahedra with
one and two tetrahedra
with two neighbors.

(c) In this configuration
all four tetrahedra share
one edge.

Fig. 1. A polyhedron with a tetrahedral decomposition of four tetrahedra is in one of
those three configurations. The shared vertex or edge is marked.

3.1 Preparation

Given the polyhedron P and a tetrahedral decomposition Σ with m = |Σ|
tetrahedra, we look at the dual graph D(Σ) of the tetrahedral decomposition.
For the rest of the section we want the dual graph to be a tree. This is possible
by looking at a spanning tree T of D(Σ) rooted at some arbitrary leaf node.

In the following, we will place beacons depending only on the neighborhood
relation between tetrahedra. If T is missing some edge {u, v} from D(Σ) we
“forget” that tetrahedra u and v are neighbors, i.e., share a common facet. We
have less information about a tetrahedron’s neighborhood and thus we might
place more beacons than needed—but never less.

Note 3.2. In the following we will refer to nodes of T as well as their corresponding
tetrahedra with σi. It should be clear from the context when the node and when
the tetrahedron is meant—if not, it is indicated.

The main idea of the proof is as follows: In a recursive way we are going to
place a beacon and remove tetrahedra until no tetrahedra are left. As will be
shown, for every beacon we can remove at least three tetrahedra which yields the
claimed upper bound. We will show this by induction and start with the base
case:

Lemma 3.3 (Base case). Given a polyhedron P with a tetrahedral decomposi-
tion Σ with m = |Σ| ≤ 4 tetrahedra it is always sufficient to place

⌊
m+1
3

⌋
beacons

to route between any pair of points in P .

Proof. If m = 1 then P is a tetrahedron and due to convexity no beacon is
needed.

If 2 ≤ m ≤ 4 we can apply Lemma 2.3 which shows that all tetrahedra share
at least one common vertex v. We place the only beacon we are allowed to place
at v. Then v is contained in every tetrahedron and thus, by convexity, every
point in P can attract and be attracted by a beacon at v. ut
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(a) Remove σ1, σ3, and σ4

by placing a beacon where
all four tetrahedra meet.
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(b) Remove σ1, σ2, and σ3

by placing a beacon where
all four tetrahedra meet.

σ1

σ2
σ3

σ4

to
root

(c) Remove σ1, σ2, and σ3

by placing a beacon where
all four tetrahedra meet.
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σ3
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σ5 σ6

to root

(d) Remove σ1, σ2, and σ4

by placing a beacon where
all four tetrahedra meet.

σ1

σ2
σ3

σ4

σ5

σ6 σ7

to root

(e) Remove σ1, σ2, σ4,
and σ5 by placing a
beacon where σ1 to σ5

meet.
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σ5
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to
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ot

(f) The number and
configuration of σ6’s
children needs to be
looked at.

Fig. 2. The possible configurations in the first part of the inductive step.

We can now proceed with the inductive step, that is, polyhedra with a
tetrahedral decomposition of m > 4 tetrahedra. Our goal is to place k beacons
which are contained in at least 3k + 1 tetrahedra and can therefore mutually
attract all points in those tetrahedra. Afterwards, we will remove at least 3k
tetrahedra, leaving a polyhedron with a tetrahedral decomposition of strictly less
than m tetrahedra, to which we can apply the induction hypothesis. We then
need to show how to route between the smaller polyhedron and the removed
tetrahedra.

To do this, we look at a deepest leaf σ1 of the spanning tree T . If multiple
leaves with the same depth exist we choose the one whose parent σ2 has the
largest number of children, breaking ties arbitrarily. In Fig. 2 we can see different
cases how the part of T which contains σ1 and σ2 might look like. We first
concentrate on Figs. 2a to 2e and show for them the first part of the inductive
step. Note that in all five cases there needs to be at least one additional root
node—either because we have strictly more than four tetrahedra or because the
tree is required to be rooted at a leaf node. The second part of the inductive
step, namely Fig. 2f will be dealt with in Lemma 3.6.

