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Abstract Let T be a triangulation of a simple polygon. A flip in T is the operation7

of replacing one diagonal of T by a different one such that the resulting graph is again8

a triangulation. The flip distance between two triangulations is the smallest number9

of flips required to transform one triangulation into the other. For the special case of10

convex polygons, the problem of determining the shortest flip distance between two11

triangulations is equivalent to determining the rotation distance between two binary12

trees, a central problem which is still open after over 25 years of intensive study.13

We show that computing the flip distance between two triangulations of a simple14

polygon is NP-hard. This complements a recent result that shows APX-hardness of15

determining the flip distance between two triangulations of a planar point set.16
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1 Introduction19

Let P be a simple polygon in the plane, that is, a closed region bounded by a piece-20

wise linear, simple cycle. A triangulation of P is a geometric (straight-line) maximal21

outerplanar graph whose outer face is the complement of P and whose vertex set consists22

of the vertices of P . The edges that are not on the outer face are called diagonals. Let d23

be a diagonal whose removal creates a convex quadrilateral. Replacing d with the other24

diagonal of the quadrilateral yields another triangulation of P . This operation is called25

a flip. The flip graph of P is the abstract graph whose vertices are the triangulations26

of P and in which two triangulations are adjacent if and only if they differ by a single27

flip. We study the flip distance, i.e., the minimum number of flips required to transform28

a given source triangulation into a target triangulation.29

Edge flips became popular in the context of Delaunay triangulations. Lawson [15]30

proved that any triangulation of a planar n-point set can be transformed into any other31

by O(n2) flips. Hence, for every planar n-point set the flip graph is connected with diam-32

eter O(n2). Later, Lawson showed that in fact every triangulation can be transformed33

to the Delaunay triangulation by O(n2) flips that locally fix the Delaunay property [16].34

Hurtado, Noy, and Urrutia [11] gave an example where the flip distance is Ω(n2), and35

they showed that the same bounds hold for triangulations of simple polygons. They36

also proved that if the polygon has k reflex vertices, then the flip graph has diameter37

O(n+k2). In particular, the flip graph of any planar polygon has diameter O(n2). Their38

result also generalizes the well-known fact that the flip distance between any two tri-39

angulations of a convex polygon is at most 2n − 10, for n > 12. This was shown by40

Sleator, Tarjan, and Thurston [22] in their work on the flip distance in convex poly-41

gons. The latter case is particularly interesting due to the correspondence between flips42

in triangulations of convex polygons and rotations in binary trees: The dual graph of43

such a triangulation is a binary tree, and a flip corresponds to a rotation in that tree;44

conversely, for every binary tree, a triangulation can be constructed.45

We mention two further remarkable results on flip graphs for point sets. Hanke,46

Ottmann, and Schuierer [10] showed that the flip distance between two triangulations is47
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bounded by the number of crossings in their overlay. Eppstein [9] gave a polynomial-time48

algorithm for calculating a lower bound on the flip distance. His bound is tight for point49

sets with no empty 5-gons; however, except for small instances, such point sets are not50

in general position (i.e., they must contain collinear triples) [1]. A recent survey on flips51

is provided by Bose and Hurtado [4].52

Recently, the problem of finding the flip distance between two triangulations of a53

point set was shown to be NP-hard by Lubiw and Pathak [18] and, independently, by54

Pilz [19]. The latter proof was later improved to show APX-hardness of the problem. A55

recent preprint shows that the problem is fixed-parameter tractable [14]. Here, we show56

that the corresponding problem remains NP-hard even for simple polygons. This can57

be seen as a further step towards settling the complexity of deciding the flip distance58

between triangulations of convex polygons or, equivalently, the rotation distance between59

binary trees. This variant of the problem was probably first addressed by Culik and60

Wood [7] in 1982 (showing a flip distance of 2n−6) in the context of similarity measures61

between trees.62

We now give the formal problem definition: given a simple polygon P , two triangula-63

tions T1 and T2 of P , and an integer l, decide whether T1 can be transformed into T2 by64

at most l flips. We call this decision problem PolyFlip. To show NP-hardness, we give65

a polynomial-time reduction from the problem Rectilinear Steiner Arborescence66

to PolyFlip. Rectilinear Steiner Arborescence was shown to be NP-hard by Shi67

and Su [21]. In Section 2, we describe the problem in detail. We present the well-known68

double chain (used by Hurtado, Noy, and Urrutia [11] for giving their lower bound), a69

major building block in our reduction, in Section 3. Finally, in Section 4, we describe70

our reduction and prove that it is correct.71

2 The Rectilinear Steiner Arborescence Problem72

Let S be a set of N points in the plane whose coordinates are nonnegative integers.73

