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Abstract
We present a data structure which allows detecting when disks of a set B are no longer intersected
by disks of set of disk A when deleting its disks. Preprocessing A, B and deleting n disks of
A with detecting all newly revealed disks of B requires O(|B| log4 |A| + |A| log5(|A|)λ6(log |A|) +
n log9(|A|)λ6(log |A|)) expected time, where λ6(·) is the Davenport-Schinzel bound of order 6.

To construct this data structure, we extend known dynamic lower envelope data structures
for hyperplanes and bivariate functions of constant description complexity with a linear size lower
envelope in R3, such that they allow sampling of a random element not above a given point in
O(log3 n) expected time.

1 From Graph Connectivity to Disk Sampling

Graph connectivity plays a fundamental role in algorithms and data structures. The dynamic
variant where edges can be inserted or deleted is reasonably well understood [6–8,11,14], with
data structures supporting updates and queries determining the connectivity of two vertices
in polylogarithmic time. Updating vertices seems significantly harder, as a single update can
have a large impact on the overall structure. Chan et al. [4, Theorem 1] presented a data
structure allowing vertex updates in Õ(m2/3) amortized time and queries in Õ(m1/3) time,
where m is the number of possible edges of the graph that need to be known in advance.

The vertices of geometric intersection graphs correspond to geometric objects and its
edges to intersections. As they restrict possible graphs, faster solutions may be within reach.
However, work is required to find edges affected by an update. Chan et al. [4, Theorem 5]
gave a general method for various objects with sub-linear update and query times.

In this work we present a data structure, which allows detecting when a disk is no longer
intersected by any disk of a set after deletions. We call such a disk revealed. This data
structure can be used as a component in maintaining connectivity information in deletion-only
disk intersection graphs [9].

To construct it, we first describe data structures for randomly sampling a hyperplane
or a continuous function of constant description complexity not above a given point in R3,
which might be of interest of its own.
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Figure 1 When removing a red disk, we want to obtain all blue disks intersecting this red disk but
no other red disk. After removing the dashed red disk, the dashed blue disks need to be obtained.

2 Preliminaries

Let A, B be two sets of disks in R3, such that for each disk b ∈ B exists at least one disk
a ∈ A it intersects. We now want to remove a disk a ∈ A and obtain all disks b ∈ B which
no longer have any disk from A they intersect. We call such disks revealed. See Figure 1.

A data structure for detecting such revealed disks is constructed over the course of
Sections 4 and 5, which concludes in Theorem 5.3. Its central idea is representing intersections
sparsely via assigning each b ∈ B repeatedly to one random a ∈ A it intersects until there is
none left and b is revealed.

Obtaining such a random disk of a given semi-dynamic set which intersects a query disk
is the main problem. We will build upon the dynamic lower envelope data structures by
Kaplan et al. Those maintain a dynamic set of hyperplanes [10, Section 7] or continuous
bivariate functions of constant description complexity [10, Section 8] in R3 under insertions
and deletions. Also, they support vertical ray shooting queries into their lower envelopes.
The second variant is an extension of the first, and the first is a slight extension of a data
structure by Chan [3]. We will briefly describe the first variant in Section 3.

The data structures use vertical k-shallow (1/r)-cuttings as their most integral part. Let
A(H) be the arrangement of hyperplanes H in R3. The k-level Lk of A(H) is the closure of
all points of

⋃
H with k hyperplanes of H strictly below. Then, L≤k is the union of the levels

until Lk. A vertical k-shallow (1/r)-cutting is a set Λ of pairwise openly disjoint prisms,
such that the union of Λ covers L≤k, the interior of each τ ∈ Λ is intersected by at most
|H|/r hyperplanes of H, and each prism is vertical (i.e. it consists of a triangle and all points
below it). Some or all points of a prism’s top may lie at infinity. The number of prisms is the
size of the cutting. Using the algorithm by Chan and Tsakalidis a vertical Θ(|H|/r)-shallow
1/r-cutting of size O(r) can be created in O(|H| log r) time [5]. The conflict list CL(τ) of a
prism τ is the set of all hyperplanes crossing its interior.

