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Abstract

Let P be a simple polygon with n vertices. The dual graph T ∗ of a triangulation T of P is the graph whose vertices
correspond to the bounded faces of T and whose edges connect those faces of T that share an edge. We consider
triangulations of P that minimize or maximize the diameter of their dual graph. We show that both triangulations
can be constructed in O(n3 log n) time using dynamic programming. If P is convex, we show that any minimizing
triangulation has dual diameter exactly 2 · dlog2(n/3)e or 2 · dlog2(n/3)e − 1, depending on n. Trivially, in this case
any maximizing triangulation has dual diameter n − 2. Furthermore, we investigate the relationship between the dual
diameter and the number of ears (triangles with exactly two edges incident to the boundary of P) in a triangulation.
For convex P, we show that there is always a triangulation that simultaneously minimizes the dual diameter and
maximizes the number of ears. In contrast, we give examples of general simple polygons where every triangulation
that maximizes the number of ears has dual diameter that is quadratic in the minimum possible value. We also consider
the case of point sets in general position in the plane. We show that for any such set of n points there are triangulations
with dual diameter in O(log n) and in Ω(

√
n).
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1. Introduction

Let P be a simple polygon with n > 3 vertices. We regard P as a closed two-dimensional subset of the plane,
containing its boundary. A triangulation T of P is a maximal crossing-free geometric (i.e., straight-line) graph whose
vertices are the vertices of P and whose edges lie inside P. Hence, T is an outerplanar graph. Similarly, for a set S of10

n points in the plane, a triangulation T of S is a maximal crossing-free geometric graph whose vertices are exactly the
points of S . It is well known that in both cases all bounded faces of T are triangles. The dual graph T ∗ of T is the graph
with a vertex for each bounded face of T and an edge between two vertices if and only if the corresponding triangles
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share an edge in T . If all vertices of T are incident to the unbounded face, then T ∗ is a tree. An ear in a triangulation
of a simple polygon is a triangle whose vertex in the dual graph is a leaf (equivalently, two out of its three edges are15

edges of P). We call the diameter of the dual graph T ∗ the dual diameter (of the triangulation T). In the following,
we will study combinatorial and algorithmic properties of minimum and maximum dual diameter triangulations for
simple polygons and for planar point sets (minDTs and maxDTs for short). Note that both triangulations need not to
be unique.

Previous Work. Shermer [11] considers thin and bushy triangulations of simple polygons, i.e., triangulations that20

minimize or maximize the number of ears. He presents algorithms for computing a thin triangulation in time O(n3)
and a bushy triangulation in time O(n). Shermer also claims that bushy triangulations are useful for finding paths in
the dual graph, as is needed, e.g., in geodesic algorithms. In that setting, however, the running time is not actually
determined by the number of ears, but by the dual diameter of the triangulation. Thus, bushy triangulations are only
useful for geodesic problems if there is a connection between maximizing the number of ears and minimizing the25

dual diameter. While this holds for convex polygons, we show that, in general, there exist polygons for which no
minDT maximizes the number of ears. Moreover, we give examples where forcing a single ear into a triangulation
may almost double the dual diameter, and the dual diameter of any bushy triangulation may be quadratic in the dual
diameter of a minDT.

The dual diameter also plays a role in the study of edge flips: given a triangulation T , an edge flip is the operation30

of replacing a single edge of T with another one so that the resulting graph is again a valid triangulation. In the case
of convex polygons, edge flips correspond to rotations in the dual binary tree [12]. For this case, Hurtado, Noy, and
Urrutia [4, 13] show that a triangulation with dual diameter k can be transformed into a fan triangulation by a sequence
of most k parallel flips (i.e., two edges not incident to a common triangle may be flipped simultaneously). They also
obtain a triangulation with logarithmic dual diameter by recursively cutting off a linear number of ears.35

While we focus on the dual graph of a triangulation, distance problems in the primal graph have also been consid-
ered. For example, Kozma [8] addresses the problem of finding a triangulation that minimizes the total link distance
over all vertex pairs. For simple polygons, he gives a sophisticated O(n11) time dynamic programming algorithm.
Moreover, he shows that the problem is strongly NP-complete for general point sets when arbitrary edge weights are
allowed and the length of a path is measured as the sum of the weights of its edges.40

