
Journal of Computational Geometry - submitted, version February 19, 2019 jocg.org

CONSTANT-WORK-SPACE ALGORITHMS FOR GEOMETRIC PROBLEMS∗

Tetsuo Asano,†Wolfgang Mulzer,‡Günter Rote,§ and Yajun Wang¶

Abstract. Constant-work-space algorithms may use only constantly many cells of storage in addition
to their input, which is provided as a read-only array. We show how to construct several geometric
structures efficiently in the constant-work-space model. Traditional algorithms process the input into a
suitable data structure (like a doubly-connected edge list) that allows efficient traversal of the structure
at hand. In the constant-work-space setting, however, we cannot afford to do this. Instead, we provide
operations that compute the desired features on the fly by accessing the input with no extra space. The
whole geometric structure can be obtained by using these operations to enumerate all the features. Of
course, we must pay for the space savings by slower running times. While the standard data structure
allows us to implement traversal operations in constant time, our schemes typically take linear time to
read the input data in each step.

We begin with two simple problems: triangulating a planar point set and finding the trapezoidal
decomposition of a simple polygon. In both cases adjacent features can be enumerated in linear time
per step, resulting in total quadratic running time to output the whole structure. Actually, we show
that the former result carries over to the Delaunay triangulation, and hence the Voronoi diagram. This
also means that we can compute the largest empty circle of a planar point set in quadratic time and
constant work-space. As another application, we demonstrate how to enumerate the features of an
Euclidean minimum spanning tree (EMST) in quadratic time per step, so that the whole EMST can
be found in cubic time using constant work-space.

Finally, we describe how to compute a shortest geodesic path between two points in a simple
polygon. Although the shortest path problem in general graphs is NL-complete [27], this constrained
problem can be solved in quadratic time using only constant work-space.

1 Introduction

Problem Setting and Motivation. The recent past has seen an explosive growth in storage capacity.
With hard-drives surpassing the terabyte mark, programmers can exploit a virtually unlimited amount
of work-storage for their programs. Alas, not infrequently this leads to space-inefficient programs that
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use too much storage and become too slow if sufficiently large memory is not available. Thus, we
believe that space-efficient algorithms deserve more attention.

Not only do such algorithms provide a counter-balance to the wastefulness of some contempo-
rary software, but they become indispensable for built-in or embedded software in highly functional
hardware, such as digital cameras and scanners. Sensor networks provide an excellent example: with
flash memory becoming cheaper, even a large number of inexpensive sensors can be equipped with
huge-volume flash drives. While the data measured by the sensor must be stored onboard for pro-
cessing and needs to be written, it is preferable to write to the flash drive as little as possible, since
this is a slow and expensive operation and reduces the flash drive’s lifetime. Hence, we would like to
process the data while performing only read operations on the flash drive and using only higher level
memory for writing (e.g., CPU registers). We measure an algorithm’s space efficiency by the number
of work storage cells it uses. Ultimate space efficiency is achieved by a constant-work-space algorithm,
i.e., an algorithm that uses only a constant number of variables in addition to the input storage. Such
algorithms are also said to run in “log-space”, since the amount of work-space is O(log n) bits for input
size n [1].

Our Results. In this paper we present constant-work-space algorithms for several fundamental geo-
metric problems, including constructing a triangulation for a planar point set; finding the trapezoidal
decomposition of a polygonal region; computing the Delaunay triangulation, Voronoi diagram and
Euclidean MST of a planar point set; and finding a geodesic shortest path in a simple polygon.

Traditional algorithms for finding these structures proceed by constructing a suitable data
structure (typically a doubly-connected edge list, DCEL, or a similar structure [6, 24]) that allows to
traverse and manipulate the features of the structure in question. These operations usually consist of
finding the clockwise next edge for a given edge incident to one of its endpoints; finding the triangles
or trapezoids incident to a given edge; finding the twin edge for a given edge; etc. With the DCEL
at hand, these operations can be carried out in constant time. In our setting, however, we do not
have the space for such a structure at our disposal. Instead, we establish a scheme for executing these
operations without referring to any data structures. Usually, each operation needs a single scan over
the input data, resulting in linear time per operation, and quadratic time overall.

We begin with algorithms for computing a triangulation of a planar point set and for finding
the decomposition of a simple polygon into trapezoids. Both are classic problems in computational
geometry, and they can be solved traditionally in time O(n log n) [6, 24] and O(n) [11], respectively.
We give algorithms that enumerate all features of the triangulation and the trapezoidation in quadratic
time. It is easy but a bit tedious to adapt our algorithms for such a scheme as described above, and
we omit these details.

Instead, we showcase the details of such an algorithm for the Delaunay triangulation of a planar
n-point set. Several traditional O(n log n)-time algorithms for constructing Delaunay triangulations are
known [6]. As described above, we provide efficient algorithms for supporting the operations of a DCEL
on the fly. Each operation takes a single scan over the point set and hence needs linear time. Thus,
we can enumerate all the features of the Delaunay triangulation in quadratic time and with constant
work-space. Using these operations, we can also solve related problems in constant work-space, such
as finding the largest empty disc of n points in O(n2) time and enumerating the edges of the planar
Euclidean Minimum Spanning tree of n points in O(n3) time. It is now also easy to support similar
operations for the Voronoi diagram of a planar point set. For example, we can follow the boundary of

http://jocg.org/


Journal of Computational Geometry - submitted, version February 19, 2019 jocg.org

a given Voronoi region and find the clockwise next edge incident to a given Voronoi vertex in linear
time. Hence, we can draw the Voronoi diagram for a planar point set in quadratic time.

Finally, we address the problem of finding a shortest geodesic path between two points in a
simple polygon. We present an efficient algorithm using geometric properties which runs in O(n2) time
for a simple polygon with n vertices. This algorithm is much simpler than our previous solution [4].

