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Abstract
Let C1, ..., Cd+1 be d+ 1 point sets in Rd, each contain-
ing the origin in its convex hull. A subset C of

⋃d+1
i=1 Ci

is called a colorful choice (or rainbow) for C1, . . . , Cd+1,
if it contains exactly one point from each set Ci. The
colorful Carathéodory theorem states that there always
exists a colorful choice for C1, . . . , Cd+1 that has the
origin in its convex hull. This theorem is very general
and can be used to prove several other existence theo-
rems in high-dimensional discrete geometry, such as the
centerpoint theorem or Tverberg’s theorem. The colorful
Carathéodory problem (ColorfulCarathéodory) is
the computational problem of finding such a colorful
choice. Despite several efforts in the past, the compu-
tational complexity of ColorfulCarathéodory in
arbitrary dimension is still open.

We show that ColorfulCarathéodory lies in
the intersection of the complexity classes PPAD and
PLS. This makes it one of the few geometric problems
in PPAD and PLS that are not known to be solvable
in polynomial time. Moreover, it implies that the
problem of computing centerpoints, computing Tverberg
partitions, and computing points with large simplicial
depth is contained in PPAD ∩ PLS. This is the first
nontrivial upper bound on the complexity of these
problems.

Finally, we show that our PPAD formulation leads
to a polynomial-time algorithm for a special case of
ColorfulCarathéodory in which we have only two
color classes C1 and C2 in d dimensions, each with the
origin in its convex hull, and we would like to find a set
with half the points from each color class that contains
the origin in its convex hull.
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1 Introduction
Let P ⊂ Rd be a d-dimensional point set. We say
P embraces a point p ∈ Rd or P is p-embracing if
p ∈ conv(P ), and we say P ray-embraces p if p ∈ pos(P ),
where pos(P ) =

{∑
p∈P αpp | αp ≥ 0 for all p ∈ P

}
.

Carathéodory’s theorem [10, Theorem 1.2.3] states that
if P embraces the origin, then there exists a subset
P ′ ⊆ P of size d+ 1 that also embraces the origin. This
was generalized by Bárány [1] to the colorful setting:
let C1, . . . , Cd+1 ⊂ Rd be point sets that each embrace
the origin. We call a set C = {c1, . . . , cd+1} a colorful
choice (or rainbow) for C1, . . . , Cd+1, if ci ∈ Ci, for
i = 1, . . . , d + 1. The colorful Carathéodory theorem
states that there always exists a 0-embracing colorful
choice that contains the origin in its convex hull. Bárány
also gave the following generalization.
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Figure 1: (a) Example of the convex version of Theo-
rem 1.1 in two dimensions. (b) Example of the cone
version of Theorem 1.1 in two dimensions.

Theorem 1.1. (Colorful Carathéodory Theo-
rem, Cone Version [1]) Let C1, . . . , Cd ⊂ Rd be point
sets and b ∈ Rd a point with b ∈ pos(Ci), for i = 1, . . . , d.
Then, there is a colorful choice C for C1, . . . , Cd that
ray-embraces b.

The classic (convex) version of the colorful
Carathéodory theorem follows easily from Theorem 1.1:
lift the sets C1, . . . , Cd+1 ⊂ Rd to Rd+1 by appending a 1
to each element, and set b = (0, . . . , 0, 1)T . See Figure 1
for an example of both versions in two dimensions.

Even though the cone version of the colorful
Carathéodory theorem guarantees the existence of a



colorful choice that ray-embraces the point b, it is far
from clear how to find it efficiently. We call this com-
putational problem the colorful Carathéodory problem
(ColorfulCarathéodory). To this day, settling the
complexity of ColorfulCarathéodory remains an
intriguing open problem, with a potentially wide range
of consequences. We can use linear programming to
check in polynomial time whether a given colorful choice
ray-embraces a point, so ColorfulCarathéodory
lies in total function NP (TFNP) [16], the complexity
class of total search problems that can be solved in
non-deterministic polynomial time. This implies that
ColorfulCarathéodory cannot be NP-hard unless
NP = coNP [8]. However, the complexity landscape in-
side TFNP is far from understood, and there exists a rich
body of work that studies subclasses of TFNP meant
to capture different aspects of mathematical existence
proofs, such as the pigeonhole principle (PPP), poten-
tial function arguments (PLS, CLS), or various parity
arguments (PPAD, PPA, PPADS) [6, 8, 16].

While the complexity of ColorfulCarathéodory
remains elusive, related problems are known to be
complete for PPAD or for PLS. For example, given
d + 1 point sets C1, . . . , Cd+1 ⊂ Qd consisting of two
points each and a colorful choice C for C1, . . . , Cd+1
that embraces the origin, it is PPAD-complete to find
another colorful choice that embraces the origin [13].
Furthermore, given d+ 1 point sets C1, . . . , Cd+1 ⊂ Qd,
we call a colorful choice C for C1, . . . , Cd+1 locally
optimal if the L1-distance of conv(C) to the origin cannot
be decreased by swapping a point of color i in C with
another point from the same color. Then, computing a
locally optimal colorful choice is PLS-complete [15].

Understanding the complexity of Colorful-
Carathéodory becomes even more interesting in the
light of the fact that the colorful Carathéodory theo-
rem plays a crucial role in proving several other promi-
nent theorems in convex geometry, such as Tverberg’s
theorem [18] (and hence the centerpoint theorem [17])
and the first selection lemma [10, 1]. In fact, these
proofs can be interpreted as polynomial time reductions
from the respective computational problems, Tverberg,
Centerpoint, and SimplicialCenter, to Colorful-
Carathéodory. See the full version for more details.