Our Results. In Section 2, we present several properties of the dual diameter for triangulations of simple polygons.
Among other results, we calculate the exact dual diameter of minDTs and maxDTs of convex polygons, which can be
obtained by maximizing and minimizing the number of ears of the triangulation, respectively. On the other hand, we
show that there exist simple polygons where the dual diameter of any minDT is O(

√
n), while that of any triangulation

that maximizes the number of ears is in Ω(n). Likewise, there exist simple polygons where the dual diameter of any45

triangulation that minimizes the number of ears is in O(
√

n), while the maximum dual diameter is linear. In Section 3,
we present efficient algorithms to construct a minDT and a maxDT for any given simple polygon.

Finally, in Section 4 we consider the case of planar point sets, showing that for any point set in the plane in general
position there are triangulations with dual diameter in O(log n) and in Ω(

√
n), respectively.

2. The Number of Ears and the Diameter50

The dual graph of any triangulation T has maximum degree 3. In this case, the so-called Moore bound implies
that the dual diameter of T is at least log2( t+2

3 ), where t is the number of triangles in T (see, e.g., [9]). For convex
polygons, we can compute the minimum dual diameter exactly.

Proposition 2.1. Let P be a convex polygon with n ≥ 3 vertices, and let m ≥ 1 such that n ∈ {3 · 2m−1 + 1, . . . , 3 · 2m}.
Then any minDT of P has dual diameter 2 · dlog2(n/3)e − 1 if n ∈ {3 · 2m−1 + 1, . . . , 4 · 2m−1}, and 2 · dlog2(n/3)e if55

n ∈ {4 · 2m−1 + 1, . . . , 3 · 2m}, for some m ≥ 1.

Proof. The dual graph of any triangulation of P is a tree with n − 2 vertices and maximum degree 3; see Figure 1(a)
for an example. Furthermore, every tree with n− 2 vertices and maximum degree 3 is dual to some triangulation of P.
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For the upper bound, suppose first that n = 3 · 2m, for some m ≥ 1. We define a triangulation T1 as follows.
It has a central triangle that splits P into three sub-polygons, each with 2m edges on the boundary. For each sub-60

polygon, the dual tree for T1 is a full binary tree of height m − 1 with 2m−1 leaves; see Figure 1(b). The leaves of T ∗1
correspond to the ears of T1. The shortest path between any two ears in two different sub-polygons has length exactly
2(m − 1) + 2 = 2 log2(n/3). The shortest path between any two ears in the same sub-polygon has length at most
2(m − 1). Thus, the dual diameter of T1 is 2 log2(n/3).

Now let n ∈ {3 · 4
3 · 2m−1 + 1, . . . , 3 · 2m − 1}, and consider the triangulation T2 of P obtained by cutting off65

3 · 2m − n ≤ 2 · 2m−1 − 1 ears that are consecutive in the convex hull from T1. Then T ∗2 is a subtree of T ∗1 . Since T1 has
3 · 2m−1 ears, T2 has at least 2m−1 + 1 ears in common with T1. Two of them lie in different sub-polygons, so the dual
diameter remains 2m = 2 · dlog2(n/3)e.

Finally, for n ∈ {3 · 2m−1 + 1, . . . , 3 · 4
3 · 2

m−1}, if we remove 3 · 2m − n ≤ 3 · 2m−1 − 1 ears from T1 such that all ears
in two of the sub-polygons are removed, we get a triangulation with dual diameter 2m − 1 = 2 · dlog2(n/3)e − 1; see70

Figure 1(c).

v

(a)

2m

≤ 2m−2

(b)

2m−1

≤ 2m−2

2m−2

≤ 2m−4

(c)

Figure 1: The convex case. (a) A triangulation and its dual tree. The ears are gray. (b) The triangulation T1 for m = 3. The central triangle
creates sub-polygons with 2m edges of P each. Any path between ears in different sub-polygons has length 2m. Other paths are shorter. (c) The
triangulation T2 for 4 · 2m−1 vertices (m = 3). The central triangle creates three sub-polygons, one with 2m edges of P and two with 2m−2 edges of
P.