Our algorithms need more time than those in the standard computational model, but when
considering the product of the time and space requirements, we actually often improve over the previous
results: while existing algorithms for Delaunay triangulations and Voronoi diagrams need O(n log n)
time and linear space, resulting in a time-space product of O(n2 log n), we obtain a time-space product
of O(n2)×O(1) = O(n2).

Related Results. Constant-work-space algorithms have been studied in complexity theory under a
different name, “log-space” algorithms [1]. Notwithstanding, the authors prefer the current name,
since it is more intuitive. There have been several previous results on log-space algorithms. One of
the most important of these results is the selection algorithm by Munro and Raman [23] which runs
in O(n1+ε) time using work-space O(1/ε), for any small constant ε > 0. In 2005, Reingold solved a
long-standing open problem in complexity theory by describing a deterministic log-space algorithm for
finding a path between two given vertices in an undirected graph [25]. Asano [2,3] gives applications to
image processing. Furthermore, there is a large number of algorithms for traversing and enumerating
the vertices and facets of a given geometric structure (usually provided as a DCEL or a similar structure)
without using any mark bits or recursion stacks [5, 7–9,13,15–17,26].

A similar but more restricted computational model is used by Lenz [20] (see also [21, Part II]).
Chan and Chen [10] present algorithms that have read-only random access to the input and are allowed
only sublinear (but super-constant) space. They give a randomized linear-time algorithm for finding
the convex hull of n sorted points in the plane with O(nδ) space, for any δ > 0. They also show how
to perform linear programming in constant dimension, using O(n) expected time and O(log n) cells of
work space.

Throughout the paper, we assume that the input is in general position: no two points have the
same x- or y-coordinates; no three points are collinear; no four points are cocircular; and all pairwise
distances are distinct. For each of our algorithms, there should be a straightforward yet tedious way
to remove this assumption. However, we leave it as an open problem to adapt generic methods for
removing general position assumptions in the constant-work-space model.

Organization. This paper is organized as follows. After briefly describing our computational model
in Section 2, we present a constant-work-space plane sweep algorithm for finding a triangulation of a
planar point set and for computing the trapezoidation of a planar polygon in Section 3. In Section 4,
we describe a collection of operations to compute the features by directly scanning the input. We
present two example applications of such operations, one for the Delaunay triangulation and one for
the Voronoi diagram of a planar point set. The operations are applied to computing the Euclidean
Minimum Spanning tree. In Section 5, we give a constant-work-space algorithm for finding a shortest
geodesic path between two points in a simple polygon. We conclude with some open problems.
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2 Computational Model

In this section we describe our computational model. The input is stored in a read-only array, where
each cell contains a data word of O(log n) bits. Although the algorithm may not permute the array
elements or modify the content of an input cell, constant-time random access to the data is possible.
Furthermore, we assume that any basic arithmetic operation takes constant time. Additionally, a
constant-work-space algorithm can use at most some constant number of variables, each with O(log n)
bits. Implicit storage consumption required by recursive calls is also considered a part of the work-space.

As a simple example of a constant-work-space algorithm, consider the problem of computing
the convex hull of a planar point set. Here, an efficient such algorithm is already known. It is the
popular gift-wrapping method, also known as Jarvis’ march [12, 18]. If h is the number of points on
the convex hull, then Jarvis’ march needs O(nh) time and constant work-space to output all the edges
of the convex hull.

3 Constant-Work-Space Plane Sweep

Plane sweep is one of the most widespread algorithmic techniques in computational geometry. The
idea is to reduce a two-dimensional problem to a sequence of one-dimensional problems by imagining a
line that moves across the plane and by maintaining the intersection of that line with the structure of
interest. A number of geometric problems have been solved using this paradigm [6,12,24]. Most of these
solutions run in O(n log n) steps and use a balanced search tree for maintaining the one-dimensional
structure as it evolves over time.

3.1 Triangulation of a Point Set

As a warm-up, we describe a constant-work-space algorithm that uses the plane sweep paradigm in
order to compute a triangulation of a planar n-point set S. A straightforward cubic time algorithm
adds edges incrementally: we start with a graph having n isolated vertices (points). For every pair
of points, if the line segment between the two points does not properly intersect any existing edge
(line segment), we add this edge to the graph. In the constant-work-space setting, however, we cannot
remember the existing edges, so this simple approach will not work. Fortunately, plane sweep enables
us to design a quadratic-time algorithm with only constant work-space.

The main idea is to sweep over the point set in non-decreasing order of x-coordinate, applying
the gift-wrapping algorithm for convex hulls in order to add the triangles for the next point. Refer to
Algorithm 1. The input consists of a list 〈p1, . . . , pn〉 of points in the plane, given in no particular order.
Our algorithm scans S in non-decreasing order of x-coordinate. For each point qi in the sorted order,
we compute a partial convex hull for the points q1, . . . , qi−1 to the left of qi, using the gift-wrapping
method. We start the gift-wrapping from the point qi−1 just preceding qi in x-order, and we extend the
convex hull in both directions, upward and downward. Whenever we discover a new convex hull edge
e, we determine whether the edge is visible from qi or not, using the preceding convex hull edge (see
Figure 1). If e is visible from qi, we report the triangle spanned by qi and e and proceed to the next
hull edge. Otherwise, we stop the gift-wrapping in this direction. Once the gift-wrapping is completed

http://jocg.org/


Journal of Computational Geometry - submitted, version February 19, 2019 jocg.org

Algorithm 1: A constant-work-space algorithm for triangulating a planar point set.

Input: A set S = {p1, . . . , pn} of n points.
Output: All the triangles in a triangulation of S.
Find the three leftmost points q1, q2, q3 in S.
Report the triangle 4(q1, q2, q3).
for i := 4 to n do

qi := the leftmost point in S to the right of qi−1.
u := qi−1.
repeat

e := the clockwise next hull edge (u, v) incident to u.
if e is visible from qi then

Report the triangle 4(qi, u, v) and set u := v.

until edge e is not visible from qi
u := qi−1.
repeat

e := the counterclockwise next hull edge (u, v) incident to u.
if e is visible from qi then

Report the triangle 4(qi, u, v) and set u := v.

until edge e is not visible from qi

in both directions, we proceed to the next point in x-order, qi+1.

