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Abstract

Let P be a simple planar polygon with n vertices. We
would like to find a triangulation MDT(P) of P that
minimizes the diameter of the dual tree. We show that
MDT(P) can be constructed in O(n3 log n) time. If
P is convex, we show that the dual of any MDT has
diameter 2 · dlog2(n/3)e or 2 · dlog2(n/3)e−1, depend-
ing on the value of n. We also investigate the rela-
tion between MDT(P) and the number of ears in P.
When P is convex, we give a construction for MDTs
that maximize the number of ears among all triangu-
lations. However, if P is not convex, we show that tri-
angulations maximizing the number of ears may have
diameter quadratic in the diameter of an MDT. Fi-
nally, we consider point sets instead of polygons and
show that for this case the diameter of the dual graph
of an MDT is O(log n).

1 Introduction

Given a simple planar polygon P with n vertices, we
are interested in finding a triangulation MDT(P) of P
such that the diameter of the dual tree of the triangu-
lation1 is minimized. We call this diameter the dual
diameter (of the triangulation). Note that MDT(P)
may not be unique.

Shermer [7] considers thin and bushy triangulations
of simple polygons, i.e., triangulations that minimize,
resp. maximize, the number of ears. Shermer men-
tions that bushy triangulations are useful for finding
paths in the dual tree, as is needed, e.g., in geodesic
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1The dual graph T ∗ of a triangulation T is the graph with

a vertex for each (empty) triangle of T and an edge between
two triangles iff they share an edge in T . If T has no interior
vertices then T ∗ is a tree.

algorithms. In that setting, however, the running time
is not actually determined by the number of ears,
but by the dual diameter of the triangulation. Thus,
bushy triangulations would only be useful for geodesic
problems if maximizing the number of ears minimized
the dual diameter. While this holds for convex poly-
gons, we show that in general there exist polygons for
which no MDT maximizes the number of ears. More-
over, forcing a single ear into a triangulation might
already nearly double the dual diameter, and the dual
diameter of any bushy triangulation may be quadratic
in the optimum.

The dual diameter also plays a role in the study
of edge flips: an edge flip in a triangulation of a con-
vex polygon corresponds to a rotation in the dual tree.
For convex polygons, Hurtado, Noy, and Urrutia [2, 8]
show that a triangulation with dual diameter k can
be transformed into a fan triangulation using at most
k parallel flips (i.e., two edges not sharing a triangle
may be flipped simultaneously). They also obtain a
triangulation with logarithmic dual diameter by re-
cursively cutting off a linear number of ears.

While we focus on the dual graph of a triangula-
tion, optimizing the distance in the primal has also
been considered. Kozma [4] addresses the problem of
finding a triangulation where the total link distance
for all pairs of vertices is minimized. For simple poly-
gons, he gives a sophisticated O(n11) time dynamic
programming algorithm. Further, he shows that the
problem is strongly NP-complete for general point sets
and arbitrary edge weights.

2 The Number of Ears of MDT(P)

Since the dual graph has maximal degree 3, the so-
called Moore bound implies that the dual diameter is
at least log2(n+2

3 ) (see, e.g., [5]). For convex polygons,
we can get the exact optimum dual diameter.

Proposition 1 For a convex polygon P with n ver-
tices, MDT(P) has dual diameter 2 · dlog2(n/3)e−1 if
n ∈ {3 · 2m−1 + 1, . . . , 3 · 4

3 · 2m−1}, and 2 · dlog2(n/3)e
if n ∈ {4 · 2m−1 + 1, . . . , 3 · 2m}, for some m ≥ 1.

Proof. The dual graph of any triangulation of P is a
tree with n− 3 vertices and maximum degree 3. Fur-
thermore, every tree with n−3 vertices and maximum
degree 3 is dual to some triangulation of P.

We consider special triangulations whose dual trees
have the following structure: (1) all but at most one
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inner vertex has degree three, (2) there is a central
vertex v (the one corresponding to the central triangle
in the triangulation) such that any two paths from v
to two leaves differ by at most one in length, and
(3) for at most one edge incident to v, paths from v
to leaves have different lengths. See Figure 1 for an
illustration.

v

Figure 1: MDTs for convex polygons.

For the upper bound it can be shown (e.g., by case
distinction) that the dual diameter of these triangu-
lations is exactly 2 · dlog2(n/3)e− 1 or 2 · dlog2(n/3)e,
depending on the value of n.

