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Abstract17

In order to have a compact visualization of the order type of a given18

point set S, we are interested in geometric graphs on S with few edges that19

unambiguously display the order type of S. We introduce the concept of20

exit edges, which prevent the order type from changing under continuous21

motion of vertices. That is, in the geometric graph on S whose edges22

are the exit edges, in order to change the order type of S, at least one23

vertex needs to move across an exit edge. Exit edges have a natural24

dual characterization, which allows us to efficiently compute them and to25

bound their number.26
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1 Introduction42

Let S, T ⊂ R2 be two sets of n labeled points in general position, that is, such43

that no three points in a set are collinear. We say that S and T have the same44

order type if there is a bijection ϕ : S → T such that any triple (p, q, r) ∈ S3 of45

three distinct points has the same orientation (clockwise or counterclockwise) as46

the image (ϕ(p), ϕ(q), ϕ(r)) ∈ T 3. The resulting equivalence relation on planar47

n-point sets has a finite number of equivalence classes, the order types [14].48

Representatives of all the distinct order types of five and six points are illustrated49

in Figure 1. Among other things, the order type determines which geometric50

graphs can be drawn on a point set without crossings. Thus, order types appear51

ubiquitously in the study of extremal problems on geometric graphs.52

Figure 1: Representatives of the three order types of five points and the sixteen
order types of six points in general position. Exit edges are drawn in black.

Now, suppose we have found that an order type is interesting for a problem,53

and we would like to illustrate it in a publication. One solution is to give explicit54

coordinates of a representative point set S; see Figure 2 (left). This is unlikely55

to satisfy most readers. We could also present S as a set of dots in a figure. For56

some point sets (particularly those with extremal properties), the reader may57

find it difficult to discern the orientation of an almost collinear point triple. To58

mend this, we could draw all lines spanned by two points in S. In fact, it suffices59
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to present only the segments between the point pairs (the complete geometric60

graph on S). The orientation of a triple can then be obtained by inspecting61

the corresponding triangle; see Figure 2 (middle). However, such a drawing is62

rather dense, and we may have trouble following an edge from one endpoint to63

the other. Therefore, we want to reduce the number of edges in the drawing64

as much as possible, but so that the order type remains uniquely identifiable.65

In Figure 2 (right) the triple orientations are unambiguously displayed since66

continuous deformations that keep the edges straight do not allow to change67

the orientation of any triple.68

(-1,1)
(1,1)
(-1,-1)
(1,-1)
(-0.6,0.4)
(-0.6,-0.4)

Figure 2: Three different representations of an order type of six points.

Results We introduce the concept of exit edges to capture which edges are69

sufficient to uniquely identify a given order type in a robust way under con-70

tinuous motion of vertices. Exit graphs, defined as the geometric graphs whose71

edges are the exit edges, are supporting for a point set: in an exit graph at least72

one vertex needs to move across an (exit) edge in order to change the order73

type. (For precise definitions of these concepts we refer to Definitions 1 and 2.)74

Though exit edges are defined on a point set, the set of exit edges only depends75

on the order type and not on the particular representative.76

We give an alternative characterization of exit edges in terms of the dual line77

arrangement, where an exit edge corresponds to one or two empty triangular78

cells. This allows us to efficiently compute the set of exit edges for a given set79

of n points in O(n2) time and space.80

Using the more general framework of abstract order types and their dual81

pseudoline arrangements, we prove that every set of n ≥ 4 points has at least82

(3n−7)/5 exit edges. We also describe a family of n points with n−3 exit edges,83

showing that the best possible lower bound is of order Ω(n). An upper bound84

of n(n − 1)/3 follows from known results on the number of triangular cells in85

line arrangements [15]. Thus, compared to the complete geometric graph with86

n(n−1)/2 edges, using only exit edges saves at least one third of the edges. We87

present a random construction with a quadratic expected number of exit edges.88

Exit graphs are not always minimal supporting graphs. In particular, the89

requirement of keeping the edges straight together with the non-stretchability90

of certain pseudoline arrangements can result in exit edges being sometimes91

unnecessary. The relation between the number of exit edges and the minimum92

number of edges in a supporting geometric graph is an open question.93
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Identification of order types Let S be a set of n labeled points in the94

plane. A geometric graph on S is a graph with vertex set S whose edges are95

line segments between their endpoints. A geometric graph is thus a drawing of96

an abstract graph. Two geometric graphs G and H are isomorphic if there is97

an orientation-preserving homeomorphism of the plane transforming G into H.98

Each class of this equivalence relation may be described combinatorially by the99

cyclic orders of the edge segments around vertices and crossings, and by the100

incidences of vertices, crossings, edge segments, and faces. In the following,101

we will consider topology-preserving deformations. An ambient isotopy of the102

Euclidean plane is a continuous map f : R2 × [0, 1] → R2 such that f(·, t) is103

a homeomorphism for every t ∈ [0, 1] and f(·, 0) = Id. Note that if there is104

an ambient isotopy transforming a geometric graph G into another geometric105

graph H, then no vertex can cross through an edge and G and H are isomorphic.106

Figure 3 shows an illustration.107

Figure 3: The geometric graph on the left can be transformed by an ambient
isotopy into the geometric graph in the middle, but not into the geometric graph
on the right.