For the lower bound, assume there is a tree T ∗ with n − 2 vertices, maximum degree 3, and diameter k strictly
smaller than in the proposition. Consider a longest path π in T ∗ and a vertex v on π for which the distances to the
endpoints of π differ by at most one. By adding vertices, we can turn T ∗ into a tree with n′ − 2 > n − 2 vertices,
diameter k, and the same structure as T ∗1 or T ∗2 for a convex polygon with n′ vertices (with v as central vertex). Since75

the upper bound on the dual diameter grows monotonically, this means that the triangulation T1 or T2 for a convex
polygon with n vertices has diameter k, a contradiction.

As the dual graph of a triangulation of any simple polygon has maximum degree 3, the proof of Proposition 2.1
yields the following corollary.

Corollary 2.2. Let P be a simple polygon with n ≥ 3 vertices, and let m ≥ 1 such that n ∈ {3 ·2m−1 +1, . . . , 3 ·2m}. The80

dual diameter of any triangulation of P is at least 2 · dlog2(n/3)e−1 if n ∈ {3 ·2m−1 +1, . . . , 4 ·2m−1}, and 2 · dlog2(n/3)e
if n ∈ {4 · 2m−1 + 1, . . . , 3 · 2m}.

Proposition 2.1 also shows that if P is convex, there exists a minDT with a maximum number of ears. Next, we
show that this does not hold for general simple polygons. Hence, any approach that tries to construct minDTs by
maximizing the number of ears is doomed to fail.85

Proposition 2.3. For arbitrarily large n, there exist simple polygons with n vertices in which any minDT minimizes
the number of ears.
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Proof. Let k ≥ 1 and consider the polygon P with n = 4k + 8 vertices sketched in Figure 2. Any triangulation of P
has either 4 or 5 ears. The triangulation in Figure 2(a) is the only triangulation with 5 ears, and it has dual diameter
4k + 2. However, as depicted in Figure 2(b), omitting the large ear at the bottom allows a triangulation with 4 ears and90

dual diameter 2k + 3. Thus, forcing even one additional ear may nearly double the dual diameter.

Figure 2(c) shows a triangulation of P with 4 ears and almost twice the diameter as in Figure 2(b). Thus, neither
for minimizing the diameter nor for maximizing the number of ears this triangulation is desirable. However, it has the
nice property that the two top ears are connected by a dual path with four interior vertices. Below, this property will
be useful when making a larger construction.95

k points

k points

(a) 5 ears, dual diameter 4k + 2.

k points

k points

(b) 4 ears, dual diameter 2k + 3

k points

k points

(c) 4 ears, dual diameter 4k + 3

Figure 2: Three triangulations of a polygon with n = 4k + 8 vertices (k = 3) and paths that define their dual diameters. The ears are shaded.

Theorem 2.4. For arbitrarily large n, there is a simple polygon with n vertices that has minimum dual diameter
O(
√

n) while any triangulation that maximizes the number of ears has dual diameter Ω(n).

Proof. Let c be a parameter to be determined later, and let P′ be the polygon constructed in Proposition 2.3. We
construct a polygon P by concatenating c copies of P′ as in Figure 3. P has n = c(4k + 4) + 4 vertices. Using the
triangulation from Figure 2(a) for each copy, we obtain a triangulation with the maximum number 3c + 2 of ears100

and dual diameter c(4k + 1) + 1 (the curved line in Figure 3 indicates a longest path). On the other hand, using the
triangulation from Figure 2(b) for the leftmost and rightmost part of the polygon and the one from Figure 2(c) for all
intermediate parts yields a triangulation with dual diameter 4c + 4k − 3 that has only 2c + 2 ears. For c = k, we obtain
c, k = Θ(

√
n). Thus, the dual diameter for the triangulation with maximum number of ears is Θ(n), while the optimal

dual diameter is O(
√

n).105

(a) 3c + 2 ears, dual diameter c(4k + 1) + 1. (b) 2c + 2 ears, dual diameter 4c + 4k − 3.

Figure 3: Two triangulations of a polygon with n = c(4k + 4) + 4 vertices (c = k = 3) and corresponding longest paths. The ears are shaded.
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k points k points

va va

vp

vq vq

vp

vb vb

Figure 4: Two triangulations of a part of a polygon where the dual diameter is locally decreased by k when minimizing the number of ears.