The points in S are called sinks. A rectilinear tree A is a connected acyclic collection of74

horizontal and vertical line segments that intersect only at their endpoints. The length75

of A is the total length of all segments in A (cf. [13, p. 205]). The tree A is a rectilinear76

Steiner tree for S if every sink in S appears as an endpoint of a segment in A. We call A77

a rectilinear Steiner arborescence (RSA) for S if (i) A is rooted at the origin; (ii) every78
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leaf of A lies at a sink in S; and (iii) for each s = (xs, ys) ∈ S, the length of the path79

in A from the origin to s equals xs + ys, i.e., all edges in A point north or east, as seen80

from the origin [20]. In the problem Rectilinear Steiner Arborescence, we are81

given a set of sinks S and an integer k. The question is whether there is an RSA for S82

of length at most k. Shi and Su showed that Rectilinear Steiner Arborescence83

is strongly NP-complete; in particular, it remains NP-complete if S is contained in an84

n× n grid, with n polynomially bounded in N , the number of sinks [21].185

We will need the following important structural property of the RSA. Let A be an86

RSA for a set S of sinks. Let e be a vertical segment in A that does not contain a sink.87

Suppose there is a horizontal segment f incident to the upper endpoint a of e. Since A88

is an arborescence, a is the left endpoint of f . Suppose further that a is not the lower89

endpoint of another vertical edge. Take a copy e′ of e and translate it to the right until e′90

hits a sink or another segment endpoint (this will certainly happen at the right endpoint91

of f); see Fig. 1. The segments e and e′ define a rectangle R. The upper and left side of R92

are completely covered by e and (a part of) f . Since a has only two incident segments,93

every sink-root path in A that goes through e or f contains these two sides of R, entering94

the boundary of R at the upper right corner d and leaving it at the lower left corner b.95

We reroute every such path at d to continue clockwise along the boundary of R until it96

meets A again (this certainly happens at b), and we delete e and the part of f on R.97

In the resulting tree we subsequently remove all unnecessary segments (this happens if98

there are no more root-sink paths through b) to obtain another RSA A′ for S. Then A′99

is not longer than A. This operation is called sliding e to the right. If similar conditions100

apply to a horizontal edge, we can slide it upwards. The Hanan grid for a point set is101

the set of all vertical and horizontal lines through its points. Through repeated segment102

slides in a shortest RSA, one can obtain the following theorem.103

Theorem 2.1 ([20]) Let S be a set of sinks. There is a minimum-length RSA A for S104

such that all segments of A are on the Hanan grid for S ∪ {(0, 0)}. ut105

We use a restricted version of Rectilinear Steiner Arborescence, called YRSA.106

An instance (S, k) of YRSA differs from an instance for Rectilinear Steiner Ar-107

borescence in that we require that no two sinks in S have the same y-coordinate.108

Theorem 2.2 YRSA is strongly NP-complete.109

1 Although a polynomial-time algorithm was claimed [23], it has later been shown to be incorrect [20].
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R

Fig. 1 The slide operation. The dots depict sinks; the rectangle R is drawn gray. The dotted segments

are deleted, since they do no longer lead to a sink.

Proof Due to Theorem 2.1, YRSA and Rectilinear Steiner Arborescence are in110

NP [21]. We now show how to transform an instance (S, k) of Rectilinear Steiner111

Arborescence to an instance of YRSA. We may assume that N = |S| ≥ 3, and we112

number the sinks as S = 〈s1, s2, . . . , sN 〉 in an arbitrary fashion. For i = 1, . . . , N ,113

let (xi, yi) be the coordinates of si and define s′i := (xiN
4, yiN

4 + i). We set S′ :=114

{s′1, s′2, . . . , s′N}. The y-coordinates of the sinks in S′ are pairwise distinct. We will show115

that there is an RSA for S of length at most k if and only if there is an RSA for S′ of116

length at most kN4 +N3.117

Let A be a rectilinear Steiner arborescence for S of length at most k. We scale A by118

N4 and draw a vertical segment from each leaf to the sink in S′ above it. This gives an119

RSA for S′ of length at most kN4 +N2 < kN4 +N3.120

Conversely, let A′ be an RSA for S′ of length at most kN4+N3. Due to Theorem 2.1,121

we can assume that A′ is on the Hanan grid. We round the y-coordinate of every segment122

endpoint in A′ down to the next multiple of N4 (possibly removing segments of length 0).123