Definition 1 Let G be a geometric graph on a point set S. We say that G is108

supporting for S if every ambient isotopy f of R2 that, for every t ∈ [0, 1],109

keeps the images of the edges of G straight (thus, transforming G into another110

geometric graph) and allows at most one triple of collinear points of f(S, t) also111

preserves the order type of the vertex set.112

Clearly, every complete geometric graph is supporting since all the triangles113

preserve their orientation, but there are supporting graphs with fewer edges,114

like the one in Figure 3 (left).115

Related work The connection between order types and geometric graphs has116

been studied intensively, both for planar drawings and for drawings minimizing117

the number of crossings. For example, it is NP-complete to decide whether a118

planar graph can be embedded on a given point set [6]. Continuous movements119

of the vertices of plane geometric graphs have also been considered [2]. The120

continuous movement of points maintaining the order type was considered by121

Mnëv [11, 19]. He showed that there are point sets with the same order type such122

that there is no ambient isotopy between them preserving the order type, settling123

a conjecture by Ringel [20]. The orientations of triples that have to be fixed to124

determine the order type are strongly related to the concept of minimal reduced125

systems [5]. Compact encodings of order types using few bits and allowing for126
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fast orientation queries have also been studied. Cardinal et al. [7] presented127

such an encoding for order types of n points that uses O(n2(log log n)2/ log n)128

bits, while there are 2Θ(n log n) order types.129

Outline We introduce the concept of exit edges for a given point set. The130

resulting exit graphs are always supporting, though they are not necessarily131

minimal. In Section 2 we show that some exit edges are rendered unnecessary132

by non-stretchability of certain pseudoline arrangements. Despite being non-133

minimal in general, we argue that exit graphs are good candidates for support-134

ing graphs by discussing their dual representation in pseudoline arrangements135

(Section 3). This connection allows us to both compute exit edges efficiently136

and give bounds on their number (Section 4). Supporting graphs in general137

need not be connected, and two minimal geometric graphs that are supporting138

for point sets with different order types can be drawings of the same abstract139

graph; see Figure 1 (right). Thus, the structure of the drawing is crucial. In140

Section 5 we provide some further properties of the exit graphs. We conjecture141

that geometric graphs whose edges are the exit edges are not only supporting142

but also they encode the order type, as discussed in Section 6.143

2 Exit edges144

To obtain a supporting graph with fewer edges than the complete geometric145

graph, we select edges so that no vertex of the resulting geometric graph can146

be continuously deformed (as in Definition 1) to change the order type while147

preserving isomorphism.148

Definition 2 Let S ⊂ R2 be finite and in general position. Let a, b, c ∈ S be149

distinct. Then, ab is an exit edge with witness c if there is no p ∈ S such that150

the line ap separates b from c or the line bp separates a from c. We say that ab is151

an exit edge if there exists a point c such that ab is an exit edge with witness c.152

The geometric graph on S whose edges are all the exit edges is called the exit153

graph of S.154

Equivalently, ab is an exit edge with witness c if and only if the double-wedge155

through a between b and c and the double-wedge through b between a and c156

contain no point of S in their interior; see Figure 4 (left). We note that the exit157

graph is invariant under nondegenerate affine transformations.158

An exit edge has at most two witnesses. If |S| ≥ 4 and ab is an exit edge159

in S with witness c, neither ac nor bc can be an exit edge with witness b or a,160

respectively, as otherwise the union of empty regions would cover the rest of the161

whole plane except the points a, b, and c. We illustrate the set of exit edges for162

sets of 5 points in Figure 1 (top).163

Exit edges can be characterized via 4-holes. For an integer k ≥ 3, a (general)164

k-hole in S is a simple polygon P spanned by k points of S whose interior165

contains no point of S. If P is convex, we call P a convex k-hole. A point a ∈ S166
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a b
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b
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y

Figure 4: Characterizing exit edges. Left: If the gray region is empty of points,
then the edge ab is an exit edge. Right: An illustration of the proof of Propo-
sition 1.

or an edge ab of the complete geometric graph on S is extremal for S if it lies on167

the boundary of the convex hull of S. A point or an edge that is not extremal168

in S is internal in S.169

Proposition 1 Let S ⊂ R2 be a point set in general position and let a, b ∈ S.170

Then, ab is not an exit edge of S if and only if the following conditions hold:171

1. If ab is extremal for S, then ab is an edge of at least one convex 4-hole172

in S.173

2. If ab is internal in S, then there are two 4-holes abxy and bauv, in coun-174

terclockwise order, such that their reflex angles (if any) are incident to ab.175

We remark that an internal exit edge either has a witness on both sides or is176

incident to at least one (not necessarily convex) 4-hole on one side.177

Proof: Let ab be an exit edge with a witness c that lies, without loss of gener-178

ality, to the left of
−→
ab. Suppose there is a general 4-hole abxy, traced counter-179

clockwise, such that the reflex angle of abxy (if it exists) is incident to ab. We180

can assume that y lies to the left of
−→
ab, as in Figure 4 (right). First, suppose181

that abxy is convex (this must hold if ab is extremal). Since ab is an exit edge182

with witness c, the line ax does not separate c from b and the line by does not183

separate c from a. Thus, c must be inside the 4-hole abxy, which is impossible.184