Similarly, for maximizing the dual diameter, we can give examples where the dual diameter is suboptimal when
the number of ears is minimized.

Theorem 2.5. For arbitrarily large n, there is a simple polygon with n vertices that has maximum dual diameter Ω(n)
while any triangulation that minimizes the number of ears has dual diameter O(

√
n).

Proof. Figure 4 shows a triangulation of a part of a simple polygon. We suppose that the indicated dual path π is110

the only one of maximum length. In addition to the ears at the endpoints of π, there are two ears at the vertices vp

and vq. If we want to have at most one ear in this part of the polygon, at least one of vp and vq must be connected
to a non-neighboring vertex by a triangulation edge. For this, the only possibilities are vpva and vqva. But then there
cannot be any edge between the bottommost vertex vb and the k vertices between vq and va. In particular, that part
must be triangulated as shown to the right of Figure 4. Here, there is only one ear, but the dual diameter is reduced115

by k (assuming the remainder of the polygon is large enough). As in the proof of Theorem 2.4, we concatenate Θ(
√

n)
copies of this construction and choose k = Θ(

√
n). The parts are independent in the sense that they are separated by

unavoidable edges (i.e., edges that are present in any triangulation of the resulting polygon).1 Hence, while the dual
diameter of a maxDT is linear in n, it is in O(

√
n) for any triangulation that minimizes the number of ears.

It is easy to construct polygons for which the dual graph of any triangulation is a path, forcing minimum dual120

diameter Ω(n). The other direction is slightly less obvious.

Proposition 2.6. For any n, there exists a simple polygon P with n vertices such that the dual diameter of any maxDT
of P is in Θ(log n).

Proof. We incrementally construct P by starting with an arbitrary triangle t. See Figure 5 for an accompanying
illustration. We replace every corner of t by four new vertices so that two of them can see only these four new vertices.125

This means that the edge between the other two newly added vertices is unavoidable. We repeat this construction
recursively in a balanced way. If necessary, we add dummy vertices to obtain exactly n vertices. The unavoidable
edges partition P into convex regions, either hexagons or quadrilaterals. The dual tree of this partition is balanced
with diameter Θ(log n). Since every triangulation of P contains all unavoidable edges, the maximum possible dual
diameter is O(log n).130

1Unavoidable edges are defined by segments between two vertices s.t. no other edge crosses them. Hence, they have to be present in every
triangulation. Unavoidable edges of point sets have been investigated by Karoly and Welzl [5] (as “crossing-free segments”), and Xu [14] (as
“stable segments”).

5



Figure 5: The convex vertices of a polygon are incrementally replaced by four new vertices, resulting in unavoidable edges (dotted).

vi

vj

vi+1

Pi,j

Figure 6: Any triangulation of Pi, j (gray) has exactly one triangle adjacent to viv j (dark gray).

3. Optimally Triangulating a Simple Polygon

We now consider the algorithmic question of constructing a minDT and a maxDT of a simple polygon P with
n vertices. Let v1, . . . , vn be the vertices of P in counterclockwise order. The segment viv j is a diagonal of P if it
lies completely in P but is not part of the boundary of P. For a diagonal viv j, i < j, we define Pi, j as the polygon
with vertices vi, vi+1, . . . , v j−1, v j; see Figure 6. Observe that Pi, j is a simple polygon contained in P. If viv j is not a135

diagonal, we set Pi, j = ∅.

Theorem 3.1. For any simple polygon P with n vertices, we can compute a minDT in O(n3 log n) time.

Proof. We use the classic dynamic programming approach [6], with an additional twist to account for the non-local
nature of the objective function. Let viv j be a diagonal. Any triangulation T of Pi, j has exactly one triangle t incident
to viv j; see Figure 6. Let f (T ) be the maximum length of a path in T ∗ that has t as an endpoint.140

For d > 0 and i, j = 1, . . . , n, with i < j, let Td(i, j) be the set of all triangulations of Pi, j with dual diameter at
most d (we set Td(i, j) = ∅ if viv j is not a diagonal of P). We define Md[i, j] = minT∈Td(i, j) f (T ) + 1, if Td(i, j) , ∅,
or Md[i, j] = ∞, otherwise. Intuitively, we aim for a triangulation that minimizes the distance from viv j to all other
triangles of Pi, j while keeping the dual diameter below d (the value of Md[i, j] is the smallest possible distance that
can be obtained). LetV(i, j) be all vertices vl of Pi, j such that the triangle viv jvl lies inside Pi, j. We claim that Md[i, j]145

obeys the following recursion:

Md[i, j] =


0, if i + 1 = j,
∞, if viv j is not a diagonal,
minvl∈V(i, j) Id[i, j, l], otherwise,

where

Id[i, j, l] =

{
∞, if Md[i, l] + Md[l, j] > d,
max{Md[i, l],Md[l, j]} + 1, otherwise.