(a) (b)

qi

qi

qi−1

invisible edges

visible edges

Figure 1: Triangulation of a point set via plane sweep: (a) the input and the i-th point qi in the sorted
order; (b) we compute the convex hull of the points to the left of qi and report the triangles defined by
qi and the hull edges visible from qi.

Theorem 3.1. There exists an algorithm that outputs all triangles of a triangulation of S in time
O(n2) and using O(1) cells of work-space.

Proof. To prove correctness, we proceed by induction on the number of points n. If n = 3, there is
only one triangle to report. For n ≥ 4, let qn be the rightmost point in S. By induction, Algorithm 1
correctly outputs a triangulation for S \ {qn}. This triangulation lies inside the convex hull of S \ {qn}.
By the time qn is considered, in the last iteration of the for-loop, the algorithm outputs all possible
triangles that connect qn to the convex hull of S \ {qn}, so none of these triangles can conflict with any
of the previous triangles, resulting in a correct triangulation of S.

Let us now analyze the running time. Clearly, finding the initial triangle4(q1, q2, q3) takes O(n)
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steps. Next, we claim that if an iteration of the for-loop outputs k triangles, then it takes O(kn) steps.
First, finding qi given qi−1 takes linear time, by scanning the whole input. Then each gift wrapping
step takes O(n) time, and for each such step, except the final ones, we output a triangle. Thus, since
there are O(n) triangles in total, the resulting running time is O(n2). Furthermore, inspecting the
pseudocode, we see that the algorithm uses only constant work-space.

In Section 4.1, we strengthen Theorem 3.1 by showing that the features of a Delaunay triangu-
lation can be enumerated in quadratic time and with constant work-space.

3.2 Trapezoidation of a Polygon

Now let P be a simple polygon with n vertices. The input is provided as a list of vertices, given
according to the counterclockwise order in which they appear along the boundary of P , ∂P . The
trapezoidal decomposition of P is obtained by drawing two vertical rays from each vertex of P inside
P , until they reach ∂P [6, Chapter 6]. This results in a collection of disjoint trapezoids that cover the
interior of P . We now show how plane sweep can be used to compute these trapezoids in quadratic
time with constant work-space. Refer to Algorithm 2. We scan the n vertices from left to right. At
each vertex qi, we check if there is a trapezoid to the right of qi incident to qi. This happens precisely
if at least one of the two edges incident to qi has an endpoint to the right of qi. If the test is positive,
we first compute two polygon edges: eA just above qi and eB just below qi. This is done by traversing
all of P . Here, an edge e is above qi if it intersects the upward vertical ray from qi, or, in case that e
is incident to qi, if e has an endpoint to the right of qi and the interior of the polygon lies below e. An
edge e being below qi is defined analogously. Next, we inspect all vertices of P to find the right side
of the trapezoid: we start with the leftmost vertex among the two right endpoints of the edges eA and
eB, and we update the right vertex if we find a polygon vertex inside the current trapezoid. Figure 2
illustrates how the algorithm proceeds.

eA

eB

qi

Figure 2: Computing the trapezoid to the right of the vertex qi: we first find the two bounding edges
eA and eB, and then we compute the right side by traversing the polygon.

Theorem 3.2. There exists an algorithm that outputs all trapezoids of a trapezoidal decomposition of
S in time O(n2) and using O(1) cells of work-space.

Proof. Correctness is immediate from the definition of a trapezoidal decomposition. For the running
time, we note that each iteration of the main for-loop can easily be performed in linear time, since
it involves two scans over all vertices of P . Again, the work-space requirement is immediate from the
pseudo-code.
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Algorithm 2: A constant-work-space algorithm for the trapezoidal decomposition of a
simple polygon.

Input: A simple polygon P = p1p2 . . . pn with n vertices.
Output: All the trapezoids in a trapezoidation of P .
for i := 1 to n do

if i = 1 then
qi := the leftmost vertex of P .

else
qi := the leftmost vertex in P to the right of qi−1.

if there is a trapezoid to the right of qi incident to qi then
eA, eB :=⊥.
for j := 1 to n do

if pjpj+1 lies above qi and (eA =⊥ or pjpj+1 lies below eA) then
eA := pjpj+1.

if pjpj+1 lies below qi and (eB =⊥ or pjpj+1 lies above eB) then
eB := pjpj+1.

r := leftmost of the right endpoints of eA and eB.
for j := 1 to n do

if pj lies in the trapezoid defined by qi, eA, eB, and r then r := pj .

Report the trapezoid defined by qi, eA, eB, and r.

4 Constant Work-space Operations for Delaunay triangulations and Voronoi diagrams

In this section, we present constant-work-space operations for the Delaunay triangulation and the
Voronoi diagrams of a planar point set. We support the usual operations of the DCEL data structure
(see, for example, [6]), with constant work-space. In particular, the operations are implemented by a
single scan over the input data. As an application, we present a constant-work-space algorithm for
enumerating the edges of the Euclidean minimum spanning tree of a planar point set.

4.1 Operations for Delaunay Triangulations

One of the most popular structures in computational geometry is the Delaunay triangulation [6, 24].
For a planar n-point set S, the Delaunay triangulation of S, DT(S), is a triangulation of S with the
empty circle property : for any triangle t in DT(S), the circumcircle of t contains no points of S in its
interior. It is well known that DT(S) always exists and that it is uniquely defined if no four points
in S lie on a common circle. If Θ(n) work-space is available, there are several algorithms to compute
DT(S) in O(n log n) time [6, 24].

Let us now list some well-known facts about DT(S) that will be used [6, Chapter 9]. For two
points pi, pj in S, we call the line segment pipj a Delaunay edge if DT(S) contains pipj as an edge.

