
Linear-Time Delaunay Triangulations Simplified∗

Kevin Buchin† Wolfgang Mulzer‡

Abstract

Recently it was shown that — under reasonable as-
sumptions — Voronoi diagrams and Delaunay tri-
angulations of planar point sets can be computed
in time o(n log n), beating the classical comparison-
based lower bound. A number of increasingly faster
randomized algorithms have been proposed, most re-
cently a linear-time algorithm based on a randomized
incremental construction that uses a combination of
nearest neighbor graphs and the history structure to
speed up point location. We present a simpler vari-
ant of this approach relying only on nearest neigh-
bor graphs. The algorithm and its analysis gener-
alize to higher dimensions, with an expected perfor-
mance that is proportional to the structural change
of the randomized incremental construction. As a by-
product, we analyze an interesting class of insertion
orders for randomized incremental constructions.

1 Introduction

A classical lower bound asserts that it takes Ω(n log n)
time to construct the Delaunay triangulation (DT) of
a planar point set in the algebraic decision tree model.
However, three years ago Chan and Pǎtraşcu [5]
showed that this lower bound can be broken on a word
RAM, giving a randomized algorithm that runs in
O(n log n/log logn) time, which they later improved
to n2O(

√
log logn) [6]. More recently, a randomized

linear-time algorithm in a different model was pro-
posed [2]. In this paper, we show how to simplify this
approach by using a variant of a randomized incre-
mental construction (RIC) con BRIO.

Our main tool is a reduction from nearest neigh-
bor graphs (NNGs) to Delaunay triangulations: we
show that if the NNG for an m-point set can be com-
puted in time f(m), then the Delaunay triangula-
tion for an n-point set P can be computed in time
O(C(n)+f(n)), where C(n) is the expected structural
change for a RIC. In a recent paper, Chan [4] explains
a linear-time reduction from quadtrees to NNGs and

∗The first author was supported by the Netherlands’ Organ-
isation for Scientific Research (NWO) under BRICKS/FOCUS
project no. 642.065.503. The second author was supported in
part by NSF grant CCF-0634958 and NSF CCF 0832797.
†Dept. of Information and Computing Sciences, Utrecht

University, Netherlands, buchin@cs.uu.nl
‡Department of Computer Science, Princeton University,

wmulzer@cs.princeton.edu

describes two settings in which quadtrees can be con-
structed quickly. The first assumes a real-RAM with
a constant-time restricted floor-function that can be
applied only if the resulting integer has O(log n) bits.
Thus, we avoid issues about creating an unreasonably
powerful model of computation. Furthermore, we as-
sume that the input P has polynomially bounded
spread (defined below). Then, the NNG of P , N(P),
can be computed in linear time [4]. In the second
setting, we have a word RAM which can compute
the shuffle of a point in constant time (if the coordi-
nates of p are (p1w · · · p11, p2w · · · p21, . . . , pdw · · · pd1),
the shuffle is p1wp2w · · · pdw · · · pd1). This is a reason-
able assumption, since the shuffle operation is in AC0.
Here, a NNG can be found in the time needed for in-
teger sorting. We believe that current integer sorting
algorithms can be adapted to the shuffle order and
that therefore the assumption can be dropped.

Our reduction follows the RIC paradigm, choos-
ing a random permutation of the input and inserting
the points into the DT one by one. However, unlike
the previous algorithm [2], the choice is not uniform,
but we use a sampling strategy that can be seen as a
generalization of a biased randomized insertion order
(BRIO) [1]. Compared to the classical approach, RIC
con BRIO achieves an improved locality of reference
as follows: take a gradation P = S0 ⊇ S1 ⊇ · · · ⊇ S`,
where |S`| = O(1) and Si+1 is obtained from Si by
sampling each point independently with probability
1/2. When performing the RIC, first insert all points
in S`, then S`−1, then S`−2, and so on. The order
within the sets Si is arbitrary; eg, it could be opti-
mized for the underlying hardware. This procedure
runs in expected time proportional to what classical
RICs achieve [1, 3].

Owing to the flexibility of RICs, our algorithm
works in any dimension. For the planar case, we can
give a very simple analysis for the reduction. How-
ever, this analysis crucially uses the fact that the
worst-case complexity of planar DTs is linear. Of
course, this is no longer true in higher dimensions,
but even then, “typical” point sets often have linear-
size DTs. Even stronger, it is not uncommon to en-
counter inputs in which the size of the DT for a ran-
dom subset is linear in the subset. For example, this
happens for points that are distributed uniformly in a
d-dimensional ball. For such point sets the structural
change of classical RICs and RICs con BRIO is linear
(but they lose a logarithmic factor for updating the

1

conflict information). As for many random distribu-
tions, the expected spread is polynomially bounded,
which suffices to compute the NNG in linear time in
our first model of computation. In a more refined
analysis, we will show that the expected running time
of our reduction is proportional to the expected struc-
tural change of the RIC plus the time for computing
the NNG. Thus, on typical inputs we again achieve
an improvement in running time over classical RICs.