We minimize over all possible triangles t in Pi, j incident to viv j. For each t, the longest path to viv j is the longer of
the paths to the other edges of t plus t itself. If t joins two longest paths of total length more than d, there is no valid
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solution with t. Thus, we can decide in O(n3) time whether there is a triangulation with dual diameter at most d, i.e.,
if Md[1, n] , ∞. Since the dual diameter is at most n − 3, a binary search gives an O(n3 log n) time algorithm.150

We can use a very similar approach to obtain some maxDT.

Theorem 3.2. For any simple polygon P with n vertices, we can compute a maxDT in O(n3 log n) time.

Proof. The proof is similar to the one of Theorem 3.1. This time, we are looking for triangulations that have dual
diameter at least d. Let f (T ) be defined as before, and let T (i, j) be the set of all triangulations of Pi, j (this time, we
do not need the third parameter). We define Md[i, j] in the following way. If T (i, j) = ∅, then Md[i, j] = −∞. If155

T (i, j) contains a triangulation with diameter at least d, Md[i, j] = ∞. Otherwise, let Md[i, j] = maxT∈T (i, j) f (T ) + 1.
Clearly, there is a triangulation with diameter at least d if and only if Md[1, n] = ∞. With V(i, j) defined as before,
the recursion for Md[i, j] is

Md[i, j] =


0, if i + 1 = j,
−∞, if viv j is not a diagonal,
maxvl∈V(i, j) Id[i, j, l], otherwise,

where

Id[i, j, l] =


−∞, if Md[i, l] or Md[l, j] is −∞,
∞, if Md[i, l] + Md[l, j] ≥ d,
max{Md[i, l],Md[l, j]} + 1, otherwise.

For the given diagonal viv j, we maximize over all possible triangles. If at some point the triangle t at viv j closes
a path of length at least d, we are basically done, as any triangulation of the remainder of the polygon results in a160

triangulation with dual diameter at least d. If the triangulation of Pi, j does not contain such a long path, we store the
longer one to viv j, as before. Again, we can find the optimal dual diameter via a binary search, giving an O(n3 log n)
time algorithm.

4. Bounds for Point Sets

We are now given a set S of n points in the plane in general position, and we need to find a triangulation of S165

whose dual graph optimizes the diameter. Since the dual graph has maximum degree 3, it is easy to see that the
Ω(log n) lower bound for simple polygons extends for this case. It turns out that this bound can always be achieved,
as we show in Section 4.1. In Section 4.2, we find a triangulation of S that has dual diameter in Ω(

√
n).

4.1. Minimizing the Dual Diameter
Theorem 4.1. Given a set S of n points in the plane in general position, we can compute in O(n log n) time a170

triangulation of S with dual diameter Θ(log n).

Proof. Let P be a convex polygon with n vertices and T ′ a triangulation of P with dual diameter Θ(log n) (e.g., the
triangulation from Proposition 2.1). The triangulation T ′ is an outerplanar graph. Any outerplanar graph of n vertices
has a plane straight-line embedding on any given n-point set [10]. Furthermore, such an embedding can be found in
O(nd) time and O(n) space, where d is the dual diameter of the graph [1].175

Let TS be the embedding of T ′ on S . In general, TS does not triangulate S ; see Figure 7. Consider the convex
hull of TS (which equals the convex hull of S ). The untriangulated pockets are simple polygons. We triangulate each
pocket arbitrarily to obtain a triangulation T of S . We claim that the dual diameter of T is O(log n).

Lemma 4.2. The dual distance from any triangle in a pocket to any triangle in TS is O(log n).