Observation 4.1. Two points pi, pj ∈ S define a Delaunay edge if and only if there is a point pk ∈
S \ {pi, pj} such that the circle through pi, pj, pk does not contain any other point of S in its interior.
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Observation 4.2. Let pi ∈ S, and let pj ∈ S \ {pi} be the point closest to pi. Then pipj is a Delaunay
edge.

Observation 4.3. Every edge of the convex hull of S is a Delaunay edge.

We support the following operations on the Delaunay triangulation:

• FirstDelaunayEdgeIncidentTo(p): returns the first Delaunay edge incident to a point p ∈ S;

• ClockwiseNextDelaunayEdge(pq): returns the clockwise next Delaunay edge incident to p follow-
ing the Delaunay edge pq;

• CounterclockwiseNextDelaunayEdge(pq): returns the counterclockwise next Delaunay edge inci-
dent to p following the Delaunay edge pq;

• AssociatedDelaunayTriangle(pq) : returns the Delaunay triangle associated with a Delaunay edge
pq (i.e., the Delaunay triangle incident to pq in clockwise direction around p); and

• NextDelaunayEdgeOnBoundary(pq): returns the next Delaunay edge on the same facet (Delaunay
triangle in this case) of pq.

FirstDelaunayEdgeIncidentTo(p) is implemented by finding the point q ∈ S that is closest to
p. The edge pq is guaranteed to be a Delaunay edge by Observation 4.2.

ClockwiseNextDelaunayEdge(pq) is implemented as follows. We distinguish two cases depending
on whether there exists a point r ∈ S to the right of the directed line `pq from p to q. If this is the
case, then for each such point r, the triple (p, q, r) constitutes a clockwise turn. We iterate over all
these points r, in arbitrary order. In each step, we keep a tentative triangle 4(p, q, r), initialized with
the first point r to the right of `pq. If the next point r′ to the right of `pq lies inside the circumcircle
of 4(p, q, r), we replace r by r′ and continue with the new tentative triangle 4(p, q, r′). If not, we
keep r and 4(p, q, r). The properties of the Delaunay triangulation ensure that the final tentative
triangle 4(p, q, r) is a Delaunay triangle (when r′ is the endpoint of the clockwise next Delaunay edge,
the circumcircle-test must be positive, because 4(p, q, r′) is a Delaunay triangle for the set {p, q, r, r′};
once the tentative triangle is a Delauany triangle, all further circumcircle-tests will be negative). Thus,
we can find the next edge pr by a single scan over S.1

On the other hand, if S contains no point to the right of pq (an edge of the convex hull of S in
this case), we have to find the next convex hull edge incident to p. This is also rather easy. We only
need to find the point r of S that maximizes the angle ∠qpr. Then, the next edge is pr. See Figure 3.

Given an edge pq, we execute the two algorithms above simultaneously while checking whether
there is a point to the right of the line pq. When the scan is over, we know whether the edge is on the
convex hull or not and hence which output we need to take. Thus, a single scan suffices.

CounterclockwiseNextDelaunayEdge(pq) is just symmetric.

1The algorithm in the published version of this article is slightly different and works with the signed area of 4(p, q, r).
Unfortunately, this does not always give the correct result. We thank Mika Delor for pointing this out to us.
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The fourth operation, AssociatedDelaunayTriangle(pq) is easy since it suffices to execute Clock-
wiseNextDelaunayEdge(pq). Then, we return the triangle 4(p, q, r).

Finally, NextDelaunayEdgeOnBoundary(pq) is also implemented using ClockwiseNextDelau-
nayEdge(pq). Once we have the Delaunay triangle 4(p, q, r), we return the edge qr.

Lemma 4.4. There are constant-work-space algorithms implementing the five operations above in O(n)
steps. The algorithms each perform only a single scan over the points in S.

p

p

q

q
r

r

(a) (b)

Figure 3: The two cases for clockwise next Delaunay edges. (a) pq is a hull edge; (b) pq is an internal
edge.

Now the algorithm for computing the Delaunay triangulation DT(S) of a point set S is as
follows:

Algorithm 3: A constant-work-space algorithm for computing the Delaunay triangulation
of a planar point set.

Input: A set S of n points, {p1, . . . , pn}.
Output: All triangles in the Delaunay triangulation of S.
for each point pi ∈ S do

pipj = FirstDelaunayEdgeIncidentTo(pi).
// Find the point pj ∈ S that is nearest to pi.
j0 := j.
repeat

pipk := ClockwiseNextDelaunayEdge(pipj).
if i < j and i < k then Report the triangle 4(pi, pj , pk).

j := k.

until j = j0.

By reporting triangles only if i < j, k, we avoid duplicate outputs. Figure 4 illustrates the basic
operation in our algorithm. We have thus proved the following theorem:

Theorem 4.5. Let S be a planar n-point set. There is an algorithm that reports every triangle in
DT(S) exactly once in O(n2) time using constant work-space.
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pi

pj

pi
pj

Figure 4: Going around an internal point pi starting from its closest point pj (left) and around an
extreme point (right). Delaunay and Voronoi edges are drawn as dotted and solid lines, respectively.

4.2 Operations for Voronoi Diagrams

Given a planar point set S, the Voronoi diagram of S is a partition of the plane into Voronoi regions,
such that each Voronoi region contains all the points in the plane that have the same nearest neighbor in
S. The Voronoi regions are convex polygonal regions, bounded by Voronoi edges and Voronoi vertices.
Since Delaunay triangulations and Voronoi diagrams are dual to each other [6, 24], it is rather easy to
adapt the algorithms from Section 4.1 for Voronoi diagrams.