Lemma 3.4 (Inductive step I). Given a polyhedron P with a tetrahedral
decomposition Σ with m = |Σ| > 4 tetrahedra and a spanning tree T of its dual
graph D(Σ) rooted at some arbitrary leaf node. Let σ1 be a deepest leaf of T with



the maximum number of siblings and let σ2 be its parent. Assume furthermore
that any of the following conditions holds:

(i) σ2 has three children σ1, σ3, and σ4 (see Fig. 2a),
(ii) σ2 has two children σ1 and σ3 and a parent σ4 (see Fig. 2b),

(iii) σ2 has one child σ1 and is the only child of its parent σ3 whose parent is σ4
(see Fig. 2c),

(iv) σ2 has one child σ1 and its parent σ3 has two or three children of which one,
σ4, is a leaf (Fig. 2d), or

(v) σ2 has one child σ1 and its parent σ3 has three children each of which has a
single leaf child (Fig. 2e).

Then we can place one beacon b at a vertex of σ1 which is contained in at least
four tetrahedra. We can then remove at least three tetrahedra containing b without
violating the tree structure of T and while there is at least one tetrahedron left in
T which contains b.

Proof. We show this individually for the conditions.

(i)–(iv) In all those cases the induced subgraph of the nodes σ1, σ2, σ3, and σ4 is
connected. We can then see with Lemma 2.3(iii) that the four tetrahedra
share at least one vertex at which b is placed.
After that we either remove σ1, σ3, and σ4 (case (i)); σ1, σ2, and σ3 (cases (ii)
and (iii)); or σ1, σ2, and σ4 (case (iv)). In all of those cases only leaves or
inner nodes with all their children are removed which means that the tree
structure of T is preserved. Additionally, we only remove three of the four
tetrahedra that contain b, thus, one of them remains in T .

(v) Looking at Fig. 2e we see that we have three different sets, each containing
σ3, a child σi of σ3, and σi’s child: {σ1, σ2, σ3}, {σ5, σ4, σ3}, and {σ7, σ6, σ3}.
When applying Lemma 2.3(ii), we see that each set shares one edge, giving us
three edges of σ3. Since at most two edges in any tetrahedron can be disjoint,
at least two of the given edges must share a common vertex. Without loss of
generality let these be the edges shared by {σ1, σ2, σ3} and {σ5, σ4, σ3}. We
can then place b at the shared vertex and afterwards remove σ1, σ2, σ4, and
σ5. The beacon b is also contained in σ3 which remains in T . ut

3.2 Special Cases in the Inductive Step

Until now, we have ignored the configuration in Fig. 2f. The problem here is that
to remove the tetrahedra σ1 to σ5 we need to place two beacons. Placing two
beacons but only removing five tetrahedra violates our assumption that we can
always remove at least 3k tetrahedra by placing k beacons. If we removed σ6 and
σ6 had additional children then T would no longer be connected which also leads
to a non-provable situation. Thus, we need to look at the number and different
configurations of the (additional) children of σ6.

Since there are many different configurations of σ6’s children (and their
subtrees) we decided to use a brute force approach to generate all cases we need



σ6

σ3
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σ5

σ2

σ1

(a) The dual
graph of the
tetrahedral
decomposition.

σ5 σ1

σ4 σ2

σ3

σ6

(b) All tetrahedra but the
rearmost tetrahedron σ6

share one common vertex,
here marked in orange.

σ5

σ1

σ4

σ2

σ3

σ6

(c) The four tetrahedra on the
left share a common vertex
while the right four tetrahedra
share a common edge.

Fig. 3. One tetrahedron σ6 with a subtree of five tetrahedra. Subfigures (b) and (c)
depict configurations that satisfy cases (i) and (ii) of Lemma 3.5, respectively.

to look at. Afterwards we removed all cases where Lemma 3.4 can be applied
and all cases where only the order of the children differed. This leaves us with
nine different cases where (obviously) the subtree from Fig. 2f is always present.
Thus we seek more information from this specific configuration.