Several approximation algorithms have been pro-
posed for ColorfulCarathéodory. Bárány and
Onn [2] describe an exact algorithm that can be stopped
early to find a colorful choice whose convex hull is “close”
to the origin. More precisely, let ε, ρ > 0 be parameters.
We call a set ε-close if its convex hull has L2-distance
at most ε to the origin. Given sets C1, . . . , Cd+1 ⊂ Rd

such that (i) each Ci contains a ball of radius ρ cen-
tered at the origin in its convex hull; and (ii) all points

p ∈
⋃d+1

i=1 Ci fulfill 1 ≤ ‖p‖ ≤ 2 and can be encoded
using L bits, one can find an ε-close colorful choice in
time O(poly(L, log(1/ε), 1/ρ)) on the Word-Ram with
logarithmic costs. For ε = 0, the algorithm actually finds
a solution to ColorfulCarathéodory in finite time,
and, more interestingly, if 1/ρ = O(poly(L)), the algo-
rithm finds a solution to ColorfulCarathéodory in
polynomial time. In the same spirit, Barman [3] showed
that if the points have constant norm, an ε-close colorful
choice can be found by solving dO(1/ε2) convex programs.
Mulzer and Stein [15] considered a different notion of
approximation: a set is called m-colorful if it contains
at most m points from each Ci. They showed that for
all fixed ε > 0, an dεde-colorful choice that contains the
origin in its convex hull can be found in polynomial time.

Our Results. We provide a new upper bound
on the complexity of ColorfulCarathéodory by
showing that the problem is contained in PPAD ∩
PLS, implying the first nontrivial upper bound on the
computational complexity of computing centerpoints or
finding Tverberg partitions.

The traditional proofs of the colorful Carathéodory
theorem all proceed through a potential function argu-
ment. Thus, it may not be surprising that Colorful-
Carathéodory lies in PLS, even though a detailed
proof that can deal with degenerate instances requires
some care. On the other hand, showing that Colorful-
Carathéodory lies in PPAD calls for a completely new
approach. Even though there are proofs of the color-
ful Carathéodory theorem that use topological methods
usually associated with PPAD (such as certain variants
of Sperner’s lemma) [7, 9], these proofs involve existen-
tial arguments that have no clear algorithmic interpre-
tation. Thus, we present a new proof of the colorful
Carathéodory theorem that proceeds similarly as the
usual proof for Sperner’s lemma [5]. This new proof has
an algorithmic interpretation that leads to a formulation
of ColorfulCarathéodory as a PPAD-problem.

Finally, we consider the special case of Colorful-
Carathéodory that we are given two color classes
C1, C2 ⊂ Rd of d points each and a vector b ∈ Rd such
that both C1 and C2 ray-embrace b. We describe an
algorithm that solves the following problem in poly-
nomial time: given k ∈ [d], find a set C ⊆ C1 ∪ C2
with |C ∩ C1| = k and |C ∩ C2| = d − k such that C
ray-embraces b. Note that this is a special case of Col-
orfulCarathéodory since we can just take k copies
of C1 and d− k copies of C2 in a problem instance for
ColorfulCarathéodory.

2 Preliminaries
The Complexity Class PPAD. The complexity

class polynomial parity argument in a directed graph



(PPAD) [16] is a subclass of TFNP that contains search
problems that can be modeled as follows: let G = (V,E)
be a directed graph in which each node has indegree and
outdegree at most one. That is, G consists of paths and
cycles. We call a node v ∈ V a source if v has indegree
0 and we call v a sink if it has outdegree 0. Given a
source in G, we want to find another source or sink. By
a parity argument, there is an even number of sources
and sinks in G and hence another source or sink must
exist. However, finding this sink or source is nontrivial
since G is defined implicitly and the total number of
nodes may be exponential.

More formally, a problem in PPAD is a relation R
between a set I ⊆ {0, 1}? of problem instances and a set
S ⊂ {0, 1}? of candidate solutions. Assume further the
following.

• The set I is polynomial-time verifiable. Further-
more, there is an algorithm that on input I ∈ I and
s ∈ S decides in time poly(|I|) whether s is a valid
candidate solution for I. We denote with SI ⊆ S
the set of all valid candidate solutions for a fixed
instance I.

• There exist two polynomial-time computable func-
tions pred and succ that define the edge set of G
as follows: on input I ∈ I and s ∈ SI , pred and
succ return a valid candidate solution from SI or ⊥.
Here, ⊥ means that v has no predecessor/successor.

• There is a polynomial-time algorithm that returns
for each instance I a valid candidate solution s ∈ SI

with pred(s) = ⊥. We call s the standard source.

Now, each instance I ∈ I defines a graph GI = (V,E)
as follows. The set of nodes V is the set of all valid
candidate solutions SI and there is a directed edge from
u to v if and only if v = succ(u) and u = pred(v).
Clearly, each node in GI has indegree and outdegree at
most one. The relation R consists of all tuples (I, s)
such that s is a sink or source other than the standard
source in GI .

The definition of a PPAD-problem suggests a simple
algorithm, called the standard algorithm: start at the
standard source and follow the path until a sink is
reached. This algorithm always finds a solution but
the length of the traversed path may be exponential in
the size of the input instance.