Second, suppose that abxy is not convex (then, ab is internal), and x is to the185

right of
−→
ab. Since ab is an exit edge with witness c, the line bx does not separate186

a from c and the line ay does not separate b from c, so c lies inside the 4-hole187

abxy, again a contradiction.188

Conversely, assume that ab is not an exit edge. First, let ab be extremal,189

and let p be the closest point in S \ {a, b} to the line ab. The triangle abp is190

a 3-hole in S. Since p is not a witness for ab, there is a point q ∈ S \ {a, b, p}191

such that, without loss of generality, the line bq separates a from p. Since ab is192

extremal, q lies on the same side of
−→
ab as p and, in particular, the polygon abpq193

is convex. If we choose q so that it is the closest such point to the line ap, the194
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triangles bpq and abq are 3-holes in S. Altogether, we obtain a convex 4-hole195

abpq in S.196

Second, let ab be internal. Let p be closest in S \ {a, b} to the line ab such197

that p lies to the left of
−→
ab. The triangle abp is a 3-hole in S. Since p is not198

a witness for ab, there is a point q ∈ S \ {a, b, p} such that either the line bq199

separates a from p or the line aq separates b from p. If q lies to the left of
−→
ab,200

we obtain a convex 4-hole as in the previous case. Thus, we can assume that201

all such points q lie to the right of
−→
ab. We choose the point q so that it is (one202

of the) closest to the line ab among all points that prevent ab from being an203

exit edge with witness p. Without loss of generality, we assume that the line bq204

separates a from p. The choice of q guarantees that bpq is a 3-hole in S. Thus,205

abqp is a 4-hole in S incident to ab from the left. An analogous argument with206

a point p′ from S \ {a, b} that is closest to ab such that p′ lies to the right of
−→
ab207

shows that there is an appropriate 4-hole in S incident to ab from the right. �208

Proposition 2 Let S ⊂ R2 be finite and in general position and, for every209

t ∈ [0, 1], let S(t) be a continuous deformation of S at time t. More formally,210

let f : R2 × [0, 1] → R2 be an ambient isotopy and S(t) = {f(s, t) | s ∈ S},211

for t ∈ [0, 1]. Suppose that for every t ∈ [0, 1], there is at most one collinear212

triple of points in S(t). Let (a, b, c) be the first triple to become collinear, at213

time t0 > 0. If c lies on the segment ab in S(t0), then ab is an exit edge of S(0)214

with witness c.215

Proof: For t ∈ [0, t0), the triple orientations in S(t) remain unchanged, and in216

S(t0), the point c lies on ab and the orientations of all triples except (a, b, c) are217

still unchanged. Thus, for t ∈ [0, t0), there is no line through two points of S(t)218

that strictly separates the relative interior of ab from c. In particular, there is219

no such separating line through a or b in S(0). Hence, ab is an exit edge with220

witness c. �221

Corollary 1 The exit graph of every point set is supporting.222

A line separates c from the relative interior of ab if and only if there is223

such a separating line through a or b. This may suggest that the exit edges224

are necessary for a supporting graph. However, this is not true in general.225

For example, in Figure 5 (left), we see a construction by Ringel [20]: ab is an226

exit edge with witness c, but c cannot move over ab without violating Pappus’227

theorem. In this situation, we might consider the abstract order type for the228

triple orientations we would obtain after moving c over ab. Since there is no229

planar point set with this set of triple orientations, this abstract order type230

is not realizable. Deciding realizability is (polynomial-time-)equivalent to the231

existential theory of the reals [19]. We will revisit these concepts in Section 4.232

We note that there are point sets where two or more other exit edges pre-233

vent a witness c from crossing its corresponding exit edge ab; see, for example,234

Figure 5 (bottom right). Since the two geometric graphs in Figure 5 (right) are235

not isomorphic, they cannot be transformed into each other by a continuous236
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a
b

c

c

a b

c

a b

Figure 5: Left: moving c over ab to orient (a, b, c) clockwise, without changing
the orientation of other triples, would contradict Pappus’s theorem [20]. Right:
it is not always possible to move a witness c continuously to the corresponding
exit edge ab.

deformation as the one used in Definition 1. However, in this example, while c237

cannot move to ab without changing the order type in Figure 5 (bottom right),238

if ab were not present, we could first change the point set to the one in Figure 5239

(top right) and then move c over ab. Thus, ab indeed has to be in a supporting240

graph.241

3 Exit edges and empty triangular cells242

The (real) projective plane P2 is a non-orientable surface obtained by augment-243

ing the Euclidean plane R2 by a line at infinity. This line has one point at244

infinity for each direction, where all parallel lines with this direction intersect.245