Lemma 3.5. Given a tetrahedral decomposition of six tetrahedra with the dual
graph as depicted in Fig. 3a. Then at least one of the following holds:

(i) σ1 to σ5 share a common vertex, or
(ii) σ3, σ4, σ5, and σ6 share a common vertex v; σ1, σ2, σ3, and σ6 share a

common edge e; and v ∩ e = ∅.

Proof. We first define S1 = {σ3, σ4, σ5, σ6} and S2 = {σ1, σ2, σ3, σ6}. We observe
that by Lemma 2.3 each set shares at least a vertex, but can also share an edge.
We distinguish the cases by the shared geometric object:

– If both S1 and S2 each share an edge, case (i) holds. Each such edge needs
to be part of the triangular facet which connects σ3 and σ6. Thus both edges
share a common vertex.

– If just one of the two sets shares an edge e and the other shares only a vertex
v there are two trivial cases: If v ∩ e = ∅ then case (ii) is true—see Fig. 3c
for an example. On the other hand, if v ∩ e = v then case (i) holds.

– The last case is the one in which each of the sets shares only a vertex. The
situation can be seen in Fig. 3b. First look at the vertex v of σ3 not contained
in the facet shared by σ3 and σ6, i.e., v /∈ σ3 ∩ σ6. In the figure v is marked
in orange. We observe that then all neighbors of σ3 except σ6 contain v.
Thus, σ2 contains v and three of its four facets are incident to v. One of
the facets is the shared facet with σ3, but the other two are where σ1 could
be placed. σ1 cannot be located at the fourth facet of σ2, since it would
then share an edge with σ3 and σ6 which is covered in the previous cases.
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Fig. 4. All “nontrivial” configurations of children of σ6. The tree in (a) is a subtree
of all configurations. In all cases σ6 has no other children than the ones shown here.
Furthermore by the requirement that T is rooted at a leaf node, σ6 needs to have an
additional parent (except for case (a)).

Therefore, σ1 contains v and with the same argument the same holds true
for σ5. Then case (i) holds. ut

Lemma 3.6 (Inductive step II). Given a polyhedron P with a tetrahedral
decomposition Σ with m = |Σ| > 4 tetrahedra and a spanning tree T of its dual
graph D(Σ) rooted at some arbitrary leaf node. Let T ′ ⊆ T be a subtree of T
with height 3 for which Lemma 3.4 cannot be applied. (See Fig. 4 for all possible
cases.)

In T ′ we can then place k ≥ 2 beacons for which it holds that the beacons are
contained in at least 3k + 1 tetrahedra and the graph of the beacons and the edges
they are contained in is connected.

We can then remove at least 3k tetrahedra from T ′, each of which contains a
beacon, without violating the tree structure of T . After removal there is at least
one tetrahedron left in T which contains one of the beacons.

Due to space constraints we omit the proof here. It involves analyzing each of
the nine cases individually and carefully applying Lemma 3.5. The full proof can
however be found in [8, Lemma 5.9, pp. 34–37].



Lemma 3.4 shows the inductive step for all subtrees with height at most 2
and Lemma 3.6 enumerates all combinatorically different subtrees with height
exactly 3. Since in both lemmas the height of the subtree decreases by at least 1
we can always apply either of them.

3.3 Conclusion

We can now restate Hypothesis 3.1 as a theorem:

Theorem 3.7 (Upper bound). Given a polyhedron P with a tetrahedral de-
composition Σ with m = |Σ| tetrahedra it is always sufficient to place

⌊
m+1
3

⌋
beacons to route between any pair of points in P .

Proof. We show this by induction. The base case is shown by Lemma 3.3. We
assume that the induction hypothesis (Hypothesis 3.1) holds for all polyhedra with
a tetrahedral decomposition with strictly less than m tetrahedra. We then show
that it also holds for tetrahedral decompositions Σ with exactly m tetrahedra.