Polyhedral Complexes and Subdivisions. We
call a finite set of polyhedra P in Rd a polyhedral complex
if and only if (i) for all polyhedra f ∈ P, all faces of
f are contained in P; and (ii) for all f, f ′ ∈ P, the
intersection f ∩ f ′ is a face of both. Note that the
first requirement implies that ∅ ∈ P. Furthermore, we
say P has dimension k if there exists some polyhedron

f ∈ P with dim f = k and all other polyhedra in P have
dimension at most k. We call P a polytopal complex if it
is a polyhedral complex and all elements are polytopes.
Similarly, we say P is a simplicial complex if it is a
polytopal complex whose elements are simplices. Finally,
we say P subdivides a set Q ⊆ Rd if

⋃
f∈P f = Q. For

more details, see [19, Section 5.1].
Linear Programming. Let A ∈ Rd×n be a matrix

and F a set of column vectors from A. Then, we denote
with ind (F ) ⊆ [n] the set of column indices in F and for
an index set I ⊆ [n], we denote with AI the submatrix of
A that consists of the columns indexed by I. Similarly,
for a vector c ∈ Rn and an index set I ⊂ [n], we denote
with cI the subvector of c with the coordinates indexed
by I. Now, let L′ denote a system of linear equations

L′ : Ax = b,

where A ∈ Qd×n, b ∈ Qd and rank(A) = k. By
multiplying with the least common denominator, we
may assume in the following that A ∈ Zd×n and b ∈ Zd.
We call a set of k linearly independent column vectors
B of A a basis and we say that A is non-degenerate if
k = d and for all bases B of A, no coordinate of the
corresponding solution xind(B) is 0. In particular, if L′
is non-degenerate, then b is not contained in the linear
span of any set of d′ < d column vectors from A and
hence if d > n, the linear system L′ has no solution. In
the following, we assume that L′ is non-degenerate and
that d ≤ n.

We denote with L the linear program obtained by
extending the linear system L′ with the constraints x ≥ 0
and with a cost vector c ∈ Qn:

L : min cTx subject to Ax = b, x ≥ 0.

We say a set of column vectors B is a basis for L if
B is a basis for L′. Let x ∈ Rn be the corresponding
solution, i.e., let x be such that Ax = b and xi = 0 for
i ∈ [n]\ind (B). We call x a basic feasible solution, and B
a feasible basis, if x ≥ 0. Furthermore, we say L is non-
degenerate if for all feasible bases B, the corresponding
basic feasible solutions have strictly positive values in
the coordinates of B. Now, let R = [n] \ ind (B) be
the column indices not in B. The reduced cost vector
rB,c ∈ Qn−d with respect to B and c is then defined as

(2.1) rB,c = cR −
(
A−1

ind(B)AR

)T

cind(B).

It is well-known that B is optimal for c if and only if
rB,c is non-negative in all coordinates [12]. For technical
reasons, we consider in the following the extended reduced
cost vector r̂B,c ∈ Qn that has a 0 in dimensions ind (B)
and otherwise equals rB,c to align the coordinates of the



reduced cost vector with the column indices in A. More
formally, we set

(r̂B,c)j =
{

0 if j ∈ ind (B), and
(rB,c)j′ otherwise,

where j′ is the rank of j in R, that is, (rB,c)j′ is the
coordinate of rB,c that corresponds to the j′th non-basis
column with column index j in A.

Geometrically, the feasible solutions for the linear
program L define an (n − d)-dimensional polyhedron
P in Rn. Since L is non-degenerate, P is simple. Let
f ⊆ P be a k-face of P. Then, f has an associated set
supp (f) ⊆ [n] of k column indices such that f consists
precisely of the feasible solutions for the linear program
Asupp(f)x

′ = b, x′ ≥ 0, lifted to Rn by setting the
coordinates with indices not in supp (f) to 0. We call
supp (f) the support of f and we say the columns in
Asupp(f) define f . Furthermore, for all subfaces f̌ ⊆ f ,
we have supp

(
f̌
)
⊆ supp (f) and in particular, all bases

that define vertices of f are d-subsets of columns from
Asupp(f).

Moreover, we say a nonempty face f ⊆ P is optimal
for a cost vector c if all points in f are optimal for c. We
can express this condition using the reduced cost vector.
Let B be a basis for a vertex in f . Then f is optimal
for c if and only if

(r̂B,c)j = 0 for j ∈ supp (f), and (r̂B,c)j ≤ 0 otherwise.

3 Overview of the PPAD-Formulation
We give a new constructive proof of the cone version of
the colorful Carathéodory theorem based on Sperner’s
lemma. Using this, we can obtain a PPAD-formulation
of ColorfulCarathéodory, by adapting Papadim-
itriou’s formulation of Sperner’s lemma as a PPAD prob-
lem.

Recall the statement of Sperner’s lemma: let S be
a simplicial subdivision of the d-dimensional standard
simplex ∆d = conv(e1, . . . , ed+1) ⊂ Rd+1, where ei is
the ith canonical basis vector. We call a function λ
that assigns to each vertex in S a label from [d + 1] a
Sperner labeling if for each vertex v of S contained in
conv(ei1 , . . . , eik

), we have λ(v) ∈ {i1, . . . , ik}, for all
{i1, . . . , ik} ⊆ [d+ 1], k ∈ [d+ 1]. For a simplex σ ∈ S,
we set λ(σ) to be the set of labels of the vertices of σ.
We call σ fully-labeled if λ(σ) = [d+ 1].

Theorem 3.1. (Strong Sperner’s Lemma [5])
The number of fully-labeled simplices is odd.

