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Abstract
Let S ⊂ R2 be a set of n sites where s ∈ S has an associated radius rs defining a disk Ds. Then the
disk graph D(S) has a vertex for every site and two sites s, t are connected by an undirected edge if
and only if Ds ∩Dt 6= ∅. We present a data structure which serves a sequence of n deletions and k
connectivity queries in time O(npolylogn+ k(logn/ log logn)).

1 Introduction

The question if two vertices in a given graph are connected is crucial for many graph
algorithms. The graph might be stored in a specialized data structure if multiple queries
are given. If the graph is static, using BFS and labeling the vertices gives an optimal data
structure. However if edge insertions or deletions are allowed things get more complicated.
If both insertions and deletions are allowed, the data structure of Holm et al. [4] which can
handle edge updates in time O(n log2 n) and queries in amortized time O( logn

log logn ) is the best
currently known data structure for general graphs.

We consider the problem of constructing a deletion-only dynamic connectivity data
structure for disk graphs. Given a set S ⊆ R2 of n sites with associated radii rs, the disk
graph is the intersection graph of the disks Ds induced by the sites and their radii. While
the description of D(S) has size O(n), it might have Θ(n2) edges. So when starting with
some disk graph and subsequently deleting sites, over time up to Θ(n2) edges are deleted.
We describe a data structure whose overall running time for the sequence of n site deletion
is o(n2). For unit disk graphs, such a data structure is already known [6].

On a high level, our approach works as follows. We define a sparse proxy graph H = (V,E)
with S ⊆ V which perfectly represents the connectivity in D(S). We then store H in the
data structure of Holm et al. and describe how to update H on the deletion of a site.

2 Preliminaries

Our data structures relies on combining various data structures and techniques. We briefly
recall their definition and relevant properties here.
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Without loss of generality we scale and translate S such that the minimum distance
between two sites is 1 + ε and that the point set fits into a square with diameter 2dlog diam(S)e.
Furthermore we set all radii to min{rs,diam(S)}. The quadtree on S is now defined in the
usual fashion as a tree of degree at most 4 with the square with diameter 2dlog diam(S)e being
the root. We will not explicitly distinguish between the cells and the vertices of the quadtree.
Each cell of diameter 2i which contains at least two sites is subdivided into up to four
non-empty cells of diameter 2i−1. By the assumptions on our point set, no cell of diameter 1
is subdivided further. As the height of the quadtree defined this way is O(log diam(S)), and
thus does not depend on n, we consider the compressed quadtree. Let σ1, . . . , σk be maximal
path of vertices with degree one in the quadtree. In the compressed quadtree Q this path
is replaced by the edge σ1σk. It is well known that such a compressed quadtree has O(n)
vertices, height O(n) and can be constructed in O(n logn) time [1, 3]. Given a cell σ ∈ Q we
denote by |σ| its diameter.

We will use a heavy path decomposition on Q. Slightly adapting the terminology of
Sleator and Tarjan [7], we call an edge uv of a tree heavy, if v is the first child of u that
maximized the total number of nodes in the subtree rooted at v and light otherwise. A heavy
path is a maximal path which consists of heavy edges. The set of all heavy paths is called
the heavy path decomposition.

I Lemma 2.1 (Sleator and Tarjan [7]). Let T be a tree with n vertices. Then, the following
properties hold: 1. Every leaf-root path in T contains O(logn) light edges; 2. every vertex of
T lies on exactly one heavy path; and 3. the heavy path decomposition of T can be constructed
in O(n) time.

Let X be a linearly ordered set. We aim to find a set X of subsets of X, such that
|X | = O(|X|) and every contiguous subsequence can be partitioned into O(log |X|) subsets
from X . Using a standard approach [2, 8] this can be achieved by building a perfect binary
search tree with the elements of X in the leaves. The interval can now be represented by
O(logn) subtrees along the search paths for its boundaries. Finally we will use the following
data structure:

I Lemma 2.2 (Reveal data structure (RDS), Kaplan et al. [5]). Let R and B be site sets with
|R|+ |B| = n. There is a data structure which after preprocessing allows to delete sites from
R and B. After deleting a site from R it reports all disks from B now disconnected from⋃
s∈RDs. Preprocessing, deleting m sites from R and an arbitrary number of sites from B

takes O((n log5 n+m log9 n)λ6(logn)) expected time and O(n log3 n) expected space, where
λs(n) is the maximum length of a Davenport-Schinzel sequence.