Lemma 4.6. There are constant-work-space algorithms implementing the following four operations in
linear time:

• FirstVoronoiVertexAssociatedWith(p): returns the first Voronoi vertex on the boundary of the
Voronoi region associated with the point p ∈ S;

• ClockwiseNextVoronoiEdge(e = (u, v), u = (p, q, r), v = (p, q, s)): returns the next Voronoi edge
incident to u, following e in the clockwise direction;

• CounterClockwiseNextVoronoiEdge(e = (u, v), u = (p, q, r), v = (p, q, s)): symmetric to the above;

• NextVoronoiEdgeOnBoudary(e = (u, v), u = (p, q, r), v = (p, q, s)): returns the Voronoi edge
following e along the boundary of its Voronoi region.

If we represent a Voronoi vertex by the triple that defines the corresponding empty circle and a
Voronoi edge by a pair of triples for its two endpoints, it is easy to see that the operations in Lemma 4.6
can be implemented immediately by using operations on the Delaunay triangulation. As can be seen
from Section 4.1, every operation needs just a single scan over the input S.

4.3 Euclidean Minimum Spanning Trees

As an application of Algorithm 3, consider the problem of constructing the Euclidean minimum span-
ning tree (EMST) of a planar point set S. It is well-known that the EMST is a subgraph of the
Delaunay triangulation [6]. Furthermore, a Delaunay edge uv is not contained in the EMST if and
only if DT(S) contains a path between u and v consisting of Delaunay edges of length less than d(u, v).
This follows from the so-called bottleneck shortest path property of minimum spanning trees, which says
that the minimum spanning tree of a graph G connects any two vertices u, v in G with a path that
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minimizes the maximum edge length for any path between u and v (since otherwise we could obtain a
cheaper spanning tree by exchanging an edge) [14].

Thus, consider the following situation: we are given an edge pq of DT(S) and we want to
determine whether pq appears in the Euclidean MST. By the above observation, for this it suffices
to determine whether p and q are connected in the subgraph G′ of DT(S) that contains all Delaunay
edges of length less than d(p, q). To solve this problem, we could use Reingold’s constant-work-space
algorithm for st-connectivity in undirected graphs [25]. However, this algorithm is quite involved and
has a comparatively large running time, so we present an alternative quadratic-time solution that
exploits the planar structure of the Delaunay triangulation. Our algorithm is based on the following
observation: let G′ be the subgraph defined above, and let f be the face of G′ containing pq. If p and q
are connected in G′, then there exists a path from p to q along the boundary of f . Thus, we can check
the existence of such a path by using the function ClockwiseNextDelaunayEdge(uv) from Section 4.1
to follow f ’s boundary.

This is implemented in the function CheckMSTEdge. The function walks along the boundary of
f , using two edges (uA, vA) and (uB, vB). Initially, both edges are set to (p, q). In a loop, we advance the
edges along the boundary, using the function Advance. This function calls ClockwiseNextDelaunayEdge
to find the next edge that is shorter than pq, and then follows this edge. The walk along the boundary
of f continues until we reach the vertex q, in which case pq cannot be an MST edge, or until we
detect a cycle, meaning that p and q are not connected in G′. The cycle is detected by using the
standard technique called “baby-step, giant-step”: the edge (uB, vB) is advanced twice as fast as the
edge (uA, vA). If there is a cycle, (uB, vB) must overtake (uA, vA) after some time. If not, uB reaches
q first.

Function CheckMSTEdge(p, q) for checking whether the Delaunay edge (p, q) appears in
the EMST.

Function CheckMSTEdge(p, q)
(uA, vA), (uB, vB) := (p, q).
repeat

(uB, vB) := Advance(uB, vB).
if uB = q then return FALSE.

if (uA, vA) = (uB, vB) then return TRUE.
(uB, vB) := Advance(uB, vB).
if uB = q then return FALSE.

if (uA, vA) = (uB, vB) then return TRUE.
(uA, vA) := Advance(uA, vA).

until FALSE
Function Advance(u, v)
u,w := ClockwiseNextDelaunayEdge(uv).
if d(u,w) < d(p, q) then

// Proceed to w.
return (w, u).

else
// Skip edge (u,w) and look for next clockwise edge.
return (u,w).
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Lemma 4.7. The function CheckMSTEdge(p, q) determines whether the Delaunay edge pq is an edge
of the Euclidean minimum spanning tree for S in time O(n2) using constant work-space.

Proof. There are two cases to consider. If there is a path in the subgraph of the Delaunay triangulation
defined by those edges shorter than pq which interconnects p and q, the path forms a face together
with the edge pq. The first edge incident to p on the boundary is given by the clockwise next Delaunay
edge of pq. Then, following the boundary we must reach q, which is detected by the algorithm.

On the other hand, if there is no such path between p and q, then at some point such a path
does not extend, which causes a cycle of edges.

Furthermore, CheckMSTEdge(p, q) visits a subset of edges (u, v) of the Delaunay triangula-
tion, where each edge is visited constantly often. Each visit requires a call to ClockwiseNextDelau-
nayEdge(uv), which takes O(n) time, by Lemma 4.4. Thus, the total running time is O(n2). The space
requirement is immediate.

With the function CheckMSTEdge at hand, we can output all edges of the Euclidean MST for
S through a straightforward adaptation of Algorithm 3.

Algorithm 4: A constant-work-space algorithm for computing the Euclidean minimum
spanning tree of a planar point set.

Input: A set S of n points, {p1, . . . , pn}.
Output: All edges in the Euclidean MST of S.
for each point pi ∈ S do

Find a point pj ∈ S \ {pi} that is nearest to pi.
j0 := j.
repeat

if i < j and CheckMSTEdge(pi, pj) then Report pipj .

pk := ClockwiseNextDelaunayEdge(pipj).
j :=k.

until j = j0.

Theorem 4.8. Given a set S of n points in the plane, there exists an algorithm that outputs all edges
of the Euclidean minimum spanning tree for S in O(n3) time using only constant work-space.