The resulting drawing remains connected; every path to the origin remains monotone;124

and since the segments of A′ lie on the Hanan grid of S′ ∪ {(0, 0)}, no new cycles are125

introduced. Thus, the resulting drawing constitutes an arborescence A′′ for the set S′′126

of sinks obtained by scaling S by N4. Since A′ lies on the Hanan grid, it is a union127

of N paths, each with at most N vertical segments. The rounding operation increases128

the length of each such vertical segment by at most N . Thus, the total length of A′′ is129

at most kN4 + 2N3. By Theorem 2.1 there exists an optimum arborescence A∗ for S′′130

that lies on the Hanan grid. The length of A∗ is a multiple of N4, and thus at most131

kN4, since 2N3 < N4 for N ≥ 3. It follows that S has an RSA of length at most k.132

Therefore, (S, k) is a yes-instance for Rectilinear Steiner Arborescence if and133

only if (S′, kN4+N3) is a yes-instance for YRSA. Since (S′, kN4+N3) can be computed134

in polynomial time from (S, k), and since the coordinates in S′ are polynomially bounded135

in the coordinates of S, it follows that YRSA is strongly NP-complete. ut136
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u0 u1
uh−2

uh−1

l0 l1 lh−2 lh−1

Fig. 2 Left: The polygon and the hourglass (gray) of a double chain. The diamond-shaped flip-kernel

can be extended arbitrarily by flattening the chains. Right: The upper extreme triangulation Tu and

the lower extreme triangulation Tl.

Due to Theorem 2.1, we get the following technical corollary, which will be useful137

later.138

Corollary 2.3 YRSA remains strongly NP-complete even if the sinks have coordinates139

that are a multiple of a positive integer whose value is polynomial in N .140

3 Double Chains141

Our definitions (and illustrations) follow [19]. A double chain D is a polygon that con-142

sists of two chains, an upper chain and a lower chain. There are h vertices on each chain,143

〈u0, . . . , uh−1〉 on the upper chain and 〈l0, . . . , lh−1〉 on the lower chain, both numbered144

from left to right, and D is defined by 〈l0, . . . , lh−1, uh−1, . . . , u0〉. Any point on one chain145

sees every point on the other chain, and any quadrilateral formed by three vertices of146

one chain and one vertex of the other chain is non-convex; see Fig. 2 (left). We call the147

triangulation Tu of D where u0 has maximum degree the upper extreme triangulation;148

observe that this triangulation is unique. The triangulation Tl of D where l0 has max-149

imum degree is called the lower extreme triangulation. The two extreme triangulations150

are used to show that the diameter of the flip graph is quadratic; see Fig. 2 (right).151

Theorem 3.1 (Hurtado, Noy, Urrutia [11]) The flip distance between Tu and Tl152

is (h− 1)2. ut153

Through a slight modification of D, we can make the flip distance between the upper154

and the lower extreme triangulation linear. This will enable us in our reduction to impose155

a certain structure on short flip sequences. To describe this modification, we first define156

the flip-kernel of a double chain.157

Let W1 be the wedge defined by the lines through u0u1 and l0l1 whose interior158

contains no vertex of D but intersects the segment u0l0. Define Wh analogously by the159
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p

Fig. 3 The extra point p in the flip-kernel of D allows flipping one extreme triangulation of Q to the

other in 4h− 4 flips.

lines through uh−1uh−2 and lh−1lh−2. We call W := W1 ∪Wh the hourglass of D. The160

unbounded set W ∪D is defined by four rays and the two chains. The flip-kernel of D is161

the intersection of the four closed half-planes below the lines through u0u1 and uh−2uh−1162

and above the lines through l0l1 and lh−2lh−1.2163

Definition 3.2 Let D be a double chain and let p be a point in the flip-kernel164

of D to the right of the directed line lh−1uh−1. The polygon given by the sequence165

〈l0, . . . , lh−1, p, uh−1, . . . , u0〉 is called a double chain extended by p. The upper and the166

lower extreme triangulation of such a polygon contain the edge uh−1lh−1 as a diagonal167

and are otherwise defined in the same way as for D.168

The flip distance between the two extreme triangulations of D extended by a point p169

is much smaller than for D [24]. Fig. 3 shows how to transform them into each other170

with 4h − 4 flips. The next lemma shows that this is optimal, even for more general171

polygons. The lemma is a slight generalization of a lemma by Lubiw and Pathak [18] on172

double chains of constant size.173

Lemma 3.3 Suppose that h ≥ 5 and consider a polygon that contains D and has174

〈l0, . . . , lh−1〉 and 〈uh−1, . . . , u0〉 as part of its boundary. Let T1 and T2 be two triangu-175

lations that contain the upper extreme triangulation and the lower extreme triangulation176

of D as a sub-triangulation, respectively. Then T1 and T2 have flip distance at least177