Look at a spanning tree T of the dual graph D(Σ) of the tetrahedral decom-
position Σ which is rooted at an arbitrary leaf node. Let σ1 be a deepest leaf
node and if σ1 is not unique choose the one with the largest number of siblings,
breaking ties arbitrarily. We can then apply either Lemma 3.4 or Lemma 3.6 and
know at least the following:

(i) We have placed k ≥ 1 beacons and removed at least 3k tetrahedra.
(ii) Every removed tetrahedron contains at least one beacon.
(iii) The induced subgraph of the placed beacons on the vertices and edges of the

polyhedron is connected.
(iv) There is at least one beacon b contained in the remaining polyhedron P ′.

From (i) it follows that the new polyhedron P ′ has a tetrahedral decomposition
of m′ ≤ m− 3k tetrahedra. We can then apply the induction hypothesis for P ′.
Thus we only need to place k′ =

⌊
m′+1

3

⌋
≤

⌊
m−3k+1

3

⌋
=

⌊
m+1
3

⌋
− k beacons in

P ′ to route between any pair of points in P ′. Since k′ + k =
⌊
m+1
3

⌋
we never

place more beacons than we are allowed.
From the induction hypothesis and (iv) we conclude that we are especially able

to route from any point in P ′ to the beacon b and vice versa, since b is contained
in P ′. With (ii) we know that for every point p in the removed tetrahedra there
is a beacon b′ such that p attracts b′ and b′ attracts p. Finally, with (iii) we know
that we can route between all beacons we have placed. This especially means
that we can route from every beacon to the beacon b which is inside P ′ and vice
versa.

This completes the inductive step and thus, by induction, we have proved the
theorem. ut

Observation 3.8. Placing max
(
1,
⌊
m+1
3

⌋)
beacons is always sufficient to cover a

polyhedron with a tetrahedral decomposition with m tetrahedra. We need at
least one beacon to cover a polyhedron and placing them as in the previous proof
is enough.



4 A Lower Bound for Beacon-based Routing

We now want to show a lower bound for the number of beacons needed to route
within polyhedra with a tetrahedral decomposition. To do this we first show a
different lower bound proof for two dimensions which can then be easily applied
to three dimensions.

As shown by Biro et al. [6],
⌊
n
2

⌋
− 1 is not only an upper but also a lower

bound for the necessary number of beacons in simple polygons. The idea for
the following construction is similar to the one used by Shermer [12] for the
lower bound for beacon-based routing in orthogonal polygons. We first show the
construction of a class of spiral-shaped polygons for which we will then show
that

⌊
n
2

⌋
− 1 beacons are needed for a specific pair of points.

Definition 4.1. For every c ∈ N≥1 and some small 0 < δ < 1 a c-corner spiral
polygon is a simple polygon with n = 2c + 2 vertices. These vertices, given in
counterclockwise order, are called s, q1, q2, . . ., qc, t, rc, rc−1, . . ., r1 and their
coordinates are given in polar notation as follows:

– s = (1; 0π), t =
(⌊

c+1
3

⌋
+ 1; (c+ 1) · 23π

)
,

– qk =
(⌊

k
3

⌋
+ 1 + δ; k · 23π

)
for all 1 ≤ k ≤ c, and

– rk =
(⌊

k
3

⌋
+ 1; k · 23π

)
for all 1 ≤ k ≤ c.

The two vertices rk and qk form the k-th corner. The trapezoids rkqkqk+1rk+1

for all 1 ≤ k < c and the two triangles 4sr1q1 and 4trcqc are each called a
hallway.

An example for c = 5 can be seen in Fig. 5. There are five corners and we
have already placed five beacons to be able to route from s to t.

Lemma 4.2 (Two-dimensional lower bound). Given a c-corner spiral poly-
gon c beacons are necessary to route from s to t.