Now suppose we are given an instance I =
(C1, . . . , Cd, b) of (the cone version of) Colorful-
Carathéodory, where b ∈ Rd, b 6= 0, and each
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Figure 2: An example of Sperner’s lemma in two
dimensions. The fully-labeled simplices are marked
yellow.

Ci ⊂ Qd, i ∈ [d], ray-embraces b. In the full version [14],
we show that w.l.o.g. each set Ci has size d. We now
describe how to define a simplicial complex S and a
Sperner labeling λ for I such that a fully labeled simplex
will encode a colorful choice that contains the vector b
in its positive span.

In the following, we call Rd the parameter space and
a vector µ ∈ Rd a parameter vector. We define a family
of linear programs {LCC

µ | µ ∈ Rd}, where each linear
program LCC

µ has the same linear system

(3.2) LCC : Ax = b,x ≥ 0,

as constraints and differs only in its cost vector cµ. The
cost vector cµ is defined by a linear function in µ ∈ Rd.
Let A = (C1 C2 . . . Cd) ∈ Qd×d2 be the matrix that has
the vectors from C1 in the first d columns, the vectors
from C2 in the second d columns, and so on. Then, we
denote with LCC

µ the linear program

(3.3) LCC
µ : min cT

µx, subject to LCC,

and we denote with PCC ⊂ Rd2 the polyhedron that is
defined by the linear system LCC. We can think of the ith
coordinate of the parameter vector µ ∈ Rd as the weight
of color i, i.e., the costs of columns from A with color i
decrease if (µ)i increases. To each face f of P , we assign
the set of parameter vectors Φ(f) ⊂ Rd such that for all
µ ∈ Φ(f), the face f is optimal for the linear program
LCC
µ that has LCC as constraints and cµ as cost vector.

We call Φ(f) the parameter region of f . The cost vector is
designed to control the colors that appear in the support
of optimal faces for a specific subset of parameter vectors.
LetM =

{
µ ∈ Rd

∣∣µ ≥ 0, ‖µ‖∞ = 1
}
denote the faces

of the unit cube in which at least one coordinate is set
to 1. Then, no face f that is assigned to a parameter
vector µ ∈M with (µ)i× = 0 has a column from A with



color i× in its defining set Asupp(f). This property will
become crucial when we define a Sperner labeling later
on. Now, we define a polyhedral subcomplex F of PCC

that consists of all faces f of PCC such that Φ(f)∩M 6= ∅.
Furthermore, the intersections of the parameter regions
withM induce a polytopal complex Q that is in a dual
relationship to F . By performing a central projection
with the origin as center of Q onto the standard simplex
∆d−1, we obtain a polytopal subdivision Q∆ of ∆d−1.
To get the desired simplicial subdivision of ∆d−1, we
take the barycentric subdivision sdQ∆ of Q∆.

We construct a Sperner labeling λ for sdQ∆ as
follows: let v be a vertex in sdQ∆, and let f be
the face of F that corresponds to v. Then, we set
λ(v) = i if the ith color appears most often in the
support of f . The color controlling property of the cost
function cµ then implies that λ is a Sperner labeling.
Furthermore, using the properties of the barycentric
subdivision and the correspondence between Q∆ and F ,
we can show that one vertex of a fully-labeled (d− 1)-
simplex in sdQ∆ encodes a colorful feasible basis of the
ColorfulCarathéodory instance I. This concludes
a new constructive proof of the colorful Carathéodory
theorem using Sperner’s lemma.

To show that ColorfulCarathéodory is in
PPAD however, we need to be able to traverse sdQ∆
efficiently. For this, we introduce a combinatorial encod-
ing of the simplices in Q∆ that represents neighboring
simplices in a similar manner. Furthermore, we describe
how to generalize the orientation used in the PPAD for-
mulation of 2D-Sperner [16] to our setting. This finally
shows that ColorfulCarathéodory is in PPAD.

To ensure that the complexes that appear in our
algorithms are sufficiently generic, we prove several
perturbation lemmas that give a deterministic way of
achieving this. Our PPAD-formulation also shows that
the special case of ColorfulCarathéodory involving
two colors can be solved in polynomial time. Indeed, we
will see that in this case the polytopal complexQ∆ can be
made 1-dimensional. Then, binary search can be used to
find a fully-labeled simplex in Q∆. In order to prove that
the binary search terminates after a polynomial number
of steps, we use methods similar to our perturbation
techniques to obtain a bound on the length of the 1-
dimensional fully-labeled simplex.

4 The Colorful Carathéodory Problem is in
PPAD

As before, let I = (C1, . . . , Cd, b) denote an instance
for the cone version of ColorfulCarathéodory.
Our formulation of ColorfulCarathéodory as a
PPAD-problem requires I to be in general position. In
particular, we assume that (P1) all color classes Ci ⊂ Zd

consist of d points and all points have integer coordinates.
Furthermore, we assume that (P2) there exist no subset
P ⊂

⋃d
i=1 Ci of size d − 1 that ray-embraces b. We

show in the full version [14] how to ensure the properties
by an explicit deterministic perturbation of polynomial
bit-complexity.

4.1 The Polytopal Complex Let N = d!md, where
m is the largest absolute value that appears in A and b.
Then, we define cµ ∈ Rd2 as

(4.4) (cµ)j = 1 + (1− (µ)i) dN2 + εj ,

where j ∈ [d2], i is the color of the jth column in A,
and 0 < ε ≤ N−3 is a suitable perturbation that ensures
non-degeneracy of the reduced costs (see [4]). As stated
in the overview, the cost function controls the colors in
the support of the optimal faces for parameter vectors
inM. The proof of the following lemma can be found
in the full version [14].

