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Abstract

We describe a new data structure for dynamic nearest neigh-
bor queries in the plane with respect to a general family
of distance functions that includes L,-norms and additively
weighted Euclidean distances, and for general (convex, pair-
wise disjoint) sites that have constant description complex-
ity (line segments, disks, etc.). Our data structure has a
polylogarithmic update and query time, improving an ear-
lier data structure of Agarwal, Efrat and Sharir that required
O(n®) time for an update and O(logn) time for a query [1].
Our data structure has numerous applications, and in all of
them it gives faster algorithms, typically reducing an O(n®)
factor in the bounds to polylogarithmic. To further demon-
strate its effectiveness, we give here two new applications:
an efficient construction of a spanner in a disk intersection
graph, and a data structure for efficient connectivity queries
in a dynamic disk graph.

To obtain this data structure, we combine and extend
various techniques and obtain several side results that are
of independent interest. Our data structure depends on the
existence and an efficient construction of “vertical” shallow
cuttings in arrangements of bivariate algebraic functions.
We prove that an appropriate level in an arrangement of a
random sample of a suitable size provides such a cutting. To
compute it efficiently, we develop a randomized incremental
construction algorithm for finding the lowest k levels in
an arrangement of bivariate algebraic functions (we mostly
consider here collections of functions whose lower envelope
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has linear complexity, as is the case in the dynamic nearest-
neighbor context). To analyze this algorithm, we improve a
longstanding bound on the combinatorial complexity of the
vertical decomposition of these levels. Finally, to obtain our
structure, we plug our vertical shallow cutting construction
into Chan’s algorithm for efficiently maintaining the lower
envelope of a dynamic set of planes in R®. While doing this,
we also revisit Chan’s technique and present a variant that
uses a single binary counter, with a simpler analysis and an
improved amortized deletion time.

1 Introduction

Nearest neighbor searching in the plane is one of the
most fundamental problems in computational geometry,
and it has been studied since the very beginning of the
field [5,22]. Given a set S of sites in the plane, we would
like to construct a data structure that allows us to find
the “closest” site for any given query object. If the
set of sites is fixed, Voronoi diagrams and their many
variants provide a simple and well-understood solution
to this problem [3,5]. However, in many applications,
the set of sites may change dynamically, as we insert
and delete sites into/from S, and we want to answer
nearest-neighbor queries interleaved with the updates.
This setting is much less understood.

If S consists of points and the distances are mea-
sured in the Euclidean metric, it is known how to
achieve polylogarihmic update and query time [9]. How-
ever, there are many more geometric problems in which
dynamic nearest neighbor searching forms a key com-
ponent in an efficient solution, and in which it is cru-
cial to perform nearest neighbor queries for more gen-
eral distance functions (e.g., L,-norms or additively
weighted Euclidean distances). These applications in-
clude the problems of dynamically maintaining a bichro-
matic closest pair of sites, a minimum-weight Euclidean
red-blue matching, a Euclidean minimum spanning tree,
the intersection of unit balls in three dimensions, or the
smallest stabbing disk of a family of simply shaped com-
pact strictly-convex sets in the plane. Another recent
application is an algorithm for computing shortest path
trees in unit-disk graphs (see Section 7 for more details
and references). Despite the wide range of applications,
there has been virtually no progress on dynamic nearest
neighbor search in the plane for general distance func-



tions since the last millennium. The state of the art so-
lution dates from 1999 and provides O(n®) update time
with O(logn) time queries [1]. We describe a new data
structure that improves this bound to polylogarithmic
update and query time for a wide range of distance func-
tions. For this, we need to bring together a diverse set
of techniques such as randomized incremental construc-
tion, relative (p, £)-approximations, shallow cuttings for
xy-monotone surfaces in R3, and data structuring tricks.