Proof. Correctness follows from Observation 4.2 and Lemmas 4.4 and 4.7. For the running time, note
that it takes total time O(n2) to find the nearest neighbor for every point in S, and since there are O(n)
edges in DT(S), the total time for all invocations of ClockwiseNextDelaunayEdge and CheckMSTEdge
is O(n2 + n3) = O(n3), by Lemmas 4.4 and 4.7. The space requirement is immediate.

Figure 5 illustrates the steps of our algorithm The edge pq in the top of the figure is not included
in the EMST, since p and q are connected by a path of Delaunay edges shorter than pq. Figure 5(c)
shows how such a path is found by walking along the face boundary. On the other hand, the bottom
part of the figure shows the other case in which the walk results in a cycle.
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p
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p p p

p

q

q q q

Figure 5: Checking whether a Delaunay edge belongs to the minimum spanning tree. (a) a Delaunay
triangulation and a minimum spanning tree (bold lines) with two specified points p and q. (b) The
Delaunay edges shorter than the edge pq. (c) We traverse the subgraph until we find a path between
p and q. (d) A different point pair (p, q). (e) The Delaunay edges shorter than pq. (f) We traverse the
subgraph until we find a loop.

5 Computing a Shortest Path in a Simple Polygon

As a final problem, we consider the geodesic shortest path problem for simple polygons. The general
problem of finding a shortest path between two given vertices in a weighted graph is a classic of
algorithm design, and countless solutions exist, such as the well-known algorithms by Dijkstra and
Bellman-Ford [12]. In the constant-work-space model, however, no algorithm for the general shortest
path problem is known, and it is unlikely that such an algorithm does exist, since the problem turns
out to be NL-complete [27].2

However, in this section we will see that a special case of the shortest path problem can be
solved in quadratic time with constant work-space: the geodesic shortest path problem within a simple
polygon. Here, we are given a simple polygon P with n vertices and two points s and t in the interior
of P , and we are looking for the shortest path from s to t that lies within P . This problem can be
solved in linear time with Θ(n) work-space [19].

We now describe our algorithm. We assume that P is given as a counterclockwise sequence of
vertices in a read-only array and that the two points s and t lie inside P . Due to our general position
assumption, no three vertices lie on a line. The shortest path from s to t can be represented as a
sequence 〈s = v0, v1, . . . , vm = t〉, where v1, . . ., vm−1 are vertices of P , and the algorithm will output
these vertices in order.

Throughout the algorithm, we maintain a polygon vertex p as our current starting point, as

2NL is the class of all decision problems that can be solved by a non-deterministic constant-work-space algorithm.
A problem in NL is NL-complete if all problems in NL can be reduced to it by a deterministic constant-work-space
reduction. It is widely conjectured that NL 6= L, and that NL-complete problems cannot be solved by a deterministic
constant-work-space algorithm [1].
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well as two points q1 and q2 on the boundary of P , ∂P , such that the line segments pq1 and pq2 lie
inside P (possibly touching the boundary) and such that pq2 is counterclockwise from pq1. Note that
pq1 and pq2 could be edges. This defines a region P ′ ⊆ P that is cut off by pq1 and pq2, as shown in
Figure 6. The algorithm proceeds by advancing the triple (p, q1, q2) while maintaining the following

s

t

P

q1

q2
P ′

p

Figure 6: A current starting point p and two supporting line segments pq1 and pq2. Together, they
define a subpolygon P ′ which contains the target t.

invariant:

Invariant 5.1. (i) The geodesic shortest path from s to t passes through p.
(ii) t lies in the subpolygon P ′.

The triple (p, q1, q2) is advanced by a function MakeStep(p, q1, q2), such that in (almost) every
step the subpolygon P ′ becomes smaller.

MakeStep distinguishes three cases.

Case 1: q1 is a concave vertex of P ′, that is, p, q1, succ(q1) is a clockwise turn, where succ(q) is the
successive vertex of q on ∂P . Refer to Figure 7. In this case we extend the ray pq1 until it hits ∂P ′

s

t

P

q1

q2
P ′

p

q′

Figure 7: Case 1: the vertex q1 is concave.

at q′. The segment q1q
′ splits P ′ into two parts. We check which one contains t and update (p, q1, q2)

accordingly. If the path needs to turn at p, we also output p. Note that we can check in constant time
which subpolygon contains t, assuming we precomputed the index of the edge e just above the target t.
Indeed, using this edge index, we look up the coordinates of the endpoints of e in constant time. Then
we determine whether the vertical line segment from t to e intersects q1q

′. If yes, we immediately know
which subpolygon contains t. Otherwise, we can determine this polygon using vertex indices, because
t must be in the same subpolygon as e.
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Function MakeStep(p, q1, q2) for advancing the triple (p, q1, q2) while maintaining Invari-
ant 5.1.

Function MakeStep(p, q1, q2)
begin

if q1 is a concave vertex of P ′ then
Traverse P to find the point q′ where the ray pq1 first meets ∂P .
if t lies in the subpolygon from q′ to q1 then

Output p.
return (q1, succ(q1), q

′).
else

return (p, q′, q2).

else if q2 is a concave vertex of P ′ then
Traverse P to find the point q′ where the ray pq2 first meets ∂P .
if t lies in the subpolygon from q2 to q′ then

Output p.
return (q2, q

′,pred(q2)).
else

return (p, q1, q
′).

else
if the ray p succ(q1) lies in the wedge q1pq2 then

Traverse P to find the first intersection q′ of the ray p succ(q1) with ∂P .
if t lies in the subpolygon from q′ to q1 then

return (p, q1, q
′).

else
return (p, q′, q2).

else
Traverse P to find the first intersection q′ of the ray p pred(q2) with ∂P .
if t lies in the subpolygon from q2 to q′ then

return (p, q′, q2).
else

return (p, q1, q
′).

http://jocg.org/


Journal of Computational Geometry - submitted, version February 19, 2019 jocg.org

Case 2: q2 is a concave vertex of P ′, that is, p, q2, pred(q2) constitutes a counterclockwise turn, where
pred(q) is the predecessor of q on ∂P . This case is handled symmetrically to Case 1.