Lemma 4.1. Let i× ∈ [d] be a color and let µ ∈M be a
parameter vector with µi× = 0. Furthermore, let B? be
an optimal feasible basis for LCC

µ . Then, B? ∩ Ci× = ∅.

We denote for a face f ⊆ PCC, f 6= ∅, with
Φ(f) =

{
µ ∈ Rd | f is optimal for Lµ

}
the set of all

parameter vectors for which f is optimal. We call this
the parameter region for f . Using the reduced cost
vector, we can express Φ(f) as solution space to the
following linear system, where B is a feasible basis of
some vertex of f and the d coordinates of the parameter
vector µ are the variables:

LΦ
B,f : (r̂B,cµ)j = 0 for j ∈ supp (f) \ ind (B),

(r̂B,cµ)j ≤ 0 for
[
d2] \ supp (f).

(4.5)

Then, we define F as the set of all faces that are optimal
for some parameter vector inM:

F =
{
f
∣∣ f is a face of PCC, Φ(f) ∩M 6= ∅

}
.

By definition, F ∪ {∅} is a polyhedral subcomplex of
PCC. The intersections of the parameter regions with
faces ofM induce a subdivision Q ofM:

Q = {Φ(f) ∩ g | f ∈ F , g is a face ofM} .

In the full version [14], we show that Q is a (d − 1)-
dimensional polytopal complex. Next, we construct Q∆
through a central projection with the origin as center
of Q onto the (d − 1)-dimensional standard simplex
∆ ⊂ Rd. It is easy to see that this projection is a
bijection. For a parameter vector µ ∈ Rd, we denote
with ∆(µ) = µ/‖µ‖1 its projection onto ∆. Similarly,



we denote with M(µ) = µ/‖µ‖∞ the projection of µ
onto M and we use the same notation to denote the
element-wise projection of sets. Then, we can write the
projection Q∆ of Q onto ∆ as Q∆ = {∆(q) | q ∈ Q}.
Furthermore, let S = {∆(g) | g is a face ofM} denote
the projections of the faces of M onto ∆. For f ∈ F ,
let Φ∆(f) = ∆(Φ(f) ∩M) denote the projection of all
parameter vectors inM for which f is optimal onto ∆.
Please refer to Table 1 on Page 10 for an overview of the
current and future notation. The following results are
proved in the full version [14].

Lemma 4.2. Let q 6= ∅ be an element from Q∆. Then,
there exists unique pair (f, g) where f is a face of F and
g is a face of S such that q = Φ∆(f) ∩ g. Moreover, q
is a simple polytope of dimension dim g − dim f and, if
dim q > 0, the set of facets of q can be written as{

Φ∆ (f) ∩ ǧ 6= ∅
∣∣∣ ǧ is a facet of g

}
∪
{

Φ∆

(
f̂
)
∩ g 6= ∅

∣∣∣ f is a facet of f̂ ∈ F
}
.

Lemma 4.3. The set Q∆ is a (d − 1)-dimensional
polytopal complex that decomposes ∆.

4.2 The Barycentric Subdivision The barycentric
subdivision [11, Definition 1.7.2] is a well-known method
to subdivide a polytopal complex into simplices. We
define sdQ∆ as the set of all simplices conv(v0, . . . ,vk),
k ∈ [d], such that there exists a chain q0 ⊂ · · · ⊂ qk of
polytopes in Q∆ with dim qi−1 < dim qi and such that
vi is the barycenter of qi for i ∈ [k]. We define the label
of a vertex v ∈ sdQ∆ as follows. By Lemma 4.2, there
exists a unique pair f ∈ F and g ∈ S with v = Φ∆(f)∩g.
Then, the label λ(v) of v is defined as

(4.6) λ(v) = arg max
i∈[d]

|ind (C)i ∩ supp (f)| .

In case of a tie, we take the smallest i ∈ [d] that achieves
the maximum. Lemma 4.1 implies that λ(·) is a Sperner
labeling of sdQ∆. In fact, λ is a Sperner labeling for
any fixed simplicial subdivision of ∆. Now, Theorem 3.1
guarantees the existence of a (d− 1)-simplex σ ∈ sdQ∆
whose vertices have all d possible labels. The next lemma
shows that then one of the vertices of σ defines a solution
to the ColorfulCarathéodory instance. Here, we
use specific properties of the barycentric subdivision.

Lemma 4.4. Let σ ∈ sdQ∆ be a fully-labeled (d − 1)-
simplex and let vd−1 denote the vertex of σ that is the
barycenter of a (d− 1)-face qd−1 = Φ∆(fd−1) ∩ gd−1 ∈
Q∆, where fd−1 ∈ F and gd−1 ∈ S. Then, the columns
from Asupp(fd−1) are a colorful choice that ray-embraces
b.

Our discussion up to now already yields a new
Sperner-based proof of the colorful Carathéodory
theorem. However, in order to show that
ColorfulCarathéodory ∈ PPAD, we need to re-
place the invocation of Theorem 3.1 by a PPAD-problem.
Note that it is not possible to use the formulation of
Sperner from [16, Theorem 2] directly, since it is defined
for a fixed simplicial subdivision of the standard simplex.
In our case, the simplicial subdivision of ∆ depends on
the input instance. In the following, we generalize the
PPAD formulation of Sperner in [16] to Q∆ by mim-
icking the proof of Theorem 3.1. For this, we need to
be able to find simplices in sdQ∆ that share a given
facet. We begin with a simple encoding of simplices in
sdQ∆ that allows us to solve this problem completely
combinatorially.