We now give a more detailed description of the
setting. Let S C R2 be a set of n pairwise disjoint sites,
each being a simply-shaped compact convex region in
the plane (such as points, line segments, disks, etc.),
and let § be some given continuous distance function
between points in the plane. For a site s € S, define a
function f, : R? — R by f.(z,y) = §((z,y), s), namely,
fs(z,y) = min{é((z,y),p) | p € s} (compactness of
the objects in S, and continuity of J, ensure that the
minimum exists). We assume that ¢ and the sites in
S have constant description complexity, i.e., they are
defined by a constant number of polynomial equations
and inequalities of constant maximum degree. Let F
denote the collection of the bivariate functions {fs}ses-
The lower envelope Er of F' is the pointwise minimum
Er(x,y) = minges fs(z,y), and its zy-projection is
called the minimization diagram of F, and is denoted
as Mp. The combinatorial complezity of £ or of Mg
is the number of their vertices, edges and faces. See [24]
for a detailed treatment of these concepts.

Finding the d-nearest neighbor in S of a query point
q € R? calls for identifying the site s for which £r(q) =
fs(q). Such a query translates to a vertical ray shooting
query in Ep, where we seek the intersection point of the
z-vertical line through ¢ with &g, or, alternatively, we
want to locate ¢ in M, where each face ¢ of this planar
map is labeled with the site s for which fs attains the
minimum over ¢.

The structure and complexity of £ and of Mg, as
well as algorithms for their construction and manipula-
tion, have been studied extensively for several decades
(again, see [24]). Briefly, under the assumptions made
above, the combinatorial complexity of £, measured in
terms of the number of vertices, edges, and faces of this
surface (or of its corresponding minimization diagram)
is O(n?*¢), for any € > 0 (where the constant of propor-
tionality depends on €). But in many interesting special
cases, the most ubiquitous of which is the case where
the functions f; are all linear (i.e., their graphs are non-
vertical planes), the complexity of £ is only linear in
n. The case of planes arises, after some trivial algebraic
manipulations, for point sites under the Euclidean dis-
tance. Then, My is the Euclidean Voronoi diagram of
S. There are many variants of Voronoi diagrams for

other classes of sites and other distance functions, for
which the complexity of £ remains linear; see, e.g., the
recent book by Aurenhammer, Klein, and Lee [3].

Assuming linear complexity of £, and the availabil-
ity of an efficient algorithm for constructing it, all we
need to do, in the so-called “static” case, is to prepro-
cess Mg for fast planar point location, and then locate
each query point in Mg, in O(logn) time.

However, when the sites in S can be inserted or
deleted, this corresponds to the setup in which F
changes dynamically, by insertions and deletions of
functions. The main issue in this situation is that,
upon an insertion or a deletion of a function, &g
might change rather drastically, and maintaining an
explicit representation of Mg after each update might
be overwhelmingly expensive. The goal, pursued in
this paper, as well as in several earlier works (reviewed
below) is to store some implicit representation of Ep
that still supports efficient execution of vertical ray
shooting queries for the current envelope (or point
location queries in the current Mg).

In all applications of dynamic nearest neighbor
searching mentioned above, the lower envelope of the
corresponding set F' of bivariate functions has linear
complexity. The distance functions that arise are
typically L,-metrics, for some 1 < p < oo, or additively
weighted Euclidean metrics, where each (say, point) site
s € S has an associated weight ws € R, and 6(g,s) =
|gs| +ws, where |gs| is the Euclidean distance between ¢
and s. See, e.g., [3,21] for details concerning the linear
complexity of the envelope in these cases. This property
of having a lower envelope of linear complexity also
holds for general classes of pairwise-disjoint compact
convex sites of constant description complexity.

Our main result is an efficient data structure that
dynamically maintains a set I’ of bivariate functions, of
the kind described above, under insertions and deletions
of functions, and supports efficient vertical ray shooting
queries into the lower envelope of F. Assuming, as
above, that the complexity of the lower envelope is
linear, the worst-case cost of a query, as well as the
amortized cost of an update, is polylogarithmic in our
data structure. Applying this data structure, we obtain
faster solutions to all the applications mentioned above,
and more, essentially replacing an O(n®) factor in the
complexity of earlier solutions by a polylogarithmic
factor.

A brief context. Consider first the case where the
graphs of the bivariate functions in F' are planes. (As
already noted, this case corresponds to the dynamic
nearest neighbor problem for a set S of point sites with
respect to the Euclidean metric.) A classic solution for
this special case is due to Agarwal and Matousek [2].