3 The Proxy Graph

In order to describe H we first augment the compressed quadtree Q on S by adding additional
cells. Given a site t ∈ S, let σ be the cell with t ∈ σ and |σ| ≤ rt ≤ 2|σ|. Let N(t) be the
13 × 13 neighborhood of σ. Observe that all sites s with rs ≤ rt which can form an edge
with rt lie in a disk of radius at most 2rt ≤ 4|σ|. All cells intersecting or containing that
disk are part of N(t), see Figure 1. We augment Q by adding the neighborhood N(t) of all
sites and call the resulting tree Q′.

Considering the heavy path decomposition R of Q′, we further decompose each heavy
path R ∈ R into canonical paths using the technique from section 2. The set P of all
canonical paths received this way has the following properties, which follow from those of R
and P. See Figure 2 for an illustration of the lemma.
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Figure 1 The disks with center in σ and radius 4|σ| are contained in N13×13(σ).

I Lemma 3.1. Let σ be a cell of Q′ and let π be the path in Q′ from σ to the root. There
exists a set Pπ of canonical paths such that the following holds: 1. |Pπ| = O(log2 n), 2. π is
the disjoint union of the canonical paths in Pπ
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Figure 2 Illustration of Lemma 3.1. Left we see the decomposition of π into O(logn) heavy
paths R1, . . . Rk. On the right the vertices defining Pπ are depicted in green.

Given a constant d ∈ N, let Cd be a set of d cones with common apex in the origin, each
with opening angle 2π

d , covering the plane. Let P ∈ P be a canonical path with smallest cell
σ and largest cell τ . Then we denote the copy of the cones shifted to the center a(σ) of σ by
Cd(P ). For constants d1 and d2 to be fixed later, now define d1 + d2 + 1 regions for P . These
regions are partitioned into outer regions, middle regions and the inner region. The outer
regions are obtained by considering Cd1(P ) and taking the intersection of each cone with
the annulus with center a(σ), outer radius 5

2 |σ| + 2|τ | and inner radius 5
2 |σ|. The middle

regions are defined in a similar way, by taking the intersection of the cones in Cd2(P ) with
the annulus with center a(σ), outer radius 5

2 |σ| and inner radius |σ|. Finally the inner region
is defined as the disk with center a(σ) and radius |σ|, see Figure 3 for an illustration. We
call the set of the regions defined this way for all canonical paths A.
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Figure 3 The regions defined by the smallest cell σ of a path

Based on these regions we define a sparse proxy graph H, which will be used to represent
the connectivity in D(S). The graph H has the vertex set V = S ∪ A. We will not strictly
distinguish between the vertices of H and their associated sites and regions. With each
region A we assign two sets S1(A) ⊆ S and S2(A) ⊆ S. The set S1(A) will contain all sites
contained in A whose are comparable to the size of the cells in the canonical path associated
with A. The choice of the inner and outer radii in the definition of the regions together with
our definition of comparable ensure that the disk graph induced by S1(A) is a clique. The
set S2(A) contains sites with small radius which are contained in the smallest cell of the
canonical path associated with A. These sites are chosen is such a way, that all edges in
D(S) between a site s ∈ S2(A) and S1(A) are represented with a single edge in H. As the
sites in S1(A) form a clique this will not add a connection between sites in H which is not
present in D(S). Note that a site s will be contained in multiple sets S1(A) and S2(A) as it
can lie in multiple regions and cells. Below we will give the details on the definition of S1(A)
and S2(A). In Lemma 3.2 we show that the sites in S1(A) indeed form a clique. Then, in
Lemma 3.3 we show that H accurately represents the connectivity of D(S) and finally, as
part of Lemma 4.1, we show that H is indeed sparse.