We first show how to encode a polytope q ∈ Q∆. By
Lemma 4.2, there exists a unique pair of faces f ∈ F and
g ∈ S such that q = Φ∆(f) ∩ g. SinceM(g) is a face of
the unit cube, the value of d−dim g coordinates inM(g)
is fixed to either 0 or 1. Let Ij ⊆ [d], j = 0, 1, denote the
indices of the coordinates that are fixed to j. Then, the
encoding of q is defined as enc (q) = (supp (f), I0, I1).
We use this to define an encoding of the simplices in
Q∆ as follows. Let σ ∈ Q∆ be a k-simplex and let
q0 ⊂ · · · ⊂ qk be the corresponding face chain in Q∆
such that the ith vertex of σ is the barycenter of qi.
Then, the encoding enc (σ) is defined as

(4.7) enc (σ) = (enc (q0), . . . , enc (qk)) .

In the proof of Theorem 3.1, we traverse only
a subset of simplices in the simplicial subdivision,
namely (k − 1)-simplices that are contained in the face
∆[k] = conv{ei | i ∈ [k]} of ∆ for k ∈ [d]. Let
Σk =

{
σ ∈ sdQ∆

∣∣dim(σ) = k − 1, σ ⊆ ∆[k]
}

denote
the set of (k − 1)-simplices in sdQ∆ that are contained
in the (k − 1)-face, where k ∈ [d], and let Σ =⋃d

k=1 Σk be the collection of all those simplices. In
the following, we give a precise characterization of the
encodings of the simplices in Σk. For two disjoint
index sets I0, I1 ⊆ [d], we denote with g(I0, I1) =
{µ ∈M| j = 0, 1, (µ)i = j for i ∈ Ij} the face of M
that we obtain by fixing the coordinates in dimensions
I0 ∪ I1. Let now T = (Q0, . . . , Qk−1), k ∈ [d − 1], be
a tuple, where Qi =

(
S(i), I

(i)
0 , I

(i)
1

)
, S(i) ⊂

[
d2], and

I
(i)
0 , I

(i)
1 are disjoint subsets of [d] with I

(i)
1 6= ∅ for

i ∈ [k − 1]0. We say T is valid if and only if T has the
following properties.

(i) We have I
(k−1)
0 = [d] \ [k],

∣∣∣I(k−1)
1

∣∣∣ = 1, and
the columns in AS(k−1) are a feasible basis for
a vertex f . Moreover, the intersection Φ(f) ∩



g
(
I

(k−1)
0 ∪ I(k−1)

1

)
is nonempty.

(ii) For all i ∈ [k − 1], we either have

(ii.a) I(i−1)
0 = I

(i)
0 , I(i−1)

1 = I
(i)
1 , and S(i−1) =

S(i) ∪{ai−1} for some index ai−1 ∈
[
d2] \S(i),

(ii.b) or S(i−1) = S(i) and there is an index ji−1 ∈
[d] \

(
I

(i)
0 ∪ I

(i)
1

)
such that either I(i−1)

0 = I
(i)
0

and I(i−1)
1 = I

(i)
1 ∪{ji−1}, or I(i−1)

1 = I
(i)
1 and

I
(i−1)
0 = I

(i)
0 ∪ {ji−1}.

Lemma 4.5. For k ∈ [d], the function enc (·) restricted
to the simplices in Σk is a bijection from Σk to the set
of valid k-tuples.

Using our characterization of encodings as valid
tuples, it becomes an easy task to check whether a given
candidate encoding corresponds to a simplex in Σ.

Lemma 4.6. Let T = (Q0, . . . , Qk−1), k ∈ [d − 1], be
a tuple, where Qi =

(
S(i), I

(i)
0 , I

(i)
1

)
, S(i) ⊂

[
d2], and

I
(i)
0 , I

(i)
1 are disjoint subsets of [d] with I

(i)
1 6= ∅ for

i ∈ [k − 1]0. Then, we can check in polynomial time
whether T is a valid k-tuple.

In the full version [14], we show that simplices in
Σ that share a facet have similar encodings that differ
only in one element of the encoding tuples. Using this
fact, we can traverse Σ efficiently by manipulating the
respective encodings.

Lemma 4.7. Let σ ∈ Σk be a simplex and let q0 ⊂ · · · ⊂
qk−1 be the corresponding face chain in Q∆ such that
the ith vertex vi of σ is the barycenter of qi, where
k ∈ [d] and i ∈ [k − 1]0. Then, we can solve the
following problems in polynomial time: (i) Given enc (σ)
and i, compute the encoding of the simplex σ′ ∈ Σk

that shares the facet conv {vj | j ∈ [k − 1]0, j 6= i} with
σ or state that there is none; (ii) Assuming that k < d
and given enc (σ), compute the encoding of the simplex
σ̂ ∈ Σk+1 that has σ as facet; and (iii) Assuming that
k > 1 and given enc (σ), compute the encoding of the
simplex σ̌ ∈ Σk−1 that is a facet of σ or state that there
is none.

4.3 The PPAD graph Using our tools from the
previous sections, we now describe the PPAD graph
G = (V,E) for the ColorfulCarathéodory instance.
The definition of G follows mainly the ideas from
the formulation of Sperner as a PPAD-problem [16,
Theorem 2] and the proof of Theorem 3.1.