Thus, in P2, each pair of parallel lines intersects in a unique point.246

For a point set S in the Euclidean plane, add a line `∞ to obtain the pro-247

jective plane. We use a duality transformation that maps a point s of P2 to a248

line s∗ in P2. In this way, we get a set of lines S∗ dual to S, giving a projective249

line arrangement A. The removal of a line from A does not disconnect P2.250

Since P2 has non-orientable genus 1, removing any two lines `1 and `2 from P2
251

disconnects it into two components. We call the closure of each of the two com-252

ponents a halfplane1 determined by `1 and `2. The marked cell c∞ is the cell253

of A that contains the point `∗∞ dual to the line `∞. By appropriately choosing254

the duality transformation, we can assume that `∗∞ lies at vertical infinity. We255

denote by w(`1, `2) the halfplane determined by `1 and `2 that does not contain256

the marked cell.257

The combinatorial structure of A, together with the marked cell, determines258

the order type of S. We show how to identify exit edges and their witnesses in259

dual line arrangements.260

We use the marked cell c∞ to orient the lines from S∗: first, we orient261

1Here we follow the notation in [15]. In the literature halfplanes are also called wedges.
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the lines on the boundary of c∞ in one direction. Then, we iteratively remove262

lines that have already been oriented, and we define the orientation for the263

remaining lines from S∗ by considering the new lines on the boundary of c∞.264

Then, c∞ is the only cell whose boundary is oriented consistently, that is, it265

can be traversed completely along the resulting orientation. In particular, for266

an unmarked triangular cell 4 in A, the directed edges of 4 form a transitive267

order on its vertices, with a unique vertex of 4 in the middle. We call this268

vertex the exit vertex of 4 and the line through the other two vertices of 4 the269

witness line of 4.270

Note that if we consider the duality mapping a point p = (px, py) from271

the real plane to the (non-vertical) line p∗ : y = pxx − py, then the described272

orientation procedure corresponds to orienting these dual lines from left to right.273

Note that for two points p, q ∈ S and their dual lines p∗, q∗ ∈ S∗, w(p∗, q∗)274

does not contain the marked cell and therefore its boundary is not oriented275

consistently.276

The next theorem characterizes exit edges and their witnesses in the dual. In277

its proof we use the following property of projective duality: since it preserves278

incidences, the condition that no line spanned by two points of S intersects the279

edge pq is equivalent in S∗ to w(p∗, q∗) not containing any vertex of A.280

Theorem 1 Let S ⊂ R2 be in general position, and let a, b, c ∈ S. Then, ab281

is an exit edge with witness c if and only if the lines a∗, b∗, and c∗ bound an282

unmarked triangular cell 4 in the arrangement A of lines from S∗ so that c∗ is283

the witness line of 4 and the point ab
∗

= a∗ ∩ b∗ is the exit vertex of 4.284

Proof: Let 4 be the triangular region determined by the intersection of the285

two halfplanes w(a∗, c∗) and w(b∗, c∗). By the projective duality, ab is an exit286

edge with witness c in S if and only if no line of S∗ intersects a∗ inside w(b∗, c∗)287

or b∗ inside w(a∗, c∗). In other words, if and only if two sides of 4, lying on288

a∗ and b∗, contain no intersection with lines from S∗. This is equivalent to 4289

being a cell of the arrangement A. Moreover, we can recognize a∗ and b∗ in S∗.290

In the triangular cell 4 that is the intersection of w(a∗, c∗) and w(b∗, c∗) the291

exit vertex is the intersection of a∗ and b∗; see Figure 6. Consequently, the exit292

vertex a∗∩b∗ is the dual of the line containing the exit edge ab (and vice versa).293

�294

Since line arrangements can be efficiently constructed in O(n2) time [8, 10],295

Theorem 1 can be used to efficiently compute the set of exit edges.296

Corollary 2 Let S ⊂ R2 be a set of n points in general position. Then the297

exit edges of S can be enumerated in O(n2) time by constructing the dual line298

arrangement of S and checking which cells are unmarked triangular cells.299

4 On the number of exit edges300

Line arrangements can be generalized to so-called pseudoline arrangements. A301

pseudoline is a closed curve in the projective plane P2 whose removal does not302
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c∗

a∗ b∗

w(b∗, c∗)w(a∗, c∗)

4

Figure 6: An illustration of the proof of Theorem 1. If ab is an exit edge with
witness c in S, then the two bold drawn segments of the corresponding triangular
cell are unintersected, and thus, bound an unmarked triangular cell in S∗. The
exit vertex is represented with a black disk.

disconnect P2. A set of pseudolines in P2, where any two pseudolines cross303

exactly once, determines a (projective) pseudoline arrangement. If no three304

pseudolines intersect in a common point, the pseudoline arrangement is simple.305

All notions that we have introduced for line arrangements, such as consistent306

orientations, exit vertices, or witness lines, naturally extend to pseudolines.307

Two pseudoline arrangements are isomorphic if there is an isomorphism of308

the cell complexes into which they partition P2. A pseudoline arrangement is309

stretchable if it is isomorphic to a line arrangement, that is, the corresponding310

cell complexes into which the two arrangements partition P2 are isomorphic. De-311

ciding if a pseudoline arrangement is stretchable is (polynomial-time-)equivalent312

to the existential theory of the reals [11, 19]. The combinatorial dual analogues313

of line arrangements and pseudoline arrangements are order types and abstract314

order types, respectively.315

As a consequence of Theorem 1, the maximum number of triangular cells316

in a simple projective pseudoline arrangement gives an upper bound on the317

number of exit edges of a point set. However, one triangular cell could be c∞,318

and there could be pairs of triangular cells with the same exit vertex. We call a319

configuration of the latter type an hourglass; see Figure 7. We say that the two320

pseudolines p and q that define the exit vertex of the two triangular cells of an321

hourglass H slice H and that H is sliced by p and by q.