Proof. To show that we need c beacons we introduce some additional notational
conventions as depicted in Fig. 6a. The exterior angle at each (reflex) vertex rk
is called αk. We split each hallway into two parts. To achieve this, three rays
starting at the origin with the angles 1

3π, π, and 5
3π (the dotted rays in Fig. 5)

are drawn. Every hallway is divided by exactly one of the three rays and the
intersection points with the polygon’s boundary are called ak and bk: ak is the
intersection of one of the rays with the edge rk−1rk and bk with the edge qk−1qk.

We observe that, due to the triangular shape, the angle αk is always strictly
less than 90°, for every 1 ≤ k ≤ c.

We now divide our polygon into c+ 2 subpolygons C0 to Cc+1 at each pair
ak and bk. This subdivision results in two triangles C0 and Cc+1 which contain s
and t, respectively, and c subpolygons C1 to Cc which are called complete corners
and which all have the same structure. We show that every such complete corner
needs to contain at least one beacon to be able to route from s to t. We look at
one complete corner Ck, 1 ≤ k ≤ c, shown in Fig. 6b.
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Fig. 5. A 5-corner spiral polygon with δ = 0.4 for which five beacons (marked in red)
are necessary to route from s to t.

We want to route from Ck−1 to Ck+1. To route any point from Ck−1 (which
all lie to the right of akbk) towards bk+1 there has to be a beacon such that
the shortest line segment of this beacon to the line segment rkak ends in rk.
Otherwise, an attracted point will get stuck on rkak because the shortest path
ends somewhere on rkak (excluding rk itself). In Fig. 6b we see the case where
bk+1 is a beacon. Here d is a dead point with respect to bk+1 and no point from
Ck−1 will travel further into Ck when attracted by bk+1.

The marked region in Fig. 6b is the region in which every point can attract at
least all points on the line segment akbk. Additionally, every point in the region
can be attracted by a beacon somewhere in the region of Ck+1 to the left of the
line trough ak+1rk, i.e., the part of Ck+1 before turning at rk+1.

On the other hand, there is no better option than bk+1 for a beacon position
outside of Ck. All other points in Ck+1 lie to the right of the line through bk+1d
and hence their respective dead point on rkrk−1 lies further away from rk.

We can see that if the length of the hallways (the distance between rk and
rk+1) is sufficiently large compared to their width (the distance between ak and
bk) it is never possible for a point outside of Ck to be inside the marked region.
Therefore it is not possible to route from somewhere inside Ck−1 to somewhere
inside Ck+1 without an additional beacon inside Ck. ut
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Fig. 6. A more detailed look at the parts of the spiral polygon.

We now apply the idea of this proof to three dimensions starting with the
definition of the spiral polyhedron.

Definition 4.3. For every c ∈ N≥1 and some small 0 < δ < 1 a c-corner spiral
polyhedron is a polyhedron with n = 3c + 2 vertices. These vertices are s and
t as well as qk, rk, and zk for all 1 ≤ k ≤ c. The coordinates of s, t, qk, and
rk are the same as in Definition 4.1 with their z-coordinate set to 0. The zk are

positioned above rk or more formally zk := rk +
(
0
0
1

)
for all 1 ≤ k ≤ c.

The edges and facets of the polyhedron are given by the tetrahedral decomposi-
tion:

– The start and end tetrahedra are formed by r1q1z1s and rcqczct.
– The hallway between two triangles 4rkqkzk and 4rk+1qk+1zk+1 consists of

the three tetrahedra rkqkzkrk+1, rk+1qk+1zk+1qk, and qkzkrk+1zk+1.

The three vertices rk, qk, and zk form the k-th corner.

Observation 4.4. The smallest c-corner spiral polyhedron with c = 1 consists
of exactly two tetrahedra. For greater c we add exactly c − 1 hallways, each
consisting of three tetrahedra. This means that a c-corner spiral polyhedron
has a tetrahedral decomposition with m = 3c − 1 tetrahedra. It follows from
Definition 4.3 that the number of tetrahedra relative to the number of vertices is
m = 3 · n−23 − 1 = n− 3.