They show how to maintain dynamically, in an implicit
manner, the lower envelope of a set F' of at most
n planes, with amortized update time O(n®), where
€ > 0 can be made arbitrarily small (and where the
constant of proportionality depends on ¢); vertical ray
shooting queries take O(logn) worst-case time. The
case of more general bivariate functions, of the sort
considered in this paper, was studied by Agarwal et
al. [1]. In cases where the complexity of the lower
envelope is linear (such as those reviewed above), the
technique of Agarwal et al. [1] has amortized update
(insertion or deletion) time O(n®), and worst-case query
time O(logn), matching the known bounds for planes
by Agarwal and Matousek [2].

For more than ten years after the work of Agarwal
and Matousek [2], it was open whether the O(n®) up-
date time can be improved. In SODA 2006, Chan [9]
presented an ingenious construction, in which both the
(amortized) update time and the (worst-case) query
time are polylogarithmic, for the case of planes. More
precisely, Chan’s data structure (combined with the
recent deterministic construction of shallow cuttings
by Chan and Tsakalidis [11]) supports insertions in
O(log® n) amortized time, deletions in O(log® n) amor-
tized time, and queries in O(log®n) worst-case time.
However, up to now it was not known whether a simi-
lar result (with polylogarithmic update time) is possible
for arbitrary bivariate functions of constant description
complexity with linear envelope complexity. In this pa-
per we settle this question, by providing an algorithm
that meets all these performance goals. Along the way,
we also improve the deletion time for Chan’s data struc-
ture for the case of planes by a logarithmic factor and
the bound of Agarwal et al. [1] for the complexity of the
vertical decomposition of the (< k) level in an arrange-
ment of surfaces in R3 by a factor of k°.

2 Overview of Our Techniques

As already mentioned in the introduction, our dynamic
nearest neighbor structure for general distance functions
requires a whole zoo of techniques that need to be tamed
and brought together carefully. We now first give a
broad overview of how these techniques interact, and
then we provide a more detailed description on how we
use them. See Figure 1 for an illustration; the various
concepts that appear in the figure will be explained in
the subsequent text.

Maybe the most crucial observation is that all
the geometry required in Chan’s data structure for
dynamic lower envelopes of planes in R? lies in the
construction of small-sized shallow cuttings for planes
(of a certain special type). Thus, once we have small-
sized shallow cuttings for surfaces, we are able to

maintain dynamically the lower envelope of surfaces,
or equivalently, solve the generalized dynamic nearest
neighbor problem in the plane. It turns out that using
relative (p, €)-approximations, we can find the required
cutting quite easily. However, at this point we do not
know how to obtain the conflict lists for such a cutting
in an efficient manner. To solve this issue, we give
an algorithm that is based on randomized incremental
construction (RIC) to compute the (< k)-level in an
arrangement of surfaces. This algorithm can be used
to efficiently compute the required shallow cutting and
its conflict lists. Together with an improved version
of Chan’s dynamic lower envelope structure, this gives
the generalized nearest neighbor data structure. We
show the impact of this structure by providing several
applications (with new bounds), old and new. In what
follows, we describe the main ideas of the specific parts
in more detail. The full version with all proofs and
algorithms can be found on the arXiv [20].

3 Preliminaries

Let F be a family of bivariate functions in R?, and let
F be a finite subset of F. We assume that the functions
in F are continuous, totally defined, and algebraic,
and that they have constant description complexity,
formally meaning that the graph of each function is
a semialgebraic set, defined by a constant number
of polynomial equalities and inequalities of constant
maximum degree. The lower envelope Er of F' is the
graph of the pointwise minimum of the functions of F'.
The zy-projection of £f is a subdivision of the zy-plane
called the minimization diagram Mg of F. Each of its
faces corresponds to (and is labeled by) the function in
F that attains £ over that face.

When Mp consists of O(|F|) faces, vertices, and
edges, for any finite FF C F, we say that F has lower
envelopes of linear complexity. In particular, this holds
when F is the family of all nonvertical planes, and when
F is a family of distance functions under some metric
(or so-called convex distance function), each of which
measures the distance of a point in the zy-plane to some
given site. Throughout, we will only consider families
F of linear complexity.