41

42

v1

v2

41

42

v

Figure 7: Left: the two triangular cells 41 and 42 do not form an hourglass,
because they share a vertex that is not an exit vertex. Right: the two triangular
cells 41 and 42 form an hourglass because they share an exit vertex.

322
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Observation 1 A triangular cell can be a part of at most one hourglass.323

Observation 2 An exit edge ab with two witness points is dual to an hourglass324

with exit vertex ab
∗
.325

Any projective arrangement of n ≥ 4 lines has at least n triangular cells,326

as each line is incident to at least three triangular cells [17]. This is known327

to be tight. Therefore, taking into account the marked cell c∞ and possible328

hourglasses, any set of n ≥ 4 points has at least dn−1
2 e exit edges. We improve329

this lower bound by bounding from below the difference between the number of330

triangular cells and the number of hourglasses.331

Proposition 3 Any set of n ≥ 4 points in the plane has at least (3n−7)/5 exit332

edges.333

For the proof of Proposition 3 we use the following two lemmas. The first is334

a theorem by Grünbaum [15, Theorem 3.7 on p. 50], and the second can be335

derived from the proof of that theorem.336

Lemma 1 (Grünbaum [15]) In a simple pseudoline arrangement L every337

pseudoline from L is incident to at least three triangular cells.338

Lemma 2 (Grünbaum [15]) Let L be a simple arrangement of pseudolines,339

and let H be a closed halfplane determined by two pseudolines `1, `2 ∈ L. If two340

other pseudolines of L cross in the interior of H, then there is a triangular cell341

in H that is incident to `1 but not to `2.342

Proof of Proposition 3: Let L be a simple projective line arrangement of343

n ≥ 4 pseudolines `1, `2, . . . , `n. For each pseudoline `i ∈ L, let ti be the344

number of triangular cells incident to `i and hi the number of hourglasses sliced345

by `i. Set xi = ti − hi/2. For each pseudoline `i ∈ L, there are three possible346

cases.347

Case (i): there is no hourglass sliced by `i. By Lemma 1, every pseudoline348

is incident to at least three triangular cells. Thus, we have xi = ti ≥ 3.349

Case (ii): the pseudoline `i slices an hourglass together with some pseudo-350

line `j and the interior of each of the two halfplanes determined by `i and `j351

contains at least one crossing of some other pair of pseudolines. By Lemma 2,352

`i is incident to the two triangular cells of the hourglass plus at least two other353

triangular cells, one in each closed halfplane. Thus, ti ≥ 4. Observation 1354

implies hi ≤ ti/2. Overall we get xi = ti − hi/2 ≥ ti − ti/4 ≥ (3/4) · 4 = 3.355

Case (iii): the pseudoline `i slices an hourglass together with some pseudo-356

line `j , and one of the two closed halfplanes H1 and H2 determined by `i and `j357

contains no crossing of any other pair of pseudolines in its interior. Suppose the358

closed halfplane that contains no further crossing is H1. Then, the hourglass359

sliced by `i and `j is in H1, as the other two lines defining the hourglass do not360

cross in that halfplane; see Figure 8 (left). Since H1 contains no crossing in its361

interior, it is divided by the other pseudolines into 4-gons and the two triangular362
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`i

`j

`i

`j

H1

Figure 8: In case (iii), both `1 and `2 must bound the marked cell, shown striped
on the right picture. Moreover, that cell is bounded by four pseudolines.

cells of the hourglass. In particular, the marked cell is bounded by at most four363

pseudolines, two of them being `i and `j ; see Figure 8 (right). Thus, there can364

be at most four pseudolines for which case (iii) applies. Notice that in this case365

hi = 1, since any other hourglass sliced by `i would have one triangular cell in366

each of the two halfplanes H1 and H2 and the two triangular cells in H1 form the367

already-counted hourglass (and by Observation 1 they cannot be part of another368

hourglass). Thus, we can only guarantee that xi ≥ 3− 1/2 = 5/2. However, as369

we showed, this case can happen for at most two pairs of pseudolines.370

Let T be the total number of triangular cells in L and let H be the total371

number of hourglasses. Summing the contributions of cases (i)–(iii), we have372

3T −H =

n∑
i=1

ti −
1

2

n∑
i=1

hi =

n∑
i=1

xi ≥ 3 · (n− 4) + 4 ·
(

5

2

)
= 3n− 2.

By Observation 1, we have T ≥ 2H. Combining these inequalities, we get373

T −H =
3T −H + 2(T − 2H)

5
≥ 3T −H

5
≥ 3n− 2

5
.