2 Algorithm & First Analysis

We say that an n-point set P ⊆ Rd has polynomially
bounded spread, if the ratio between the maximum
and minimum distance between any two points in P is
O(nc), for some constant c. NNGs for point sets with
bounded spread or for points with integer coordinates
can be computed quickly, as was shown by Chan [4].

Theorem 1 (Chan [4]) Let P ⊆ Rd be an n-point
set. If P has polynomially bounded spread, N(P)
can be computed in time O(n) on a real-RAM with
the restricted floor function. If the coordinates of the
points are b-bit integers and we assume a word RAM
with the shuffle operation, then N(P) can be found in
time O(sort(n)), where sort(n) is the time for sorting
db-bit integers.

We now describe our algorithm BrioDC. Suppose
that NNGs can be computed in f(m) time, such
that f(m)/m is increasing. By Theorem 1, we have
f(n) = O(n) or f(n) = O(sort(n)), depending on the
model. Given a point set P , we first compute N(P) in
O(f(n)) time. Next we compute a sample S ⊆ P such
that S meets every connected component of N(P) and
such that S contains every point in P with probabil-
ity 1/2. This is done as follows: we define a (partial)
matching M(P) on P by pairing up two arbitrary
points in each component of N(P). The sample S is
obtained by picking one random point from each pair
in M(P) and sampling the points in P \M(P) inde-
pendently with probability 1/2 (although they could
also be paired up). We recursively compute the De-
launay triangulation DT(S) of S. To locate P \ S
in DT(S), we traverse the components of N(P) start-
ing in each component at a point of S and inserting
points while we walk through the Delaunay triangu-
lation along the edges of N(P). Since f(m)/m is in-
creasing, it takes O(f(n)) time to compute the NNGs
for all the samples.

Theorem 2 Let P be a planar n-point set. BrioDC

computes DT(P) in expected time O(f(n)+n), where
f(m) is the time to compute a m-point NNG and we
assume that f(m)/m is increasing.

Proof. The cost of a straight-line walk along an edge
pq of N(P) with p in the current DT and q to be in-

serted next can be split into the cost of finding the
triangle at p in which the walk starts and the cost of
the actual traversal. The first part of the cost can be
bounded by the number of triangles at p in the current
DT. Summing over all walking steps, any triangle is
counted for each of its vertices at most as often as the
degree of this vertex in N(P), which is bounded. The
second part of the cost, ie, the cost of the traversal,
can be bounded by the structural change since all tri-
angles traversed are destroyed when the next point is
inserted.

The structural change can be bounded by compar-
ing it to the structural change of the last round of a
RIC con BRIO. Let ps be the probability that a given
triangle with s conflicts appears in the last round of
such a construction. We have ps = c/2s for a suitable
constant c. The probability p′s of this triangle appear-
ing in BrioDC while constructing DT(P) from DT(S)
is also bounded by 1/2s: either the stoppers of the tri-
angle are sampled independently of each other (then
we directly get this bound), or not (then S includes
a stopper and the simplex cannot occur). Thus, the
expected structural change is asymptotically as for
RIC con BRIO and therefore linear [1, 3]. Now, the
expected size of S is |P |/2, and we can apply the ar-
gument above to the construction of DT (S), and so
on. Overall this yields the desired running time. �

3 Dependent Insertion Orders & Second Analysis

Theorem 2 does not apply to higher dimensions, since
it requires that the worst-case complexity of a planar
DT is linear. We now make the analysis sensitive to
the expected structural change of a RIC.

Theorem 3 Let P be a d-dimensional n-point set.
The expected running time of BrioDC is O(C(P) +
f(n)), where C(P) denotes the expected structural
change incurred by a RIC on P and f is as in The-
orem 2. The constant in the O-notation depends ex-
ponentially on d.

Let P = S0 ⊇ · · · ⊇ S` be the sequence of samples
taken by BrioDC. Fix a set u of d+ 1 distinct points
in P . Let ∆ be the simplex spanned by u, and let
Lu ⊆ P denote the points in the circumsphere of ∆.
The set u is the trigger set, Lu the stopper set for ∆.
Consider the event Aα that ∆ occurs in one of the
DTs in the construction of DT(Sα) from DT(Sα+1),
for some α. Clearly, Aα can only happen if u ⊆ Sα
and Lu ∩ Sα+1 = ∅.

We will prove Theorem 3 using Lemma 4 which in
turn follows from Proposition 6.