Lemma 4.5 (Lower bound). Given a c-corner spiral polyhedron P , c beacons
are necessary to route from s to t.

Proof. We project P onto the xy-plane which results in a c-corner spiral polygon
P ′ due to the construction of the c-corner spiral polyhedron. To P ′ we can apply



Lemma 4.2 where we showed that c beacons (placed in an area around each of
the c corners) are sometimes necessary to route in P ′.

As opposed to the polygon, the movement in the polyhedron is not constrained
to the xy-plane. Additionally, beacons can be placed at locations which do not
lie in the xy-plane. We need to show that this does not change the situation in a
way so that less than c beacons are necessary.

First, note that, due to the construction in Definition 4.3, every cross section
of the polyhedron parallel to the xy-plane yields a c-corner spiral polygon with
different widths δ. For every such cross section, Lemma 4.2 tells us that to route
only in this cross section, c beacons are needed.

Additionally, the hallway’s inner boundary rkzkrk+1zk+1 is perpendicular to
the xy-plane. This means that the movement of all points p which are attracted
by a beacon b can be split into a xy-movement and a z-movement because the
z-coordinate is not important for any movement along the inner boundary. Since
each hallway is convex there is no other movement of a point p attracted by a
beacon b which is constrained by the polyhedron’s boundary ∂P . We can then
only look at the xy-movement which again yields a two-dimensional situation to
which Lemma 4.2 can be applied. ut

5 A Sharp Bound for Beacon-based Routing

Theorem 5.1. Given a polyhedron P for which a tetrahedral decomposition with
m tetrahedra exists, it is always sufficient and sometimes necessary to place⌊
m+1
3

⌋
beacons to route between any pair of points in P .

Proof. In Theorem 3.7 we have shown that
⌊
m+1
3

⌋
is an upper bound.

For any given m we can construct a c-corner spiral polyhedron Pm with
c =

⌊
m+1
3

⌋
corners for which, by Lemma 4.5, c beacons are necessary. The

number of tetrahedra in Pm is m′ = 3c− 1 (see Observation 4.4) and this is also
the smallest number of tetrahedra in any tetrahedral decomposition of Pm: If
there was a tetrahedral decomposition with less tetrahedra then by Theorem 3.7
less than c beacons would be needed which contradicts Lemma 4.5.

If m′ < m, i.e. due to the flooring function the c-corner spiral contains one or
two tetrahedra less than m, we add the missing tetrahedra as if constructing a
c+ 1-corner spiral. This does not lead to less beacons being needed. ut

6 Conclusion

We have shown that the problem of finding a minimal beacon set in a polyhedron
P to route between all pairs of points or all points and a specific point is NP-hard
and APX-hard. This holds also true for the problem of finding a minimal beacon
set to cover a polyhedron P .

We have shown that, given a tetrahedral decomposition of a polyhedron P
with m tetrahedra it is always sufficient to place

⌊
m+1
3

⌋
beacons to route between



any pair of points in P . We then gave a class of polyhedra for which this upper
bound is always necessary.

A lot of questions which have been answered by various authors in two
dimensions remain open for the three-dimensional case. They include learning
about the complexity of finding an optimal beacon set to route between a given
pair of points. Additional open questions are about attraction regions (computing
the set of all points attracted by a single beacon) and beacons kernels (all points
at which a beacon can attract all points in the polyhedron).

Furthermore Cleve [8] has shown that not all polyhedra can be covered by
beacons placed at the polyhedron’s vertices and Aldana-Galván et al. [1,2] showed
that this is even true for orthogonal polyhedra. Given a tetrahedral decomposition
of a polyhedron it remains open whether it is possible to cover a polyhedron with
less than max

(
1,
⌊
m+1
3

⌋)
beacons as seen in Observation 3.8. It seems challenging

to further look at the beacon-coverage problem in general polyhedra.
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