By Theorem 1, the number of exit edges in a point set is equal to the number of374

exit vertices in its dual line arrangement. In general, the number of exit vertices375

in a pseudoline arrangement is bounded from below by T −H − 1. Therefore,376

there are at least 3
5n−

7
5 exit edges. �377

We do not know if the lower bound in Proposition 3 is tight. The smallest378

number of exit edges we could achieve is n − 3 for n ≥ 9; see Figure 9. We379

exhaustively checked the set of exit edges for all order types of up to 10 points380

using the order type database [1] and obtained that this construction with n−3381

exit edges is optimal for n = 9, 10. Moreover, the order type represented in382

Figure 9 (left) is the only order type of 9 points that requires 6 exit edges.383

The number of triangular cells in a simple arrangement of n lines in the384

projective plane P2 is at most n(n − 1)/3 [15], so there are at most n2/3 +385

O(n) exit edges. This means that representing an order type with the exit386

graph instead of the complete geometric graph saves at least one third of the387

edges. Palásti and Füredi [13] showed that for every value of n there is a388

simple arrangement of n lines in P2 with n(n− 3)/3 triangular cells. Moreover,389
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Figure 9: Construction with n− 3 exit edges.

Roudneff [21] and Harborth [16] proved that the upper bound n(n−1)/3 is tight390

for infinitely many values of n (see also [4]). The point sets that are dual to391

the currently-known arrangements that maximize the number of triangular cells392

have n2/6 +O(n) exit edges, since most of their exit edges have two witnesses.393

This gives a quadratic lower bound in the worst case, but the leading coefficient394

remains unknown. It is worth noting that there are line arrangements with no395

pair of adjacent triangular cells [18], which implies the existence of point sets396

where every exit edge has precisely one witness.397

We now show a random construction with a quadratic expected number of398

exit edges.399

Theorem 2 Let S = {p1, . . . , pn} be a set of n points in the plane with pi =400

(i, yi) for every i = 1, . . . , n, where each yi is chosen uniformly at random from401

the real interval [1, n]. Then the expected number of exit edges in S is Θ(n2).402

The main idea of the proof of Theorem 2 is inspired by the proof of Theo-403

rem 2.3 from [3].404

Proof: The upper bound O(n2) on the number of exit edges in S follows from405

the fact that the number of pairs of points from S is
(
n
2

)
. In the rest of the406

proof we establish the lower bound Ω(n2).407

First, note that all points of S lie in the rectangle R = [1, n]× [1, n]. Assume408

for convenience that n is divisible by 5. In the following, we identify each point409

pi with the number i, which is the x-coordinate of pi. Let A = {1, . . . , n5 },410

B = { 2n
5 +1, . . . , 3n

5 }, and C = { 4n
5 +1, . . . , n}. Let a, b, and c be fixed integers411

with a ∈ A, b ∈ B, and c ∈ C. We now find a lower bound on the probability412

that papc is an exit edge of S with witness pb.413

The probability that the point pb has vertical distance at most 1 from the414

line segment papc is at least 1
n , because the points from {b}×R lying at distance415

at most 1 from papc form a vertical line segment of length 2, and at least one416

half of this line segment is contained in R.417

In the following, we assume that pb has distance at most 1 from papc. Con-418

sider a point pd with d ∈ {a+ 1, . . . , n} \ {b, c}. Since a ∈ A and b ∈ B, we have419
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pa

pb

pcpd

a b d c

A B C

Figure 10: An illustration of the proof of Theorem 2.

b− a ≥ n/5 and d− a ≤ n. Since pb has vertical distance at most 1 from papc,420

the vertical side of the triangle T bounded by the vertical line {b} × R and by421

the rays −−→papb and −−→papc has length at most 1; see Figure 10. Since the triangle T ′422

bounded by these two rays and by the vertical line {d}×R is similar to T , and423

since d − a ≤ 5(b − a), the vertical side of T ′ has length at most 5. Thus,424

the probability that pd lies in the convex wedge spanned by the rays −−→papb and425
−−→papc is at most 5/n. An analogous argument shows that the probability that a426

point pd with d ∈ {1, . . . , c− 1} \ {a, b} lies in the convex wedge spanned by the427

rays −−→pcpa and −−→pcpb is at most 5/n. In total, the probability that papc is an exit428

edge of the point set {pa, pb, pc, pd} with witness pb is at least 1− 10/n.429

Altogether, the probability that papc is an exit edge of S with witness pb430

and that pb is at vertical distance at most 1 from papc is at least431

1

n
·

∏
d∈{1,...,n}\{a,b,c}

(
1− 10

n

)
=

1

n
·
(

1− 10

n

)n−3

≥ 1

n · e20
,

where we use the inequality 1− x ≥ e−2x for every real x with 0 ≤ x ≤ 1/2.432

Since every exit edge of S has at most two witnesses, the expected number433

of exit edges of S is at least434

1

2

∑
a∈A

∑
b∈B

∑
c∈C

1

n · e20
≥ Ω(n2).