Lemma 4 We have

Pr[Aα] ≤ e2d+2 2−(d+1)α
(
1− 2−α−1

)|Lu|
.

2

Let us first give some intuition: we think of the sam-
pling as an (α+ 1)-step random walk on a path with
|Lu| nodes: a random step represents a new sam-
ple, and each node represents the current number of
stoppers. The goal is to upperbound the probabil-
ity of reaching state 0 while retaining all triggers.
This model is overly simplistic: the random choices
in a step not only depend on the number of stoppers
in the current sample S, but also on the matching
M(S). Even worse, the probability distribution in
the current state may depend on past states. How-
ever, we will show how to avoid these issues through
appropriate conditioning, and that the random walk
essentially behaves like a Markov process that in each
round eliminates d + 1 stoppers and samples the re-
maining stoppers independently. The elimination is
due to trigger-stopper pairs, since we assume that
all triggers survive. The remaining stoppers are not
necessarily independent, but matching two stoppers
guarantees that one of them survives, which can only
help. Eliminating d+ 1 stoppers in the ith round has
a similar effect as starting with about (d+ 1)2i fewer
stoppers: though a given trigger can be matched with
only one stopper per round, these parings can vary for
different instances of the walk, and since a given stop-
per survives a round with probability roughly 1/2, the
“amount” of stoppers eliminated by one trigger in all
instances roughly doubles per round.

Proof. (of Lemma 4) For a sample S ⊆ P , we de-
fine the matching profile for S as the triple (a, b, c)
that counts the number of trigger-stopper, stopper-
stopper, and trigger-trigger pairs in M(S). In order
to bound Pr[Aα], we consider

ps,k := max
Pk

Pr[Aα | Xs,k,Pk], (1)

where we define

Xs,k := {u ⊆ Sα−k} ∩ {|Lu ∩ Sα−k| = s} ,

ie, the event that the sample Sα−k contains all the
triggers and exactly s stoppers. The maximum
in (1) is taken over all possible sequences Pk =
m0, . . . ,mα−k−1, Y0, . . . , Yα−k−1 of matching profiles
mi for Si and events Yi of the form Xti,α−i for some
ti. Since Pr[Aα] = p|Lu|,α, it suffices to upperbound
ps,k. We define a recursion for ps,k. To do that, let

Tk := {u ⊆ Sα−k} ,

ie, the event that Sα−k contains all the triggers, and
let

Uk,i := {|Lu ∩ Sα−k| = i} ,

denote the event that Sα−k contains exactly i stop-
pers.

Proposition 5 We have

ps,k ≤ max
m

Pr[Tk−1 | Xs,k,m]·
s∑
i=0

pi,k−1 Pr[Uk−1,i | Tk−1, Xs,k,m],

where the maximum is over all possible matching pro-
files m = (a, b, c) for Sα−k.

Proof. Fix a sequence Pk as in (1). Then, by distin-
guishing how many stoppers are present in Sα−k+1,

Pr[Aα | Xs,k,Pk] =
s∑
i=0

Pr[Xi,k−1 | Xs,k,Pk] Pr[Aα | Xi,k−1, Xs,k,Pk].

Now if we condition on a matching profile m for Sα−k,
we get

Pr[Xi,k−1 | Xs,k,Pk,m] =
Pr[Tk−1 | Xs,k,m] Pr[Uk−1,i | Tk−1, Xs,k,m],

since the distribution of triggers and stoppers in
Sα−k+1 becomes independent of Pk once we know the
matching profile and the number of triggers and stop-
pers in Sα−k. Furthermore,

Pr[Aα | Xi,k−1,m, Xs,k,Pk] ≤
max
Pk+1

Pr[Aα | Xi,k−1,Pk+1] = pi,k−1.

The claim follows by taking the maximum over m. �

We use Proposition 5 to bound ps,k: if m = (a, b, c)
pairs up two triggers, we get u 6⊆ Sα−k+1 and
Pr[Tk−1 | Xs,k,m] = 0. Hence we can assume c = 0
and therefore Pr[Tk−1 | Xs,k,m] = 1/2d+1, since all
triggers are sampled independently. Furthermore, we
know that none of the a stoppers paired with a trigger
and half of the 2b stoppers paired with a stopper end
up in Sα−k+1, while the remaining tm := s − a − 2b
stoppers are sampled independently. Thus, Proposi-
tion 5 gives

ps,k ≤ max
m
c=0

s−a−b∑
i=b

pi,k−1

2d+1
Pr
[
Btm1/2 = i− b

]
, (2)

where Btm1/2 denotes a binomial distribution with tm
trials and success probability 1/2.

Proposition 6 We have

ps,k ≤ 2−(d+1)k
(
1− 2−k−1

)s k∏
j=1

(
1− 2−j

)−d−1
.