For simplicity, we also assume that F' is in general
position, i.e., no more than three function graphs meet
at a common point, no more than two function graphs
meet in a one-dimensional curve, and no pair of graphs
are tangent to each other. (This holds if, say, the
coefficients of the polynomials defining the functions
in F are algebraically independent over the reals [24].)
Furthermore, we assume that the coordinate frame is
generic, so that the xy-projections of the intersection
curves of pairs of the function graphs are also in general
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Figure 1: An overview of how our techniques relate to each other.

position, defined in an analogous sense.

4 Shallow Cuttings for Surfaces

As mentioned above, the geometric core of Chan’s
data structure lies in an efficient construction of small-
sized shallow cuttings of a particularly favorable kind,
called vertical shallow cuttings [8,11]. To define these
constructs, let A(F') be the arrangement of a set of n
bivariate functions F C F in R3. The level of a point
q € R? in A(F) is the number of functions of F' whose
graphs pass strictly below ¢. For k € {0,...,n — 1},
the k-level Ly (F') of A(F) is the closure of the set of
points at level k that lie on the union of the graphs of
the functions in F. We denote by L<y(F') the union
of the first k levels of A(F). For given parameters
k, r < n, a k-shallow (1/r)-cutting in A(F) is a
collection A of pairwise openly disjoint regions 7, each
of constant description complexity, so that the union of
these regions covers L<y(F'), and so that the interior of
each region T € A is intersected by at most n/r graphs
of functions of F'. The size of A is the number of regions
in A.

A wertical k-shallow (1/r)-cutting in A(F) is a
collection A of pairwise openly disjoint vertical semi-
unbounded pseudo-prisms, a notion to be defined mo-
mentarily, so that, as above, the union of these pseudo-
prisms covers L<y(F'), and so that the interior of each
pseudo-prism 7 € A is intersected by at most n/r graphs
of functions of F'. Note that, for both conditions to hold
simultaneously, we must have k& < n/r. In our setting,
we will always have r = ©(n/k), which is the case most
relevant for applications.

A pseudo-prism 7 consists of all points that lie
vertically below some portion 7 of a graph of a function
in F', so that T has constant description complexity. In
our application, 7 will be a pseudo-trapezoid, defined
as the portion of a function graph consisting of points
(z,y, 2) satisfying 2~ <z < zt, ¢~ (z) <y < ¢T(x),
for real numbers 2~ < 2 and for (semi-)algebraic

functions 1=, ¥t of constant description complexity.
In the case of planes, 7 will simply be a triangle, and
we do not insist that 7 be contained in one of the input
planes.

Chan [8] was the first to show the existence of ver-
tical shallow cuttings for planes in three dimensions.
Such a cutting is associated with a polyhedral trian-
gulated zy-monotone terrain, which lies entirely above
the k-level of the arrangement, so that each triangle
7T of the terrain generates a semi-unbounded triangu-
lar prism with 7 as its top face. Such shallow cut-
tings have many applications, in particular in Chan’s
dynamic lower envelope data structure [9]. The deter-
ministic construction of Chan and Tsakalidis [11] con-
structs vertical shallow cuttings. Recently, Har-Peled,
Kaplan, and Sharir [17] gave an alternative construction
with some additional favorable properties.!

Essentially, once a fast construction of vertical
shallow cuttings of sufficiently small size is available, we
can plug it into the machinery developed by Chan [9],
in an almost black-box fashion, to obtain a fast data
structure for dynamic maintenance of £ in the general
setting. Agarwal et al. [1] prove the existence of
shallow cuttings of optimal size for general functions,
but their cuttings are not “vertical”, in the above
sense, and a direct algorithmic implementation of their
construction yields an additional O(n¢) factor for both
the size and the construction time of the cutting.
When applied to the dynamic maintenance problem,
this makes the (amortized) cost of an update O(n)
rather than polylogarithmic. Refining this bound is one
of the main goals of the present paper.