�435

Combining the point-line duality that maps a point (a, b) to the line {(x, y) ∈436

R2 : y = ax− b} with Theorem 2, we obtain the following result.437

Corollary 3 Let L = {`1, . . . , `n} be a set of lines, where `i = {(x, y) ∈ R2 : y =438

i·x−bi} and where bi is chosen uniformly at random from the real interval [1, n].439

Then the expected number of triangular cells in the line arrangement induced440

by L is Θ(n2).441

5 Properties of exit graphs442

We present some further results on supporting graphs and exit graphs.443
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Theorem 3 Any geometric graph supporting a point set S ⊂ R2, with |S| ≥ 9,444

contains a crossing.445

Proof: Let G be a geometric graph with vertex set S without crossings. There446

is a point set S′ with a different order type that also admits G: Dujmović [9]447

showed that every plane graph admits a plane straight-line embedding with at448

least
√
n/2 points on a line; as we have a point set with a collinear triple that449

admits G, there are at least two point sets in general position with a different450

order type that admit G. Moreover, one can continuously morph S to S′ while451

keeping the corresponding geometric graph planar and isomorphic to G (see, for452

example, [2]). Therefore, G does not support S. �453

Proposition 4 Let S be a point set in general position in R2 and let G be its454

exit graph. Every vertex in the unbounded face of G is extremal, that is, it lies455

on the boundary of the convex hull of S.456

Note that, as shown in Figure 5 (left), an analogous statement does not hold457

for general supporting graphs.458

Proof: Suppose for contradiction that there is a point p ∈ S incident to the459

unbounded face of the exit graph of S and that is internal in S, that is, lies460

in the interior of the convex hull conv(S) of S. This means that there is a461

polygonal path inside conv(S) from p to the boundary of conv(S) such that the462

interior of this path intersects no exit edge of S. Let δ(p) be the infimum of the463

lengths of such paths. Since conv(S) and S are both compact sets, there is a464

polygonal path Pp of length δ(p) > 0 from p to the boundary of conv(S) that465

has no crossing with exit edges but may pass through other points of S. Among466

all such points p, let r ∈ S be the point for which δ(r) is the minimum possible.467

Then Pr is a single segment. Let q be the endpoint of Pr on the boundary of468

conv(S).469

If q coincides with an extremal point in S, we slightly perturb the point q470

so that q lies in the interior of an edge of conv(S) and the line segment rq does471

not intersect any exit edge of S. Let s and t be the endpoints of the edge of472

conv(S) containing q; see Figure 11 for an illustration.473

s t

r

q s t

r

q

p

Figure 11: An illustration of the proof of Proposition 4. The path between r
and q is drawn as a red dotted line segment.
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Since exit edges are invariant to nondegenerate affine transformations we as-474

sume without loss of generality that the following three conditions are satisfied.475

(i) The points r and q lie on the y-axis, s has negative x-coordinate and t has476

positive x-coordinate,477

(ii) the point r lies above the line st, and478

(iii) all points of S have distinct x-coordinates.479

To obtain a contradiction, we will show that the segment rq intersects the480

interior of an exit edge of S. We will prove this in a dual setting.481

By applying the duality transformation mentioned in Section 3 that maps482

each point p = (px, py) to the (non-vertical) line p∗ : y = pxx− py, we map the483

point set S to the dual line arrangement S∗. Due to the three conditions above,484

the lines r∗ and q∗ are horizontal and the lines s∗ and t∗ have a negative and a485

positive slope, respectively; see Figure 12. By Theorem 1, a triple of points of S486

representing the endpoints of an exit edge together with its witness, such that487

the x-coordinate of the witness is between the x-coordinates of the endpoints488

of the exit edge, corresponds to a triangular cell in S∗ where the dual of the489

witness is the line with median slope bounding this cell.

q∗r

q
s

t

r∗
∆

t∗s∗

Figure 12: Applying the dual transformation to the point set S (left) and ob-
taining the line arrangement S∗ (right).

490

Let 4 be the triangular region bounded by the lines r∗, s∗, and t∗. Since491

the line segment st is not an exit edge in S, the triangular region 4 is not a492

cell in S∗. Thus, the interior of 4 is intersected by some line from S∗. Since493

s and t are vertices of conv(S), their duals s∗ and t∗ are incident to the upper494

envelope of S∗.495

Moving a point p vertically down from r to q corresponds to sweeping the496

dual S∗ by a horizontal line p∗ from r∗ to q∗. Thus, meeting an exit edge of S497

with p corresponds to the situation in the dual in which the sweeping line p∗498

meets a vertex of a triangular cell of S∗ such that the vertex is an intersection of499

a line with a positive slope and a line with a negative slope. Therefore, the line500

segment rq crosses an exit edge of S if and only if there is a triangular cell 4′501

of S∗ between r∗ and q∗ such that 4′ is bounded by a line with positive slope502

and a line with negative slope. To obtain a contradiction, we will show that 4503

contains such a triangular cell 4′.504
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t∗s∗

r∗

t∗s∗

r∗
∆

∆+

Figure 13: Inserting the set of lines L+ from S∗ with positive slope that
intersect the interior of 4. Left: the dashed line cannot be in L+ since the
intersection of s∗ and t∗ must be on the upper envelope. Thus, the lines in L+

must intersect s∗ on the boundary of 4. Right: finding a triangular region 4+

inside 4 bounded by s∗.