Case 3: The polygon P ′ makes a convex turn at both q1 and q2. In particular, q1 and/or q2 could lie
in the interior of edges of P . Refer to Figure 8. Let succ(q1) and pred(q2) be the neighboring vertices

s

t

P

q2 P ′

p

q1

q′1

q′2

Figure 8: Case 3: both q1 and q2 are convex. Then, one of (q1, succ(q1)) and (q2,pred(q2)) lies between
pq1 and pq2.

of q1 and q2 in P ′. At least one of the rays p succ(q1) and p pred(q2) lies within the wedge defined by
q1pq2; otherwise the edges q1 succ(q1) and q2 pred(q2) would intersect. Suppose this is p succ(q1). We
draw the ray from p toward the point succ(q1) until it hits ∂P at some point q′ (q′ could be succ(q1)).
As in the previous two cases, q1q

′ splits P ′ into two parts. We check which one contains t as before,
and then update (p, q1, q2) accordingly. If the ray p pred(q2) lies inside the wedge q1pq2, we proceed
symmetrically.

Lemma 5.2. MakeStep maintains Invariant 5.1 and takes O(n) time and constant work-space.

Proof. All the steps in MakeStep can be performed in time O(n) and constant work-space, as can
be seen by inspecting the pseudo-code. It is also clear from the case analysis that Invariant 5.1 is
maintained.

With the function MakeStep in place, it is now easy to implement the geodesic shortest path
algorithm (Algorithm 5). In order to initialize the tripe (p, q1, q2), Algorithm 5 needs to locate the point
s within P . For this, we invoke Algorithm 2 to find the trapezoid T0 that contains s, and initialize
(p, q1, q2) accordingly. The vertex p is set to s, and q1, q2 are set depending on the structure of T0 and
which of the at most four subpolygons defined by T0 contains t; see Figure 9. We also use Algorithm 2
to identify the segment et on ∂P right above t, which is later used to determine which subpolygon
contains t. Now we just need to invoke MakeStep repeatedly until we reach a polygon vertex that can
see t directly.

Theorem 5.3. Let P be a simple polygon with n vertices, and let s and t be two points within P .
Then a geodesic shortest path from s to t within P can be found in O(n2) time using only constant
work-space.

Proof. By Theorem 3.2, the initialization phase takes O(n2) time and constant work-space. Further-
more, the check at the end of the repeat-until loop can be performed in time O(n) and constant
work-space. Thus, by Lemma 5.2, Algorithm 5 needs constant work-space, and the total running time
is O(n2 + kn), where k is the number of calls to MakeStep. To see that k = O(n), we observe that
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s
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q1

q2
q1 q1

q2

q2
(a) (b) (c)

T0
T0

T0

Figure 9: Three different situations for the initial 3-tuple (p, q1, q2) with p = s: the trapezoid containing
s can have (a) four, (b) three, or (c) a single neighbor.

Algorithm 5: A constant-work-space algorithm for finding a geodesic shortest path within
a simple polygon.

Input: A simple polygon P = p1p2 . . . pn with n vertices; two points s and t inside P .
Output: A sequence s = v0v1 . . . vm−1vm = t of the vertices of a shortest path from s to t

in the interior of P .
Invoke Algorithm 2 to enumerate a trapezoidal decomposition of P .
for each trapezoid T returned by Algorithm 2 do

if s ∈ T then
if t ∈ T then

Output s, t.
return

else
T0 := T .

if t ∈ T then
et := upper segment of T .

Determine which subpolygon defined by T0 contains t and initialize q1, q2 accordingly.
p := s.
repeat

(p, q1, q2) := MakeStep(p, q2, q2).
until the line segment pt does not intersect ∂P .
Output t.
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every other call to MakeStep decreases the size of P ′ by one. This can be seen by an inspection of the
case analysis for MakeStep. Cases 1 and 2 decrease the size of P ′ directly. The same also holds for the
second subcase of Case 3. Only in the first subcase of Case 3 (when t lies inside the subpolygon from q′

to q1, or in the subpolygon from q2 to q′) might the size of P ′ not decrease. However, if this happens,
the second subcase of Case 3 must apply in the next iteration, and we will make progress.

The correctness of the algorithm is immediate from Lemma 5.2.

In order to perform some preliminary experiments with our shortest path algorithm, we created
a prototype implementation. The program consists of about 700 lines of C code, including comments.
We used LEDA [22] for drawing polygons and shortest paths to visualize the algorithm, see Figure 10
for an example. Furthermore, we did experiments on hand-crafted input polygons on a laptop with an
Intel Core2 Duo CPU with 1.20GHz and 2.93 GB of RAM. We used three input polygons of different
sizes, and we ran the algorithm to find shortest paths between several pairs of points inside the polygons.
The results are summarized in Table 1. As can be seen, the running time depends quite significantly on
the choice of endpoints for the shortest path. Furthermore, our implementation incurs some overhead
for the visualization through LEDA. However, it can be discerned that in the worst case the running
time grows superlinearly in the size of the input.

file name test1 test2 test3

polygon size 41 194 427

9 / 0.000 13 / 0.047 13 / 0.031

12 / 0.016 16 / 0.015 30 / 0.031

16 / 0.016 22 / 0.052 44 / 0.062

20 / 0.015 34 / 0.016 45 / 0.047

25 / 0.016 37 / 0.031 52 / 0.079

46 / 0.031 61 / 0.078

47 / 0.047 71 / 0.125

54 / 0.047 88 / 0.141

57 / 0.047 92 / 0.141

Table 1: Experimental results. The largest polygon (test3) has 427 vertices. Entries in the table are
pairs of number of iterations to find the shortest path (= number of iterations of the repeat. . .until-
loop in Algorithm 5) and CPU time (seconds), for several choices of endpoints s and t.