The graph has one node per simplex in Σ that has
all labels or all but the largest possible label. That

is, we have one node for each (k − 1)-simplex σ in
Σk with [k − 1] ⊆ λ(σ). Two simplices are connected
by an edge if one simplex is the facet of the other or
if both simplices share a facet that has all but the
largest possible label. More formally, for k ∈ [d], we
set Vk = {enc (σ) |σ ∈ Σk, [k − 1] ⊆ λ(σ)}, the set of all
encodings for (k−1)-simplices in Σk whose vertices have
all or all but the largest possible label. Then, V is the
union of all Vk for k ∈ [d]. There are two types of edges:
edges within a set Vk, k ∈ [d], and edges connecting nodes
from Vk to nodes in Vk−1 and Vk+1. Let enc (σ), enc (σ′)
be two vertices in Vk for some k ∈ [d]. Then, there
is an edge between enc (σ) and enc (σ′) if the encoded
simplices σ, σ′ ∈ Σk share a facet σ̌ with λ(σ̌) = [k − 1],
i.e., both simplices are connected by a facet that has
all but the largest possible label. Now, let enc (σ) ∈ Vk

and enc (σ′) ∈ Vk+1 for some k ∈ [d− 1]. Then, there is
an edge between enc (σ) and enc (σ′) if λ(σ) = [k] and
σ is a facet of σ′. In the next lemma, we show that G
consists only of paths and cycles. Please consult the full
version for the proof [14].

Lemma 4.8. Let enc (σ) ∈ V be a node. If enc (σ) ∈ V1
or enc (σ) ∈ Vd with λ(σ) = [d], then deg enc (σ) = 1.
Otherwise, deg enc (σ) = 2.

This already shows that
ColorfulCarathéodory ∈ PPA. By generaliz-
ing the orientation from [16] to our setting, we obtain a
function dir that orients the edges of G such that only
vertices with degree one in G are sinks or sources in the
oriented graph. In the full version [14], we show how to
compute this function in polynomial time. This finally
yields our main result.

Theorem 4.1. ColorfulCarathéodory, Center-
point, Tverberg, and SimplicialCenter are in
PPAD ∩ PLS.

Proof. We give a formulation of Colorful-
Carathéodory as PPAD-problem. See the full
version for a formulation of ColorfulCarathéodory
as PLS-problem [14]. Using the classic proofs discussed
in the full version, this then also implies the statement
for the other problems.

The set of problem instances I consists of all tuples
I = (C1, . . . , Cd, b), where d ∈ N, the set Ci ⊂ Qd ray-
embraces b ∈ Qd and b 6= 0. Let I≈ = (C≈1 , . . . , C≈d , b

≈)
denote then the ColorfulCarathéodory instance
that we obtain by applying our perturbation techniques
to I (see the full version). Then, I≈ has the general
position properties (P1) and (P2). The set of candi-
date solutions S consists of all tuples (Q0, . . . , Qk−1),
where k ∈ N and Qi is a tuple

(
S(i), I

(i)
0 , I

(i)
1

)
with



S(i), I
(i)
0 , I

(i)
1 ⊂ N. Furthermore, S contains all d-subsets

C ⊂ Qd for d ∈ N. We define the set of valid candidate
solutions SI for the instance I to be the set of all valid
k-tuples with respect to the instance I≈ and the set of
all colorful choices with respect to I that ray-embrace b,
where k ∈ [d]. Let s ∈ S be a candidate solution. If it is
a tuple, we first use the algorithm from Lemma 4.6 to
check in polynomial time in the length of I≈ and hence
in the length of I whether s ∈ SI . If affirmative, we
check whether the simplex has all or all but the largest
possible label. Using the encoding, this can be carried
out in polynomial time. If s is a set of points, we can
determine in polynomial time with linear programming
whether the points in s ray-embrace b.

We set as standard source the 0-simplex {e1}. We
can assume without loss of generality that {e1} is a
source (otherwise we invert the orientation).

Given a valid candidate solution s ∈ SI , we compute
its predecessor and successor with the algorithms from
Lemma 4.7 and the orientation function discussed above,
with one modification: if a node s ∈ V is a source
different from the standard source in the graph G, it
encodes by the above discussion a colorful choice C≈ that
ray-embraces b≈. Let C be the corresponding colorful
choice for I that ray-embraces b. Then, we set the
predecessor of s to C. The properties of our perturbation
ensure that we can compute C in polynomial time.
Similarly, if s is a sink in G, we set its successor to
the corresponding solution for the instance I.

5 A Polynomial-Time Case
We show that for a special case of Colorful-
Carathéodory, our formulation of Colorful-
Carathéodory as a PPAD problem has algorithmic
implications. Let C1, C2 ∈ Rd be two color classes and
let C ⊆ C1 ∪ C2 be a set. We call C an (k, d − k)-
colorful choice for C1 and C2 if there are two subsets
C ′1 ⊆ C1, C ′2 ⊆ C2 with |C ′1| ≤ k and |C ′2| ≤ d−k. Now,
given two color classes C1, C2 that each ray-embrace a
point b ∈ Rd and a number k ∈ [d]0, we want to find
an (k, d− k)-colorful choice that ray-embraces b. It is a
straightforward consequence of the colorful Carathéodory
theorem that such a colorful choice always exists.

Using our techniques from Section 4, we present
a weakly polynomial-time algorithm for this case. As
described in Section 4.1, we construct implicitly a 1-
dimensional polytopal complex, where at least one edge
corresponds to a solution. Then, we apply binary search
to find this edge. Since the length of the edges can
be exponentially small in the length of the input, this
results in a weakly polynomial-time algorithm.