Proof. Let Q be a pocket, and TQ a triangulation of Q. Since Q is a simple polygon, the dual T ∗Q is a tree with180

maximum degree 3. A triangle t of TQ not incident to the boundary of TS either has degree 3 in T ∗Q, or it is the unique
triangle in TQ that shares an edge with the convex hull of S . We perform a breadth-first-search in T ∗Q starting from t,
and let k be the maximum number of consecutive layers from the root of the BFS-tree that do not contain a triangle
incident to the boundary. By the above observation, all vertices in the first k − 1 levels have degree three in T ∗Q. Thus,
each vertex of level k − 1 or lower has two children. In particular, at each level the number of vertices must double185

(except at the topmost level where the number of vertices is tripled), hence k = O(log n).
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Figure 7: When computing a minDT of a point set S , we first view it as if it were in convex position and construct a minDT (left image). Then, we
embed TS into the actual point set (solid edges in the right image). (The correspondence is marked by the central triangle and the thick boundary
edge.) All remaining untriangulated pockets (highlighted region in the figure) are triangulated arbitrarily (dashed edges).

v1

v2
vh

v1

vi

vi+1

Figure 8: Left: v1 is connected to all remaining vertices in the convex hull. Right: additional edges added inside ∆i. We connect the points of an
increasing subsequence of v j1 , v j2 , . . . , v jni

to both v1, vi as well as the predecessor and successor in the subsequence.

Given Lemma 4.2 and the fact that TS has dual diameter O(log n), Theorem 4.1 is now immediate.

4.2. Obtaining a Large Dual Diameter

We now focus our attention on the problem of triangulating S so that the dual diameter is maximized.

Theorem 4.3. Given a set S of n ≥ 3 points in the plane in general position, we can compute in O(n log n) time a190

triangulation of S with dual diameter at least
√

n − 3.

Proof. Naturally, the triangulation T must contain the edges of the convex hull of S . Let v1, v2, . . . , vh be the vertices
of the convex hull of S in clockwise order. We connect v1 to the vertices v3, v4, . . . , vh−1; see Figure 8 (left). In order
to complete this set of edges to a triangulation, it suffices to consider the triangular regions v1vivi+1 (for 2 ≤ i ≤ h− 1)
with at least one point of S in their interior.195

Let ∆i = v1vivi+1 be such a triangular region, S i ⊂ S the points in the interior of ∆i, and ni = |S i|. Let
w1,w2, . . . ,wni denote the points in S i sorted in clockwise order with respect to v1, and w j1 ,w j2 , . . . ,w jni

denote
the same points sorted in counterclockwise order with respect to vi. By the Erdős-Szekeres theorem [2], the index
sequence jk contains an increasing or decreasing subsequence σi of length at least

√
ni.

If σi is increasing, we connect all points of σi to both v1 and vi. In addition, we connect each point of σi to its200

predecessor and successor in σi; see Figure 8 (right). Since the clockwise order with respect to v1 coincides with the
counterclockwise order with respect to vi, the new edges do not create any crossing.

If σi is decreasing, we claim that the corresponding point sequence is in counterclockwise order around vi+1.
Indeed, let w and w′ be two vertices of S i whose indices appear consecutively in σi (with w before w′). By definition,
the segment v1w′ crosses the segment viw. Moreover, points v1 and vi are on the same side of the line through w205

and w′; see Figure 9 (left). Since w and w′ are contained in ∆i, we conclude that vi+1 must lie on the opposite side
of the line. Thus, vi,w,w′, v1 form a counterclockwise sequence around vi+1, and we can connect each point of σi to

8



v1

vi

vi+1

w
w′

p q

v1

v2
vh

vi vi+1

Figure 9: Left: if σi generates a decreasing sequence, the same sequence must be increasing when we view the angles with vi+1 instead. Right: any
path between p and q in the dual graph must visit all triangles ∆i and at least

√
ni additional triangles between the crossing of segments v1vi and

v1vi+1.

v1, vi+1, and its predecessor and successor in σi without crossings. Finally, we add arbitrary edges to complete the
resulting graph inside ∆i into a triangulation Ti.