6 Concluding Remarks

We have presented constant-work-space algorithms for several geometric problems. A number of geo-
metric problems are still open in the constant-work-space model:

(1) Given a set of n points in the plane, find the smallest enclosing circle. We can design an
O(n2)-time constant-work-space algorithm using the farthest-point Voronoi diagram. Is there
any subquadratic-time algorithm?

(2) Given a simple polygon and a query point q in its interior, compute the visibility polygon from
q in subquadratic time.
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Figure 10: Shortest path in a simple polygon. The bold lines show the shortest path, and the diagonals
represent the corresponding line segments pq1 and pq2.
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(3) Given a set of points in the plane, find a largest empty circle with its center lying in the convex
hull of the point set in subquadratic time. We can compute it by using our constant-work-space
operations for Delaunay triangulations in quadratic time.

Another interesting direction is to investigate time-space trade-offs: how much work-space is
needed to find a shortest path in a simple polygon in linear time?

So far, there are no powerful techniques for proving lower bounds with constant work-space.
For the problem of approximating the median with (small) constant storage, Lenz [20] and [21, Part II]
gave lower bounds in a more restricted data access model. More generally, an Ω(n log n) lower bound
is known for the element uniqueness problem in a standard computational model. Is there any higher
lower bound? As far as the authors know, no subquadratic-time algorithm for the element uniqueness
is known in the constant-work-space model.

Our algorithms extend to Delaunay triangulations in three dimensions, allowing to report all
Delaunay edges, triangles, or tetrahedra, as well as all Voronoi vertices, edges, or faces, in polynomial
time. The Euclidean minimum spanning tree can be constructed in 3-space if we use the powerful
technique of Reingold [25], but it looks hard to extend Algorithm 4 to 3-space.

Acknowledgments

The work was initiated at a Dagstuhl Seminar 09111 on Computational Geometry in March, 2009. The
work of T.A. was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-
in-Aid for Scientific Research on Priority Areas and Scientific Research (B). W.M. was supported by a
Wallace Memorial Fellowship in Engineering, and in part by NSF grant CCF-0634958 and NSF CCF
08327. We would like to thank the anonymous reviewers for their thorough reading of the manuscript
and for numerous helpful suggestions that improved the quality of the paper.

References

[1] S. Arora and B. Barak. Computational complexity. A modern approach. Cambridge University
Press, Cambridge, 2009.

[2] T. Asano. Constant-work-space algorithms: how fast can we solve problems without using any
extra array? In Proc. 19th Annu. Internat. Sympos. Algorithms Comput. (ISAAC), invited talk,
volume 5369 of Lecture Notes in Computer Science, page 1. Springer-Verlag, 2008.

[3] T. Asano. Constant-work-space algorithms for image processing. In F. Nielsen, editor, Emerging
Trends in Visual Computing (ETVC 2008), volume 5416 of Lecture Notes in Computer Science,
pages 268–283. Springer-Verlag, 2009.

[4] T. Asano, W. Mulzer, and Y. Wang. Constant-work-space algorithms for shortest paths in trees
and simple polygons. J. Graph Algorithms Appl., page to appear, 2011.

[5] D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex enumeration of arrange-
ments and polyhedra. Discrete Comput. Geom., 8(3):295–313, 1992.

http://jocg.org/


Journal of Computational Geometry - submitted, version February 19, 2019 jocg.org

[6] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry: Algorithms
and Applications. Springer-Verlag, Berlin, third edition, 2008.

[7] M. de Berg, M. J. van Kreveld, R. van Oostrum, and M. H. Overmars. Simple traversal of a
subdivision without extra storage. International Journal of Geographical Information Science,
11(4):359–373, 1997.

[8] P. Bose and P. Morin. An improved algorithm for subdivision traversal without extra storage.
Internat. J. Comput. Geom. Appl., 12(4):297–308, 2002.

[9] P. Bose and P. Morin. Online routing in triangulations. SIAM J. Comput., 33(4):937–951, 2004.

[10] T. M. Chan and E. Y. Chen. Multi-pass geometric algorithms. Discrete Comput. Geom., 37(1):79–
102, 2007.

[11] B. Chazelle. Triangulating a simple polygon in linear time. Discrete Comput. Geom., 6(5):485–524,
1991.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms. MIT Press,
Cambridge, MA, third edition, 2009.

[13] H. Edelsbrunner, L. J. Guibas, and J. Stolfi. Optimal point location in a monotone subdivision.
SIAM J. Comput., 15(2):317–340, 1986.

[14] D. Eppstein. Spanning trees and spanners. In Handbook of computational geometry, pages 425–461.
North-Holland, Amsterdam, 2000.

[15] C. M. Gold, T. D. Charters, and J. Ramsden. Automated contour mapping using triangular ele-
ment data structures and an interpolant over each irregular triangular domain. In Proc. 4thCom-
put. Graph., pages 170–175, 1977.

[16] C. M. Gold and S. Cormack. Spatially ordered networks and topographic reconstructions. Int. J.
Geographical Information Systems, 1(2):137–148, 1987.

[17] C. M. Gold and U. Maydell. Triangulation and spatial ordering in computer cartography. In Proc.
Canad. Cartographic Association Annual Meeting, pages 69–81, 1981.

[18] R. A. Jarvis. On the identification of the convex hull of a finite set of points in the plane. Inform.
Process. Lett., 2(1):18–21, 1973.

[19] D. T. Lee and F. P. Preparata. Euclidean shortest paths in the presence of rectilinear barriers.
Networks, 14(3):393–410, 1984.

[20] T. Lenz. Deterministic splitter finding in a stream with constant storage and guarantees. In Proc.
17th Annu. Internat. Sympos. Algorithms Comput. (ISAAC), volume 4288 of Lecture Notes in
Computer Science, pages 26–35, Kolkata, India, 2006. Springer-Verlag.

[21] T. Lenz. Simple reconstruction of non-simple curves and approximating the median in streams
with constant storage. PhD thesis, Freie Universität Berlin, 2008.
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