Now we give the details. The edge set of H is divided into two sets E1 and E2. The
set E1 is defined based on the sites in S1(A), whereas the set E2 is defined based on S1(A).
Let A be a region, where σ and τ are the smallest and largest cells respectively in the
corresponding canonical path. If A is an outer region, let S1(A) be the set of all sites t ∈ A
with |σ| ≤ rt ≤ 2|τ | and ‖a(σ)t‖ ≤ rt + 5

2 |σ|. On the other hand, if A is a middle or inner
region, S1(A) consists of all sites t ∈ A with |σ| ≤ rt ≤ 2|τ |. The edge set E1 now consists of
edges between A and all sites in S1(A).

Additionally we define a set S2(A) for the region. If A is an inner region, the set S2(A)
consists of all sites s in σ with rs < |σ| which intersect at least one site in S1(A). In the
other case, the set S2(A) contains all sites s in σ with rs ≤ 2|σ|, which are again intersecting
at least one site in S1(A). The set E2 now consists of edges between A and the sites in S2(A).
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Figure 4 The part of the line segment a(σ)t′ in t′ intersects the boundary of Zt.

In order to show that this graph accurately represents the connectivity of the underlying
disk graph D(S) we first show that all sites within the same set S1(A) form a clique.

I Lemma 3.2. Suppose that d1 ≥ 18 and d2 ≥ 8. Then, for any region A ∈ A, the associated
sites in S1(A) form a clique in D(S).

Proof (Sketch). As before, let σ be the smallest cell on the canonical path associates with
A. If A is an inner or a middle regions this follows from considering the diameter of the
regions. In both cases the diameter is at most 2|σ|. As the sites in S1(A) have radius at least
|σ|, the claim follows.

The case where A is an outer region is a bit more complicated. For each site t ∈ S1(A)
we consider the two line segments going through t which are perpendicular to the lines
defining the cone of A, and call the convex hull of these line segments Zt, see Figure 4. Basic
trigonometry shows that Zt ⊆ Dt. Let t′ ∈ S1(A) be a site with larger distance to a(σ) than
t. It can be argued that t′ ∈ S1(A) either lies in Zt or the part of the line segment a(σ)t′
which lies in D′t intersects Zt. In both cases it follows that the edge {t, t′} exists in D(S). J

Using Lemma 3.2 we can now show that H represents the connectivity in D(S).

I Lemma 3.3. Two sites s, t ∈ S are connected in H if and only if they are connected in
D(S).

Proof. First, we show that if s and t are connected in H they are also connected in D(S).
The graph H is bipartite, thus it suffices to show that if two sites u, u′ are connected to the
same region A ∈ A, they are also connected in D(S). This follows directly from Lemma 3.2:
if u and u′ are both in S1(A) they are part of the same clique and thus adjacent. If on the
other hand u ∈ S2(A) or u′ ∈ S2(A), the definition of S2(A) implies that S1(A), and the
corresponding clique, is not empty. Thus there is a path from u through S1(A) to u′.

Now we consider two sites connected in D(S) and show that they are also connected in
H. If suffices to show that if s and t are connected by an edge in D(S), they are connected
to the same region A ∈ A. Assume without loss of generality that rs ≤ rt. Refer to Figure 5
for a depiction of the following argument. By the observation made above, there is a cell
ρ in N(t) which contains s. Consider the path π in Q′ from the root to the smallest cell γ
such that s ∈ γ and rs ≤ 2|γ|. Then ρ lies on this path π. Let Pπ be the decomposition of π
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Figure 5 The cell γ is the smallest cell such that rs ≤ 2|γ|. The canonical path P contains ρ.