This notion can also be extended to bivariate functions. Then the regions are vertical
pseudo-prisms, where the top is limited by a pseudo-trapezoid part of a function [10, Section 3].

3 Vertical Ray Shooting Queries for Hyperplanes

First, we will construct a data structure for the simpler problem of sampling a random disk
containing a given point from a dynamic set of disks. Using linearization [1, 15] we can
transform this problem in R2 into the problem of sampling a hyperplane not above a given
point in R3. This allows us to build upon the data structure for hyperplanes by Kaplan et al.

Their data structure consists ofO(logn) static substructures of exponentially decaying size,
where n is the current number of hyperplanes. Substructures are periodically rebuilt similar
to the Bentley-Saxe technique [2] and the whole data structure after Θ(n) updates. Each
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Figure 2 The situation after walking up for q and the number of hyperplanes of CL(τj) intersecting.

substructure of n′ elements consists of a hierarchy of vertical shallow cuttings {Λj}0≤j≤m+1
with m ∈ O(logn′). Let kj = 2jk0, nj be the number of planes in Λj+1, and k0, α be
constants. Λm+1 consists of a single prism covering all of R3. Λj for j < m+ 1 consists of a
vertical kj-shallow (αkj/nj)-cutting of the hyperplanes of Λj+1, with hyperplanes intersecting
too many prisms removed. Thus, the prisms of Λj cover L≤kj of the planes of Λj+1 and each
conflict list contains at most αkj hyperplanes. The removed hyperplanes are reinserted into
other substructures, such that each hyperplane is in a substructure’s Λ0. A substructure
requires O(n′ logn′) space and building it requires O(n′ log2 n′) time.

Vertical ray shooting queries are done via searching the Λ0 of all O(logn) substructures
for the prism intersecting the vertical line containing the given position in O(logn) time each.
Then, all obtained prisms are searched for the lowest plane along the line in O(logn) time.

Insertions are handled with a Bentley-Saxe approach via rebuilding multiple smaller
substructures into new substructures periodically. They require O(log3 n) amortized time.

Deletions are handled differently. In all substructures hyperplanes are only marked as
deleted and ignored in queries. As described above, queries per substructure are done in their
Λ0 only. Thus, the lowest non-deleted hyperplane along a given vertical line might not be
contained in the prism of Λ0 intersecting said line. It may require the corresponding prism
of Λ1 or an even higher Λj , as prisms from higher cuttings can intersect more hyperplanes.

To handle this, when deleting a hyperplane in a substructure all prisms containing it are
identified. For each such prism an individual counter is incremented. If it reaches a fraction
of f = 1

2α of the size of its conflict list, the prism and its hyperplanes are marked as purged
in the substructure. When hyperplanes are first marked as purged, they are also reinserted
into the data structure anew. Hyperplanes marked as purged are skipped in queries as well.

Consider prisms τ1, . . . , τm+1 from Λ1, . . . , Λm+1 intersecting a vertical line. The idea
behind the purging is that |CL(τj)| ≤ αkj and Λj−1 covers L≤kj−1 of the hyperplanes of
Λj , see Figure 2. Thus, a fraction of at least kj−1

αkj
= f of CL(τj) is intersected by τj−1. A

plane first appearing in CL(τj) then can only be the lowest along the vertical line if all from
CL(τj−1) have been deleted and thus a fraction of f of CL(τj) as well. Then, τj would have
been purged and its hyperplanes reinserted into other substructures. Also, each hyperplane
is contained in at most one substructure in Λ0 without being marked as purged or deleted.

Deletions require O(log5 n) amortized time and overall O(n logn) space is needed.

4 Sampling Hyperplanes

When at least a fraction of all hyperplanes in CL(τj) is intersected by any τj−1 and is not
marked as deleted, we can sample inside CL(τj) to get a non-deleted hyperplane intersecting
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τj−1 with a minimum probability. For this, we lower the purging threshold to f ′ = 1
4α .

I Lemma 4.1. The Kaplan et al. data structure for hyperplanes [10, Section 7] with f ′ = 1
4α

as purging threshold works as desired with the same asymptotic time and space bounds.