To achieve this, we design a different algorithm for
computing a vertical shallow cutting, obtaining several
technical results that we consider of independent inter-
est. We first use the notion of relative approzimation,

TOne significant difference is that the “top terrain” in [17]
approximates the corresponding level k up to any specified

accuracy, whereas the structure in [11] does not.



as in Har-Peled and Sharir [18], to conclude that, by
choosing a random sample Sy of size 5 from F', and
by constructing the level ¢ of A(Sg), where ¢ is in the
range [(1+ £)A, (14 5)A], for A = Clg# and ¢ being
a suitable absolute constant, we get an e-approximation
of level k of A(F), with high probability. This means
that any such level ¢ of A(Sy) lies between levels k
and (1 4 ¢)k of A(F). Furthermore, we show that if
we choose t uniformly at random in the above range,
the expected complexity of the corresponding level is
O (ﬁ log? n)

Having computed such a level, we project it onto
the xy-plane, compute the standard planar vertical
decomposition of the projection, lift each trapezoid ¢
of this decomposition back to a trapezoidal-like subface
©* on the original level, and associate with it the semi-
unbounded vertical prism consisting of all points that
lie vertically below ¢*, see Figure 2. We denote this set
of prisms by Ag. The following lemma shows that Ag
is a vertical k-shallow (k/n)-cutting. All proofs can be
found in the full version.

Figure 2: A pseudo-trapezoid ¢ (dark) lifted up to
its original position ¢* in R3 (lighter) yields a semi-
unbounded vertical pseudo-prism.

LEMMA 4.1. Ag is a shallow cutting of the first k levels
of A(F). It consists (in expectation) of

Akl = O (% log? n)

prisms. Each prism in Ay intersects at least k and at
most (1 + 2e)k graphs of functions of F.

Our next hurdle is to efficiently compute Ay, to-
gether with the conflict lists of its prisms, where, for a
prism 7 € Ay, the conflict list CL(7) of 7 is the set of
all functions f € F that cross the interior of 7. (Note
that, although the construction of A is performed with
respect to the sample Sy, the conflict lists of its prisms
are defined with respect to the entire collection F'.)

5 Randomized Incremental Construction

Let ¢t € {0,...,n—1} be a parameter. We now consider
the classic problem of computing the ¢ + 1 shallowest
levels in the arrangement A(F). A standard approach
to this construction is via randomized incremental con-
struction (RIC, in short); see, e.g., [5,22]. For this, one
adds the functions in F' one by one, in a random order,
and maintains a representation of the desired structure
(the first t+1 levels in our case) of the subset of functions
inserted so far. Let F; C F be the functions we have
inserted after 7 steps. After each insertion we maintain
the vertical decomposition of L<; = L<;(F;) of the first
t +1 levels of A(F;). This vertical decomposition is de-
noted by VD<«; and is defined in the following standard
manner.

We obtain VD<; in two decomposition stages. In
the first stage, we erect within each cell C' of L<; a
vertical curtain up and/or down from each edge (an
intersection edge of a pair of surfaces) of L<;. Each such
curtain consists of maximal vertical segments contained
in (the closure of) C' and passing through the points
of the edge. The collection of these curtains partitions
C into subcells. Each subcell has at most one ceiling
(“top” facet), at most one floor (“bottom” facet), and
all other facets lie on its vertical curtains; the ceiling or
the floor may be missing if the subcell is unbounded.

The complexity of a subcell may still be arbitrarily
large. Thus, in the second stage, we take each subcell
C’, project it onto the zy-plane, and apply to the pro-
jection a similar but two-dimensional vertical decompo-
sition: we erect a y-vertical segment from each vertex
and from each locally z-extreme point on the edges.
This yields a collection of pseudo-trapezoidal subcells.
We then lift each such pseudo-trapezoid vertically to 3-
space; formally, we take each trapezoid 7 and form the
intersection (7 x R) N C’. This yields a decomposition
of ¢’ into pseudo-prisms, each with “constant descrip-
tion complexity”, as defined above. The desired vertical
decomposition consists of all pseudo-prisms obtained in
this manner for all of L<;. More details can be found
in [12,24].

To analyze our RIC, we need to bound the com-
plexity of VD<;. The following crucial lemma improves
an earlier bound of O(nt>™¢) by Agarwal et al. [1].
The parameter s in the lemma is defined as follows.
For any quadruple f,g, f’, g’ of functions of F, we let
s(f,q,f,g") denote the number of co-vertical pairs of
points ¢ € fNg, ¢ € f'Ng. We define s to be the
maximum value of s(f,g, f’,g'), over all such quadru-
ples. By our assumptions on F (including general po-
sition), we have s = O(1). The function A;12(t) in the
lemma is the familiar bound on the maximum length of
a Davenport-Schinzel sequence of order s + 2 [24].