into canonical paths as defined in Lemma 3.1 and let P be the path containing ρ. Again let
σ and τ be the smallest and largest cell on P respectively. By the definition of P we have
γ ⊆ σ ⊆ ρ ⊆ τ . As {s, t} is an edge in D(S), we have ‖st‖ ≤ rs + rt ≤ 2|σ|+ 2|τ | and thus
‖a(σ)t‖ ≤ 5

2 |σ|+ 2|τ |. This implies that t lies in a region A defined by P . If A is an inner
region and |σ| ≤ rs ≤ 2|σ| then s is also part of S1(A) by definition, in the other case s is
contained in S2(A). In both cases it follows that s and t are both connected to A. J

4 The Data Structure

The main idea of the data structure is to store H in a Holm et al. data structure H and use
H to answer queries. The main challenge is to maintain H and H under deletion of sites, as
well as efficiently preprocess the sites. The role of the components is shown in Figure 6.

I Lemma 4.1. The graph H has O(n) vertices, and O(n log2 n) edges. The graph and a
Holm et al. data structure H containing it can be constructed in O(n log4 n) time. Within the
same time bound we can construct the extended quadtree Q′, the heavy path decomposition R
and the binary search trees on the heavy paths.

Proof (Sketch). The augmented compressed quadtree has O(n) vertices. By adding appro-
priate virtual sites to the centers of suitable cells, it can be constructed in O(n logn) time.
Constructing the heavy path decomposition on this tree takes time O(n) by Lemma 2.1. The
binary search trees defining the canonical paths also have a total O(n) vertices and can be
constructed in O(n log2 n) overall time. As we define O(1) regions for each canonical path,
the bound on the number of vertices follows.

The number of edges follows from the total size of the sets S1(A) and S2(A). For the
total size of the sets S1(A) consider a site t and its neighborhood N(t). Each cell in N(t) is
contained in O(logn) canonical paths. In order to satisfy both the distance and the radius
constraint for the set S1(A) of a region, its associated path has to contain a cell of N(t) and
thus t is contained in O(logn) sets S1(A).

A site s is contained in the sets S2(A) along the canonical paths which decompose the
path π from the root to the smallest cell γ in Q′ with s ∈ γ and rs ≤ 2|γ|, again refer to
Figure 5. By Lemma 3.1 there are O(log2 n) such regions. Summing up over all sets S1(A)
and S2(A) this results in O(n log2 n) overall edges.

The sets S1(A) can be found by following the argument about the size and explicitly
checking the conditions for each canonical path containing a given cell of N(t). In order to
find the sets S2(A) we first have to construct an additively weighted voronoi diagram on each
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Figure 6 Components of the data structure and their connections

set S1(A). Assigning each site t ∈ S1(A) the weight −rt, allows us to determine in O(logn)
time if a site s intersects some site in S1(A). Performing this query for all regions along
the path defined in the size argument yields all sets S2(A). Combining the steps for finding
S1(A) and S2(A) finds all edges in O(n log3 n) time. Inserting the edges one by one to the
Holm et al. data structure H dominates the time, leading to O(n log4 n) overall time. J

We simply perform connectivity queries on H. To handle deletions, we build one reveal
data structure (RDS) for each region A ∈ A. We set R′ = S1(A) and B′ = S2(A) for
each RDS. Let n′ be the total number of sites stored in one of the data structures, then
preprocessing, deleting some sites from B′, deleting m′ sites from R′ and retrieving the
revealed sites takes O((n′ log5 n+m′ log9 n)λ6(logn)) total time by Lemma 2.2.

When deleting a site s, we can safely delete it from all sets S2(A) containing it, together
with the associated edges in E2 and the sites stored in the RDS of A. When deleting a site
from a set S1(A) however it is possible that some other sites have to be removed from the
associated set S2(A). These sites are reported by the RDS on deleting s from R′, allowing
us to safely delete them from S2(A). Summing up we get the following result.

I Theorem 4.2. The data structure described above answers connectivity queries in amortized
time O

(
logn

log logn

)
with O((n log7 n+m log11 n)λ6(logn)) overall expected update time for m

deletions.
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