The correctness of the argument in Section 3 (and the proof by Kaplan et al. [10,
Lemma 7.6]) is unchanged, as prisms are just purged earlier. The run time analysis [10,
Lemma 7.7] requires an adjustment of constants only1, and the asymptotic space bound is
unaffected as well.

I Lemma 4.2. Given prisms τj of Λj and τj−1 of Λj−1 with j ≥ 1 from the same substructure
and intersected by the same vertical line. If τj not has been purged with threshold f ′ = 1

4α , at
least 1

4α |CL(τj)| of its hyperplanes are intersected by τj−1 and are not marked as deleted.

Proof. The prism τj−1 intersects at least kj−1 = 2j−1k0 hyperplanes of Λj in its interior, as
τj−1 is from a vertical kj−1-shallow cutting of the hyperplanes of Λj . Due to the vertical
line these hyperplanes must all be contained in CL(τj) as well. See Figure 2. Also, the prism
τj intersects at most αkj = α2jk0 hyperplanes, as it is built from a (αkj/nj)-cutting.

Thus, if τj has not been purged due to deletions, it must contain a fraction of

>
2j−1k0 − 1

4α · α2jk0

α2jk0
= 2j−2k0

α2jk0
= 1

4α (1)

non-deleted hyperplanes intersecting τj−1. J

Kaplan et al. [10] already observed the following. For each individual substructure, the
ceilings of the prisms of Λj form a polyhedral terrain Λj . Due to the removal of planes
between steps during creation the terrain Λj does not necessarily lie below Λj+1. Nevertheless,
the number of hyperplanes in Λj below any point is less or equal than the number in Λj+1.
This is in particular valid for those points in or above Λj .

To sample a hyperplane not above a given point we walk the Λj from j = 0 upwards. At
each step we locate the vertical prism which contains the point or has it above in O(logn)
time, as it is done in Λ0 in the original data structure. In case the point is located inside the
prism we stop, otherwise we continue. This allows us to apply Lemma 4.2. See Figure 2.

I Theorem 4.3. The lower envelope of hyperplanes in R3 can be maintained dynamically,
where each insertion takes O(log3 n) amortized time, each deletion takes O(log5 n) amortized
time, vertical ray shooting queries take O(log2 n) time, and sampling a random hyperplane
not above a given point takes O(log3 n) expected time, where n is the number of hyperplanes
when the operation is performed. The data structure requires O(n logn) storage.

Proof. We construct the data structure for hyperplanes by Kaplan et al. [10, Section 7]
with f ′ = 1

4α as the purging threshold and without their memory optimization (which we
omitted in Section 3). According to Lemma 4.1 the correctness and asymptotic bounds are
unchanged. We construct for all substructures for all Λj , j ≥ 1 point location data structures.
This requires O(n logn) storage and the run time can be subsumed in the respective creation
of the vertical shallow cutting.

Sampling a hyperplane not above a query point q then can be done as follows. For each
substructure the first Λj and corresponding τj are obtained where q is inside τj , as described

1 In the original proof b′ has to be chosen larger (e.g. b′ ≥ 8αb′′), as purging a prism τ releases
≥ ( b

′

4α − b
′′)|CL(τ)| logN credits now.
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above. In case the prism was purged or the prism is τ0 and no non-deleted hyperplane lies
not above q, this substructure is skipped. This required O(log3 n) time altogether.

All hyperplanes of a substructure’s Λ0 not above q are contained in CL(τj). Hence, if all
substructures were skipped there is no hyperplane not above q. Otherwise, hyperplanes are
sampled from all prisms obtained simultaneously, until the result is not marked as deleted, is
not marked as purged in its substructure, and is contained in the substructure’s Λ0 (i.e. was
not removed during creation).