For the lower bound, assume there is a tree T with
n− 3 vertices and maximum degree 3 that has diam-
eter k strictly smaller than in the proposition. Con-
sider a longest path π in T and a vertex v on π for
which the distances to the endpoints of π differ by at
most one. By adding vertices, T can be turned into a
tree with structure as in the construction of the up-
per bound (with v as central vertex) and diameter k,
a contradiction. �

As the dual graph of a triangulation of any simple
polygon or point set in the plane also has maximum
vertex degree three, we obtain the following corollary
from Proposition 1.

Corollary 2 For any simple polygon P with n ver-
tices, the dual diameter of MDT(P) is at least 2 ·
dlog2(n/3)e−1 if n ∈ {3 ·2m−1 +1, . . . , 4 ·2m−1}, and
2 · dlog2(n/3)e if n ∈ {4 · 2m−1 + 1, . . . , 3 · 2m}, for
some m ≥ 1.

Proposition 1 also implies that for convex P there
exists an MDT that maximizes the number of ears
among all triangulations of P. Next, we show that
this does not hold for general simple polygons. Hence,
any greedy approach that tries to construct MDTs by
maximizing the number of ears is bound to fail.

Lemma 3 There exist simple polygons in which no
MDT maximizes the number of leaves.

Proof. Let k ≥ 1 and consider the polygon with
n = 4k + 8 vertices in Figure 2. The triangulation
in Figure 2(a) is the only triangulation with 5 ears,
and it has dual diameter 4k+2. However, as depicted
in Figure 2(b), omitting the large ear at the bottom
allows a triangulation with 4 ears and dual diameter
2k + 3. This shows that forcing even one additional
ear might nearly double the dual diameter. �

k points

k points

(a) 5 ears, dual diameter 4k + 2.

k points

k points

(b) 4 ears, dual diameter 2k + 3

k points

k points

(c) 4 ears, dual diameter 4k + 3

Figure 2: Three triangulations of a polygon with n =
4k + 8 vertices (k = 3) and paths that define their
dual diameters. The ears are shaded.

Theorem 4 There exist simple polygons where tri-
angulations maximizing the number of ears have a
dual diameter that is quadratic in the optimum.

Proof. Consider the polygon P ′ from Lemma 3, and
let P be obtained by concatenating c copies of P ′ as
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in Figure 3. P has n = c(4k + 4) + 4 vertices. Using
the triangulation from Figure 2(a) for each copy, we
get a triangulation with the maximum number 3c+ 2
of ears and dual diameter c(4k+1)+1 (the curved line
in Figure 3 indicates a longest path). On the other
hand, using the triangulation from Figure 2(b) for the
leftmost and rightmost part of the polygon and the
one from Figure 2(c) for all intermediate parts yields
a triangulation with dual diameter 4c + 4k − 3 that
has only 2c+ 2 ears.

For c = k, we obtain c, k = Θ(
√
n). Thus, the dual

diameter for the triangulation with maximum number
of ears is Θ(n), while the optimal dual diameter is
O(
√
n). �

(a) 3c + 2 ears, dual diameter 4ck + 5.

(b) 2c + 2 ears, dual diameter 4c + 4k − 3.

Figure 3: Two triangulations of a polygon with n =
c(4k + 4) + 4 vertices (c = k = 3) and corresponding
longest paths. The ears are shaded.

3 Triangulating a Simple Polygon

We now consider the algorithmic question of comput-
ing an MDT of a simple polygon P with n vertices.
Let v1, . . . vn be the vertices of P in clockwise order.
The segment vivj is a diagonal of P if it lies com-
pletely in P but is not part of the boundary of P. For
a diagonal vivj , i < j, we define Pi,j as the polygon
with vertices vi, vi+1, . . . , vj−1, vj (see Figure 4). Ob-
serve that Pi,j is a simple polygon contained in P. If

vi

vj

vi+1

Pi,j

Figure 4: Any triangulation of Pi,j (gray) has exactly
one triangle adjacent to vivj (dark gray).

vivj is not a diagonal, we set Pi,j = ∅.

Theorem 5 For any simple polygon P with n ver-
tices, we can compute an MDT in O(n3 log n) time.

Proof. We use the classic dynamic programming ap-
proach [3], with an additional twist to account for the
nonlocal nature of the objective function. Let vivj be
a diagonal. Any triangulation ∆ of Pi,j has exactly
one triangle t adjacent to vivj (see Figure 4). Let
f(∆) be the length of the longest path in the dual of
∆ that has one endpoint in t.