Theorem 5.1. Let b ∈ Qd be a point and let C1, C2 ⊂

Qd be two sets of size d that ray-embrace b. Furthermore,
let k ∈ [d−1] be a parameter. Then, there is an algorithm
that computes a (k, d − k)-colorful choice C that ray-
embraces b in weakly-polynomial time.

For Sperner’s lemma, it is well-known that a fully-
labeled simplex can be found if there are only two
labels by binary search. Essentially, this is also what
the presented algorithm does: reducing the problem
to Sperner’s lemma and then applying binary search
to find the right simplex. Since the computational
problem Sperner is PPAD-complete even for d = 2,
a polynomial-time generalization of this approach to
three colors must use specific properties of the colorful
Carathéodory instance under the assumption that no
PPAD-complete problem can be solved in polynomial
time.

6 Conclusion
We have shown that ColorfulCarathéodory lies in
the intersection of PPAD and PLS. This also immediately
implies that several illustrious problems associated with
ColorfulCarathéodory, such as finding centerpoints
or Tverberg partitions, belong to PPAD ∩ PLS.

Previously, the intersection PPAD ∩ PLS has been
studied in the context of continuous local search:
Daskalakis and Papadimitriou [6] define a subclass
CLS ⊆ PPAD ∩ PLS that “captures a particularly be-
nign kind of local optimization”. Daskalakis and Pa-
padimitriou describe several interesting problems that
lie in CLS but are not known to be solvable in polyno-
mial time. Unfortunately, our results do not show that
ColorfulCarathéodory lies in CLS, since we reduce
ColorfulCarathéodory in d dimensions to Sperner
in d− 1 dimensions, and since Sperner is not known to
be in CLS. Indeed, if Sperner’s lemma could be shown to
be in CLS, this would imply that PPAD = CLS ⊆ PLS,
solving a major open problem. Thus, showing that
ColorfulCarathéodory lies in CLS would require
fundamentally new ideas, maybe exploiting the special
structure of the resulting Sperner instance. On the other
hand, it appears that Sperner is a more difficult prob-
lem than ColorfulCarathéodory, since Sperner is
PPAD-complete for every fixed dimension larger than
1, whereas ColorfulCarathéodory becomes hard
only in unbounded dimension. On the positive side, our
perturbation results show that a polynomial-time algo-
rithm for ColorfulCarathéodory, even under strong
general position assumptions, would lead to polynomial-
time algorithms for several well-studied problems in
high-dimensional computational geometry.

Finally, it would also be interesting to find further
special cases of ColorfulCarathéodory that are



amenable to polynomial-time solutions. For example,
can we extend our algorithm for two color classes to
three color classes? We expect this to be difficult, due
to an analogy between 1D-Sperner, which is in P, and
2D-Sperner, which is PPAD-complete. However, there
seems to be no formal justification for this intuition.
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Symbol Definition

Ci The ith color class. The d-set Ci ⊂ Rd ray-embraces b.
A The (d× d2)-matrix with C1 as first d columns, C2 as second d columns, and so on.
cµ The cost vector parameterized by a parameter vector µ ∈ Rd. See (4.4).

LCC; LCC
µ LCC refers to the linear system Ax = b, x ≥ 0 (see (3.2) and (3.3)). LCC

µ denotes the linear
program max cT

µx s.t. LCC.
PCC The polytope defined by LCC.

f ; supp (f); ind (B) For a face f ⊆ PCC, we denote with supp (f) the indices of the columns in A that define it. For a
set of columns B of A, we denote with ind (B) the indices of these columns.

Φ(f); LΦ
B,f For a face f of PCC, Φ(f) denotes the set of parameter vectors µ ∈ Rd such that f is optimal for

LCC
µ . The set Φ(f) can be described as the solution space to the linear system LΦ

B,f , where B is a
feasible basis of a vertex of f .

M The set M contains all faces from the unit cube in Rd that set at least one coordinate to 1.
Parameters fromM control the colors of the defining columns of optimal faces (see Lemma 4.1).

F The set of faces f of PCC of that are optimal for some parameter vector inM, i.e., the set of
faces f with Φ(f) ∩M 6= ∅. F is a (d− 1)-dimensional polyhedral complex.

Q The (d − 1)-dimensional polytopal complex that consists of all elements q = Φ(f) ∩ g, where
f ∈ F and g is a face ofM.

∆; ∆[k] ∆ denotes the (d− 1)-dimensional standard simplex and ∆[k] denotes the face conv{ei | i ∈ [k]}
of ∆.

S The set S contains the central projections of the faces ofM onto ∆ with the origin as center.
Φ∆; Q∆ Φ∆(f) denotes the central projection of Φ(f)∩M onto ∆ with center 0. The (d− 1)-dimensional

polytopal complex Q∆ consists of the projections of the elements in Q onto ∆. Each element q of
Q∆ can be uniquely written as q = Φ∆(f) ∩ g, where f ∈ F and g ∈ S.

λ The labeling function, see (4.6).
Σ; Σk; enc (σ) The set Σk, k ∈ [d], consists of all (k− 1)-simplices in sdQ∆ that are contained in the face ∆[k] of

∆. The set Σ is the union of all Σk. For a simplex σ ∈ Σ, we denote with enc (σ) its combinatorial
encoding (see (4.7)).

Table 1: Notation reference.