Figure 3: The (< t)-level of A(Sy) (red) is decomposed by VD<;(Sk) (left). Furthermore, VD<;(S%) covers the
(< k)-level of A(F') (blue), and we can combine the cells in VD<;(S) to obtain a vertical k-shallow (k/n)-cutting

for A(F') together with its conflict lists (right).

LEMMA 5.1. Let F be a set of n functions from F, and
let 1 <t <n—1 be a parameter. The complexity of

VD<i(F) is O(ntAgpa(t)).

Lemma 5.1 allows us to analyze our RIC for the
t+ 1 shallowest levels in A(F'). This yields the following
theorem.

THEOREM 5.1. Let 1 <t <mn—1. The firstt+ 1 levels
of an arrangement of the graphs of n continuous totally
defined algebraic functions of constant description com-
plexity, for which the complexity of the lower envelope of
any m functions is O(m), can be constructed by a ran-
domized incremental algorithm, whose expected running
time is O(ntAs12(t) log(n/t)logn), and whose expected
storage is O(ntAs42(t)).

Using our randomized incremental algorithm, we
construct a vertical shallow cutting of the first k£ + 1
levels in A(F'), consisting of O (% log? n) prisms, each
with a conflict list of size O(k). The approach is as
follows: we run the RIC with parameter t ~ Clz#. We
stop after inserting the first - logn functions. This
can be regarded as drawing the desired sample S C F'
as in Section 4. By Lemma 4.1 the t-level of Sy yields
a vertical shallow cutting. In addition, we obtain a
vertical decomposition VD« (Sy) of the ¢+ 1 shallowest
levels of A(Sk) and the conflict lists (with respect to
the whole set F) of its cells. Each prism in VD<;(Sk)
extends between two consecutive levels of the present
arrangement A(S%), so the prisms cannot be used to
form a vertical shallow cutting. Nevertheless, as we
show in the full version, it is possible to transform our
decomposition into a vertical shallow cutting, including
the new conflict lists of its semi-unbounded prisms. This
process is depicted for two-dimensional arrangements in
Figure 3. This gives the following theorem.

THEOREM 5.2. Let F be a set of n continuous totally
defined algebraic functions of constant description com-
plexity for which the complexity of the lower envelope
of any m functions is O(m). Furthermore, let k €
{1,...,n}. Then, there is a vertical shallow cutting Ay,
for the first k levels of A(F) with the following proper-
ties:

1. The number of cells in Ay is O((n/k)log®n).

2. FEach prism in Ay intersects at least k and at most
2k graphs of functions in F'.

3. We can find Ay and the conflict lists for its prisms
in expected O(nlog®nAsya(logn)) time using ex-
pected O(nlogniso(logn)) space.

6 Improvement of Chan’s Data Structure

Once we have available an efficient mechanism for con-
structing vertical shallow cuttings and their conflict lists
as in Theorem 5.2, we apply it to obtain our dynamic
nearest neighbor data structure, adapting the technique
of Chan for the case of planes to our setting [9]. While
doing so, we re-examine the work of Chan, and we
present it in a way that (in our opinion) is easier to
understand. Our exposition follows a more standard
route: we begin with a static data structure, then ex-
tend it to support insertions, using a variant of the well-
known Bentley-Saxe binary counter technique [4], and
finally show how to perform deletions via re-insertions of
planes, using a so-called deletion lookahead mechanism,
the major innovation in Chan’s work. We believe that
this new perspective sheds additional light on the inner
workings of the structure. Along the way, we improve
the amortized cost of a deletion, by a logarithmic fac-
tor, to O(log® n). This is achieved by a more aggressive



pruning strategy in the construction of the static data
structure, combined with a new amortization argument
that shows that not too many surfaces are pruned. Dele-
tions are the costliest operations in Chan’s technique,
and are therefore the bottleneck in most applications.
Our efforts are summarized in the following theorem.

THEOREM 6.1. The lower envelope of a set of n bi-
variate functions of the type that we consider can
be maintained dynamically, to support insertions,
deletions, and queries, so that each insertion takes
O(log® nAs o(logn)) amortized expected time, each
deletion takes O(log” n)\sy2(logn)) amortized expected
time, and each query takes O(log” n) worst-case deter-
ministic time, where n is the number of functions in the
data structure at the time the operation is performed.
The data structure requires O(n log® n) expected storage.