If we stopped at j ≥ 1, the top of τj−1 lies not above q, and we can apply Lemma 4.2.
Thus, each non-skipped conflict list contains a fraction of at least min(f ′, 1/k0) non-deleted
hyperplanes not above q. Recall that each non-deleted hyperplane is contained in exactly
one substructure in Λ0 without being marked as purged. Hence, each non-deleted hyperplane
is sampled with equal probability and each sampling returns with a probability of at least
min(f ′, 1/k0) · 1/O(logn) a valid hyperplane. Thus, we expect O(logn) samplings. J

I Corollary 4.4. Sampling a random disk in R2 containing a given point from a dynamic
set can be implemented with the bounds of Theorem 4.3.

5 Sampling Disks

Sampling a random disk intersecting a given disk requires another approach, as linearization
results in hyperplanes in R4. Instead, we sample via the distance functions the disks imply.

In addition to the hyperplane lower envelope data structure, Kaplan et al. describe how to
create shallow cuttings of totally defined continuous functions R2 → R of constant description
complexity [10, Theorem 8.1, Theorem 8.2]. Afterwards, they plug it as a black box into their
hyperplane data structure [10, Theorem 8.3]. Its analysis changes in values only. We adjust
the purging threshold and sample as before, while keeping bounds and correctness intact.
λs(n) is the maximum length of a Davenport-Schinzel sequence of order s on n symbols [13].

I Theorem 5.1. The lower envelope of totally defined continuous bivariate functions of
constant description complexity in R3, where the lower envelope of any subset has linear
complexity, can be maintained dynamically, where each insertion takes O(log5(n)λs(logn))
amortized expected time, each deletion takes O(log9(n)λs(logn)) amortized expected time,
vertical ray shooting queries take O(log2 n) time, and sampling a random function not above
a given point takes O(log3 n) expected time, where n is the number of functions when the
operation is performed. The data structure requires O(n log3 n) expected space.

Using this theorem we can finally sample disks intersecting a given disk and construct a
data structure for finding newly revealed disks after deletions.

I Corollary 5.2. A set of disks can be maintained dynamically and a random disk sampled
intersecting a given disk with the bounds of Theorem 5.1 with s = 6.

Proof. Let d be a disk with center cd and radius rd. Then we can represent the distance of any
point p ∈ R2 from this disk as additively weighted Euclidean metric with δ(p, d) = |pcd| − rd,
where | · | is the Euclidean distance. The distance functions of multiple disks form a lower
envelope of linear complexity [12] and have s = 6 [10, Section 9]. Hence, we can build the data
structure of Theorem 5.1 with s = 6 to maintain the distance functions δ(p, d) of all disks d.
A disk intersecting a given disk q then can be found via sampling a random function not above
the point ((cq)x, (cq)y, rq)T , as every function not above has δ(cq, d) = |cqcd| − rd ≤ rq. J

EuroCG’21



63:6 Sampling Hyperplanes and Revealing Disks

I Theorem 5.3. Let A and B be sets of disks in R2. We can preprocess A and B, such
that elements can be inserted into or deleted from B and elements can be deleted from A

while detecting all newly revealed disks of B after each operation. Preprocessing A and B
and deleting n disks of A with detecting all newly revealed disks of B requires O(m log4 |A|+
|A| log5(|A|)λ6(log |A|)+n log9(|A|)λ6(log |A|)) expected time and O(|A| log3 |A|+m) expected
space, where m is maximum size of B. Updating B requires O(log3 |A|) expected time.

Proof. We repeatedly assign each b ∈ B randomly to an a ∈ A it intersects. New assignments
are made both initially and each time the previous assigned a ∈ A gets deleted, unless b got
revealed. Fix the deletion order a|A|, . . . a1. Each b ∈ B is reassigned after deleting ai ∈ A
with probability 1/i, assuming it intersects all ai. This results in an expected number of
≤ H|A| ∈ O(log(|A|)) reassignments per b ∈ B.

We manage A with the data structure of Corollary 5.2. Building it and assigning each
b ∈ B to an a ∈ A it intersects requires O(|A| log5(|A|)λ6(log |A|) + |B| log3 |A|) expected
amortized time. Each deletion in A requires O(log9(|A|)λ6(log |A|)) amortized time plus the
time for reassignments. These sum up to O(m log4 |A|) expected time. Updating B needs
O(log3 |A|) expected time. The space bound follows from Corollary 5.2. J
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