3

Proof. The proof is by induction on k. For k = 0,
we have

ps,0 ≤
(

1− 1
2

)s
,

since we require that none of the s stoppers in Sα be
present in Sα+1, and this can only happen if they are
sampled independently of each other. Furthermore,
by (2),

ps,k+1

≤ max
m
c=0

s−a−b∑
i=b

pi,k
2d+1

Pr
[
Btm1/2 = i− b

]
(3)

= max
m
c=0

1
2d+1+tm

tm∑
i=0

(
tm
i

)
pi+b,k.

Using the inductive hypothesis and the binomial the-
orem, we bound the sum as

tm∑
i=0

(
tm
i

)
pi+b,k

≤
∑tm
i=0

(
tm
i

) (
1− 2−k−1

)i+b
2(d+1)k

k∏
j=1

(
1− 2−j

)−d−1

=

(
2− 2−k−1

)tm
2(d+1)k

(
1− 2−k−1

)b k∏
j=1

(
1− 2−j

)−d−1

=

(
1− 2−k−2

)tm
2(d+1)k−tm

(
1− 2−k−1

)b k∏
j=1

(
1− 2−j

)−d−1
.

Now, since tm = s− a− 2b ≥ s− d− 1− 2b and since(
1− 2−k−1

)b
(1− 2−k−2)2b

=
(

1− 2−k−1

1− 2−k−1 + 2−2k−4

)b
≤ 1,

it follows that

tm∑
i=0

(
tm
i

)
pi+b,k

≤
(
1− 2−k−2

)s
2(d+1)k−tm

k+1∏
j=1

(
1− 2−j

)−d−1
,

and hence (3) gives

ps,k+1 ≤
(
1− 2−k−2

)s
2(d+1)(k+1)

k+1∏
j=1

(
1− 2−j

)−d−1
,

which finishes the induction. �

(Proof of Lemma 4 continued) Now, since (1 − x) >
exp(−x/(1− x)) for x < 1 we have

k∏
j=1

(1− 2−j)−d−1 ≤ e2(d+1)
P∞

j=1 2−j

= e2(d+1),

so we get as claimed

Pr[Aα] ≤ p|Lu|,α ≤ e
2d+22−(d+1)α(1− 2−α−1)|Lu|.

�

Proof. (of Theorem 3) The cost for NNG computa-
tions and walking can be bounded as in the proof of
Theorem 2 (in particular the degree of the NNG is
bounded by a constant for any fixed dimension), ex-
cept that the expected structural change is not neces-
sarily linear. To prove the theorem, it is sufficient to
show that the probability that the simplex ∆ spanned
by u ⊆ P occurs in BrioDC is up to a constant fac-
tor upper bounded by the same probability in a RIC.
In the case of BrioDC, this probability is bounded by∑∞
α=0 Pr[Aα]. Let p denote the corresponding proba-

bility in a RIC and let

pα := 2−(d+1)α(1− 2−α−1)|Lu|(1− 2−d−1).

We have

Pr[Aα] ≤ exp(2d+ 2)(1− 2−d−1)−1pα.

Now, from an analysis of RIC con BRIO [3, Lemma
3.8] we have,

∑∞
α=0 pα ≤ 2d+1p, thus,

∞∑
α=0

Pr[Aα] ≤ 2d+1 exp(2d+ 2)(1− 2−d−1)−1p.

�

References

[1] N. Amenta, S. Choi, and G. Rote. Incremental con-
structions con BRIO. In Proc. 19th Annu. ACM
Sympos. Comput. Geom., pages 211–219. ACM Press,
2003.

[2] K. Buchin. Delaunay triangulations in linear time?
Submitted, see arXiv:0812.0387v1 [cs.CG].

[3] K. Buchin. Organizing Point Sets: Space-
Filling Curves, Delaunay Tessellations of Random
Point Sets, and Flow Complexes. PhD thesis,
Free University Berlin, 2007. http://www.diss.fu-
berlin.de/diss/receive/FUDISS thesis 000000003494.

[4] T. M. Chan. Well-separated pair decomposition in
linear time? Inform. Process. Lett., 107(5):138–141,
2008.

[5] T. M. Chan and M. Pǎtraşcu. Transdichotomous re-
sults in computational geometry, I: Point location in
sublogarithmic time. SIAM J. Comput. To appear.
Preliminary versions in: Proc. 47th IEEE Sympos.
Found. Comput. Sci. (FOCS), 2006, pp. 325–332, 333–
342.

[6] T. M. Chan and M. Pǎtraşcu. Voronoi diagrams in

n ·2O(
√

lg lg n) time. In Proc. 39th Annu. ACM Sympos.
Theory Comput., pages 31–39, 2007.

4