Remark. For the special case of non-vertical planes,
we get (worst-case, deterministic) query time O(log? n),
(amortized, deterministic) insertion time O(log® n), and
(amortized, deterministic) deletion time O(log® n). The
data structure requires O(n) storage.

7 Applications

We give several applications of Theorem 6.1. As
discussed above, for a finite set S C R? of pairwise
disjoint sites, finding for a point ¢ € R? its nearest
neighbor in S under any norm or convex distance
function § [13] translates to ray shooting in the lower
envelope of the graphs of the functions f,(z) = d(z, s),
s € S. Thus, if these functions have lower envelopes
of linear complexity, Theorem 6.1 yields a dynamic
nearest neighbor data structure for S. Recall that the
minimization diagram of the lower envelope of F' is the
Voronoi diagram of S under ¢ [3,14]. Two classes of
distance functions are of particular interest. First, let
p € [1,00]. We define for (z1,y1), (z2,y2) € R? the L,
metric 6,((z1,91), (32, 2)) = (|21 —z2|P +[y1 —32[P) /7.
It is well known that ¢, is a metric, and that it induces
lower envelopes of linear complexity for any set of sites
as above [21]. Second, let S C R? be a set of point sites,
where each s € S has an associated weight ws; € R.
We define a distance function § : R?2 x S — R by
d(p,s) = ws + |ps|, where | - | denotes the Euclidean
distance. This distance function also induces lower
envelopes of linear complexity [3].

7.1 Direct Applications of Dynamic Nearest
Neighbor Search There are numerous results that
can be improved immediately with our new tools. See
the table below for the new bounds.

Dynamic Bichromatic Closest Pair. Let § be
a planar distance function, and let R, B C R? be two

sets of planar point sites. A bichromatic closest pair
is a pair in R X B that minimizes §. The goal is to
maintain a bichromatic closest pair under insertions and
deletions of points. We can improve Theorem 6.8 in
Agarwal et al. [1] by combining Eppstein’s method [15]
with Theorem 6.1.

Minimum Euclidean Bichromatic Matching.
Let R and B be two sets of n points in the plane. A
minimum Euclidean bichromatic matching of (R, B) is
a set of n line segments between R and B such that each
point in R U B is incident to exactly one segment and
such that the total length of the segments is minimum.
Agarwal et al. [1, Theorem 7.1] show how to find such
a set using a dynamic bichromatic closest pair data
structure for the additively weighted Euclidean metric,
building on a trick by Vaidya [25]. Thus, our previous
application gives an improved bound.

Dynamic Minimum Spanning Trees. Let S be
a set of sites, and T the minimum spanning tree w.r.t.
to an Ly, norm, p > 1. We want to maintain 7" explicitly
as S changes dynamically. Following Eppstein [15], our
first application immediately gives a data structure for
this.

Maintaining the Intersection of Unit Balls
in Three Dimensions. Let B be a set of unit balls
in R?. We want to maintain the intersection B” of
the balls in B under insertions and deletions, while
supporting the following queries: (a) for any p € R?,
determine if p € B", and (b) after performing each
update, determine whether B™ # ). Agarwal et al. [1]
use dynamic lower envelopes to maintain B”. Their
algorithm performs a query via parametric search in a
black box fashion. Thus, using Theorem 6.1, we can
improve Theorem 8.1 in Agarwal et al. [1].

Maintaining the Smallest Stabbing Disk. Let
C be a family of simply shaped compact strictly-convex
planar sets. We wish to dynamically maintain a finite
subset C' C C together with a smallest disk that
intersects all the sets of C' (see Agarwal et al. [1,
Section 9] for precise definitions). Again, we can use
Theorem 6.1 in a black-box fashion to improve on the
previous result of Agarwal et al..