For d > 0 and i, j = 1, . . . , n, with i < j, let Td(i, j)
be the set of all triangulations of Pi,j with dual di-
ameter at most d (we set Td(i, j) = ∅ if vivj is not a
diagonal). We define Md[i, j] = min∆∈Td(i,j) f(∆)+1,
if Td(i, j) 6= ∅, or Md[i, j] =∞, otherwise. Intuitively
speaking, we aim for a triangulation minimizing the
distance from vivj to all other triangles of Pi,j while
keeping the dual diameter below d. Let V(i, j) be all
vertices vl of Pi,j such that the triangle vivjvl lies in-
side Pi,j . We claim that Md[i, j] obeys the following
recursion:

Md[i, j] =

 0, if i+ 1 = j
∞, if vivj is not a diagonal
minvl∈V(i,j) Id[i, j, l], otherwise

where

Id[i, j, l] =

{
∞, if Md[i, l] +Md[l, j] > d
max{Md[i, l],Md[l, j]}+ 1, otherwise

We minimize over all possible triangles t in Pi,j inci-
dent to vivj . For each t, the longest path to vivj is
the longer of the paths to the other edges of t plus t
itself. If t joins two longest paths of total length more
than d, there is no valid solution with t. Thus, we can
decide in O(n3) time whether there is a triangulation
with dual diameter at most d, i.e., if Md[1, n] 6= ∞.
Since the dual diameter is at most n − 3, a binary
search gives an O(n3 log n) time algorithm. �



30th European Workshop on Computational Geometry, 2014

Figure 5: An embedding of a triangulation with log-
arithmic dual diameter on a point set. The pockets
are shown gray, their triangulation (completing the
triangulation of S) is dashed.

4 Triangulating a Point Set

We are now given a set S of n points in the plane,
and we need to find a triangulation of S whose dual
graph has small diameter. The dual graph will be a
graph in which no vertex has degree more than three.
Thus, it is easy to see that the Ω(log n) lower bound
for simple polygons also extends for this case. It turns
out that this bound can always be achieved.

Theorem 6 Given a planar n-point set S, we can
compute in O(n log n) time a triangulation of S with
dual diameter Θ(log n).

Proof. Let P be a convex polygon with n vertices
and ∆′ a triangulation of P with dual diameter
Θ(log n) (e.g., the triangulation from Proposition 1).
The triangulation ∆′ is an outerplanar graph. Any
outerplanar graph of n vertices has a plane straight-
line embedding on any given n-point set [6]. Further-
more, such an embedding can be found in O(nd) time
and O(n) space, where d is the dual diameter of the
graph [1].

Let ∆S be the embedding of ∆′ on S. In general,
∆S does not triangulate S (see Figure 5). Consider
the convex hull of ∆S (which equals the convex hull
of S). The untriangulated pockets are simple poly-
gons. We triangulate each pocket arbitrarily to ob-
tain a triangulation ∆ of S. We claim that the dual
diameter of ∆ is O(log n).

Lemma 7 The dual distance from any triangle in a
pocket to any triangle in ∆S is O(log n).

Proof. Let Q be a pocket, and ∆Q a triangulation
of Q. Since Q is a simple polygon, the dual ∆∗Q is a
tree with maximum degree 3. A triangle t of ∆Q not
incident to the boundary of ∆S either has degree 3 in
∆∗Q, or it is the unique triangle in ∆Q that shares an
edge with the convex hull of S. Perform a breadth-
first-search in ∆∗Q starting from t, and let k be the

maximum number of consecutive layers from the root
of the BFS-tree that do not contain a triangle incident
to the boundary. By the above observation, for each
layer but one the size doubles, so k = O(log n). �

Given Lemma 7 and the fact that ∆S has dual di-
ameter O(log n), Theorem 6 is now immediate. �

5 Conclusion

The proof of the lower bound (Corollary 2) is es-
sentially based on fundamental properties of graphs
(i.e., bounded degree) rather than geometric proper-
ties. Since the bound is tight when for the convex
position case, it cannot be tightened in general. How-
ever, we wonder if, by using geometric tools, one can
construct a bound that depends on the number of re-
flex vertices (or interior points for the case of sets of
points). Another natural open problem is to extend
our algorithm for computing MDT of simple polygons
to general polygonal domains, or even sets of points.

Research on this topic was initiated at the Brus-
sels Spring Workshop on Discrete and Computational
Geometry which took place which took place May 20-
24 2013. We thank all the workshop participants for
discussions and helpful comments.
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