We claim that, regardless of how we complete the triangulation, there are two triangles whose distance in the dual
graph is at least

√
n − 3. Let p and q be the triangles of T incident to edges v1v2 and v1vh, respectively (since both

segments are on the convex hull, p and q are uniquely defined). Let π be the shortest path from p to q. Clearly, π
must cross each segment v1vi, for i ∈ {3, . . . h − 1}, exactly once and in increasing order. This gives h − 3 steps (one
step for each triangle incident in clockwise order around v1 on an edge v1vi, i ∈ {3, . . . , h − 1}). In addition, at least
√

ni additional triangles must be traversed between the segments v1vi and v1vi+1 (for all i ∈ {2, . . . , h − 1}): indeed, for
each vertex w ∈ σi, the edges v1w and either wvi or wvi+1 (depending on whether σi was increasing or decreasing)
disconnect p and q., Hence at least one of the two must be crossed by π, and the triangles following these edges are
pairwise distinct and distinct from the triangles following the segments v1vi. Summing over i, we get

|π| ≥ h − 3 +

h−1∑
i=2

√
ni ≥ h +

√
n − h − 3 ≥ 3 +

√
n − 3 − 3 =

√
n − 3.

In the second inequality we used the fact that
∑h−1

i=2
√

ni ≥

√∑h−1
i=2 ni =

√
n − h. (since a point is either on the convex210

hull or in its interior), the third inequality follows from h ≥ 3 (and the fact that the expression is minimized when h is
as small as possible).

Finding a longest increasing (or decreasing) subsequence of ni numbers takes O(ni log ni) time, which is optimal in
the comparison model [3]. Hence, all subsequences, as well as the whole triangulation can be computed in O(n log n)
time, where the last part also uses the fact that point location in a triangulation on ≤ n vertices can be done in O(log n)215

time after O(n log n) preprocessing.

Proposition 4.4. Any set of n points in the plane in general position with k points in convex position has a triangulation
with dual diameter in Ω(k).

Proof. See Figure 10 for an accompanying illustration. Let S be such a point set with C ⊆ S being the convex subset
of size k. First, triangulate only C by a zig-zag chain of edges: for the convex hull of C being defined by the sequence220

(c1, . . . , ck), add the edges cick−i and cick−i−1 for 1 ≤ i < bk/2c, as well as the boundary of the convex hull of C. Then,
add the extreme points of S and triangulate the convex hull of S without C such that each added edge is incident to a
point of C (this is not necessary to obtain the result, but it makes our arguments simpler). The resulting triangulation
has dual diameter Ω(k), as is witnessed by the triangles at ck and cbk/2c inside C: if we label each triangle with the
index of the incident point in C that is closest to cbk/2c, then this index can change by at most 1 along a step in any225

dual path between the triangles inside C incident to ck and cbk/2c. The dual diameter does not decrease when adding
the remaining points of S and completing the triangulation arbitrarily.
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Figure 10: Left: zig-zag triangulation of a convex subset of size k. Right: adding the edges to the extreme points implies a labeling of the triangles
that relate to their distance to cbk/2c.

5. Conclusions

The proof of Corollary 2.2 (lower bound for simple polygons) is essentially based on fundamental properties of
graphs (i.e., bounded degree) rather than geometric properties. Since the bound is tight even for the convex case, it230

cannot be tightened in general. However, we wonder if, by using geometric tools, one can construct a bound that
depends on the number of reflex vertices of the polygon (or interior points for the case of sets of points). Another
natural open problem is to extend our dynamic programming approach for simple polygons to general polygonal
domains (or even sets of points).

It is open whether Theorem 4.3 is tight. That is: does there exist a point set S such that the diameter of the dual235

graph of any triangulation of S is in O(
√

n)? From Proposition 4.4, we see that any such point set can contain at most
O(
√

n) points in convex position. Thus, the point set must have Θ(
√

n) convex hull layers, each with Θ(
√

n) points.
We suspect that some smart perturbation of the grid may be an example, but we have been unable to prove so.
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[2] P. Erdős, G. Szekeres, A combinatorial croblem in geometry, Compositio Math. 2 (1935) 463–470.250

[3] M.L. Fredman, On computing the length of longest increasing subsequences, Discrete Math. 11 (1975) 29–35.
[4] F. Hurtado, M. Noy, J. Urrutia, Parallel edge flipping, in: Proc. 10th Canad. Conf. Comput. Geom. (CCCG), p. online.
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