7.2 Range Reporting and Approximate Range
Counting We also obtain new range searching results.
Let F C F, |F| = n, and ¢ € R® a query point. First,
we describe a data structure to find all surfaces of F'
that pass vertically below ¢. If F' consists of planes,
Chan [7] showed how to obtain a data structure with
O(nlogn) space and expected query time O(logn + k),
where k is the output size. The core of the approach is
a follows: take a sequence of random samples Ry C
Ry C -+ C Ripgn = F, with |R;| = 2°. For each
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R;, compute a set of pairwise interior disjoint vertical
prisms that cover the region below the lower envelope
of R;, together with their conflict lists with respect to
F. To do this efficiently, one performs a standard RIC
for the lower envelope of F' and stops after every 2i-
th insertion for 1 < i < logn, see [7] for details. For
surfaces, we can carry out the same approach using our
RIC algorithm with t = O(1). The total construction
time is O(nlog®n). Following Chan’s [7] analysis, we
get the next theorem.

THEOREM 7.1. Let F C F be the graphs of n contin-
wous totally defined algebraic functions of constant de-
scription complexity, so that the complexity of the lower
envelope of any m functions is linear. We can prepro-
cess F in expected time O(nlog® n) into a data structure
of size O(nlogn) that can answer the following queries:
given a point q¢ € R3, find all surfaces f € F that pass
strictly below q. The expected query time is O(logn+k),
where k is the output size.

Our next data structure is for approzimate range
counting. Given a query point ¢ € R3, we want to
determine the number of surfaces in F' strictly below
q up to a prespecified multiplicative error of (1+¢), i.e.,
we want to approximate the level of q. The following
is an immediate adaptation of a result by Har-Peled et
al. [17].

THEOREM 7.2. Let F' C F be a set of n surfaces in
R3 and let € > 0 be a parameter. We can construct
a data structure of size O((n/e%)log®n) in expected
time O((n/e%)log® nAsyo(logn)) that can answer ap-
prozimate level queries in A(F), with relative error e,
in time O(lognlog((1/e)logn)).

7.3 Problems on Disk Intersection Graphs Disk
intersection graphs constitute a particularly fruitful
application domain for our data structure: let S C R?
be a finite set of point sites, each with an associated
weight w, > 0, p € S. The disk intersection graph for
S, D(S), has S as vertex set and an edge pg between
two sites p and ¢ in S if and only if |pg| < wy, +wy, ie.,
if the w)p-disk around p intersects the wg-disk around
q. If all weights are 1, D(S) is the unit disk graph
for S, UD(S). Disk intersection graphs are a popular
model for geometrically defined graphs and enjoy an
increasing interest in the research community, driven
by applications in wireless sensor networks [6,10,16,23].

Shortest Path Trees in Unit Disk Graphs.
Cabello and Jejéié [6] find a shortest path tree in UD(S),
for any given site r € S, in time O(n'*¢) using the
bichromatic closest pair structure of Agarwal et al. [1,
Theorem 6.8]. Our structure immediately yields an
improvement.

Dynamic Connectivity in Disk Graphs. We
show how to maintain D(S) under insertions and dele-
tions while answering reachability queries efficiently:
given s,t € S, is there a path in D(S) from s to t? For
this, we combine previous ideas for unit disk graphs [19]
with a dynamic additively weighted nearest neighbor
structure. The update time of our data structure de-
pends on the radius ratio ¥ of the largest and the small-
est weight of the sites. The previous bound of Chan,
Patragcu, and Roditty [10] is only slightly sublinear,
but independent of .

BFS Trees in Disk Graphs. As observed by
Roditty and Segal [23] in the context of unit disk graphs,
a dynamic Euclidean nearest neighbor structure can be
used for computing exact BFS-trees in disk graphs, for
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graph n'*e [6] nlog't nA o (logn)
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1+4¢
eraph ntte [23]
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any given root vertex. The same technique works for
disk graphs, once a dynamic additively weighted nearest
neighbor structure is available.

Spanners for Disk Graphs. Finally, we give an
algorithm for computing a (1 + p)-spanner in a disk
intersection graph, for p > 0. A (1 + p)-spanner for
D(S) is a subgraph H of D(S) such that the shortest
path distances in H approximate the shortest path
distances in D(S) up to a factor of (14 p). The previous
construction by Fiirer and Kasiviswanathan [16] has a
running time that depends on the radius ratio ¥, as
defined above. Our new algorithm is independent of ¥
and achieves almost linear running time, improving the
previous algorithm by a factor of at least n'/3.
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