We start with the line arrangement containing the lines r∗, s∗, and t∗. First,505

we insert the set L+ of lines from S∗ with positive slope that intersect the506

interior of 4. The goal is to find a triangular region 4+ in 4 with one edge507

on s∗ such that no line from S∗ with positive slope intersects the interior of 4+.508

Since the lines s∗ and t∗ must bound the upper envelope (and are consecutive509

on it), no line from S∗ with positive slope can intersect s∗ above its intersection510

with t∗. Thus, the lines from L+ cannot intersect both r∗ and t∗ on the boundary511

of 4. By definition, the lines from L+ must intersect two of the segments512

bounding 4 and therefore they must intersect s∗ on the boundary of 4; see513

Figure 13 (left).514

Consider the intersection point in 4 closest to s∗ produced by two lines r̃∗515

and t̃∗ (that possibly coincide with r∗ or t∗) from {r∗, t∗} ∪ L+. We assume516

that the slope of t̃∗ is larger than the slope of r̃∗. Since all the lines from L+
517

intersect s∗ on the boundary of 4, the intersection of r̃∗ and t̃∗ is the leftmost518

vertex of a triangular cell 4+ (of {r∗, s∗, t∗}∪L+) bounded by s∗; see Figure 13519

(right) for an illustration. Moreover, 4+ is contained in 4 and it is thus a cell520

of the arrangement defined by r∗ and s∗ together with all the lines with positive521

slope from S∗ (including t∗ and all the lines in L+).522

We now consider the lines from S∗ with negative slope. We denote by L−523

the set of lines from S∗ with negative slope that intersect the interior of 4+.524

Analogously as before, we show that there is a triangular cell4′ of S∗ inside4+
525

with one edge on t̃∗.526

Since the lines s∗ and t∗ must bound the upper envelope, lines from S∗527

with negative slope and steeper than s∗ must intersect s∗ above its intersection528

with t∗ (and therefore above its intersection with t̃∗). Thus, the lines from L−529

cannot intersect both r̃∗ and s∗ on the boundary of 4+; see Figure 14 (left). By530

definition, the lines from L− must intersect two of the segments bounding 4+
531

and therefore they must intersect t̃∗ on the boundary of 4+.532

In an analogous manner as before, the intersection in4+ closest to t̃∗ defines533

a triangular cell 4′ inside 4+ bounded by t̃∗; see Figure 14 (right). Thus, we534

found a triangular cell 4′ of S∗ contained in 4 bounded by a line with positive535
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t̃∗s∗s∗

∆+ ∆′

t̃∗

r̃∗ r̃∗

Figure 14: Inserting the set of lines L− from S∗ with negative slope that intersect
the interior of4+. Left: the dashed line cannot be in L− since the intersection of
s∗ and t̃∗ must be on the upper envelope. Thus, the lines in L− must intersect t̃∗
on the boundary of 4+. Right: finding a triangular cell 4′ inside 4+ bounded
by t̃∗.

slope and a line with negative slope. Altogether, by duality, this implies that536

the segment rq crosses an exit edge of S, which is a contradiction. �537

6 Concluding remarks538

We conjecture that the geometric graph G of exit edges not only is supporting539

for S, but also that any point set S′ that is the vertex set of a geometric graph540

isomorphic to G has the same order type as S. One might conjecture that541

already knowing all exit edges and their witnesses (in the dual line arrangement,542

all triangular cells and their orientations) is sufficient to determine the order543

type. Surprisingly, this turns out to be false.544

A counterexample is sketched in Figure 15 as a dual (stretchable) pseudoline545

arrangement of 14 lines in the projective plane, based on an example by Felsner546

and Weil [12]. It consists of two arrangements of six lines in the Euclidean plane547

that are combinatorially different, but share the set of triangular cells and their548

orientations. While the exit edges and their witnesses are the same for the two549

different order types, the corresponding exit graphs are not isomorphic.550

In the dual of that example the order of the triangular cells along each pseu-551

doline differs, but that extra information is not enough to distinguish the two552

order types: We can modify the pseudoline arrangements in Figure 15 by, es-553

sentially, duplicating pseudolines 1–6 and making a pseudoline and its duplicate554

cross between the crossings with two red pseudolines (7–14). In Figure 16 we555

present an illustration. It shows two pseudoline arrangements with the same556

triangular cells (including their orientations) and the same order of triangular557

cells along each pseudoline. However, the corresponding order types are not558

the same (see for example the number of extremal points). Note that the dual559

point sets of the pseudoline arrangements in Figure 16 can be obtained from the560

ones in Figure 15 by adding a copy of points 1–6 close to the original respective561

points. Thus, we cannot reconstruct the order type from that information.562
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Figure 15: Top: two arrangements of 14 pseudolines with the same set of trian-
gular cells (extending [12, Figure 3]). No triangular cell is crossed by the line
at infinity. Bottom: corresponding dual point sets and exit graphs. The order
types are not the same (see for example the number of extremal points).
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