4h− 4.178

Proof We slightly generalize a proof by Lubiw and Pathak [18] for double chains of179

constant size.180

Let Cu be the upper chain and Cl be the lower chain of D. The triangulation T1 has181

2(h− 1) triangles with an edge on Cu or on Cl. These triangles are called anchored, and182

the vertex not incident to the edge on Cu or on Cl is called the apex. For each anchored183

triangle with an edge on Cu, the apex must move from lh−1 to l0, and similarly for Cl.184

2 The flip-kernel of D might not be completely inside the polygon D. This is in contrast to the

“visibility kernel” of a polygon.
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We distinguish three types of flips depending on whether the convex quadrilateral whose185

diagonal is flipped has (1) four; (2) three; or (3) at most two vertices on D. A flip of186

type (1) moves the apex of two anchored triangles by one; a flip of type (2) moves the187

apex of one anchored triangle from D to a point outside D or back again; and a flip of188

type (3) does not move any apex of an anchored triangle along D or between a vertex189

of D and a vertex not in D.190

We say that an anchored triangle is of type (1) if its apex is moved only by flips of191

type (1). It is of type (2) if its apex is moved by at least one flip of type (2). Every192

anchored triangle is either of type (1) or of type (2). A type (1) triangle must be involved193

in at least h − 1 flips of type (1), and each of these flips can affect at most one other194

type (1) triangle. A type (2) triangle must be involved in at least 2 flips of type (2), and195

each of these flips can affect no other anchored triangle. Thus, if we have m1 type (1)196

triangles and m2 type (2) triangles, we need at least (h−1)m1/2 + 2m2 flips. For h ≥ 5,197

we have (h− 1)m1/2 + 2m2 ≥ 2(m1 +m2) = 4h− 4, as claimed. ut198

The following result can be seen as a special case of [19, Proposition 1].199

Lemma 3.4 Consider a polygon that contains D and has 〈uh−1, . . . , u0, l0, . . . , lh−1〉 as200

part of its boundary. Let T1 and T2 be two triangulations that contain the upper and201

the lower extreme triangulation of D as a sub-triangulation, respectively. Let σ be a flip202

sequence from T1 to T2 such that there is no triangulation in σ containing a triangle203

with one vertex at the upper chain, the other vertex at the lower chain, and the third204

vertex at a point in the interior of the hourglass of D. Then |σ| ≥ (h− 1)2.205

Proof Our reasoning is similar to the proof of Lemma 3.3, see also [18]. As before, let206

Cu and Cl be the upper and lower chain of D, and call a triangle with an edge on Cu or207

on Cl anchored, the third vertex being the apex. Any triangulation of the given polygon208

has 2(h− 1) anchored triangles.209

We will argue that for each triangulation of σ there exists a line ` that separates210

Cu from Cl and that intersects all anchored triangles. This is clear if the apices of211

all anchored triangles lie on the other chain or outside the hourglass. Now consider a212

triangulation of the sequence σ where at least one anchored triangle has its apex at a213

vertex v inside the hourglass. Let r be a ray that starts at a point on u0l0 and passes214

through v such that the supporting line of r separates Cu from Cl (such a ray must215

exist since v is inside the hourglass). Then r intersects at least one triangle that is not216
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anchored, because the triangle whose interior is intersected by r before reaching v cannot217

be anchored. Let ∆ be the first non-anchored triangle whose interior is intersected by r.218

Then ∆ has one vertex on Cu and one vertex on Cl. By assumption, the third vertex219

of ∆ cannot be inside the hourglass, so it must lie outside. This means that one of the220

vertices of ∆ has to be either uh−1 or lh−1. This implies that either all anchored triangles221

at Cu or or all anchored triangles Cl, respectively, have their apex at the opposite chain.222

Thus, also for this triangulation there exists a line ` that separates Cu from Cl and that223

intersects all anchored triangles. Observe that every such line intersects the anchored224

triangles in the same order.225

Now we proceed similarly as in the proof of Hurtado, Noy, and Urrutia [11]: we226

observe that an anchored triangle at Cu and an anchored triangle at Cl can change their227

relative position along ` only if they have an edge in common and this edge is flipped.228

This results in an overall number of (h− 1)2 flips. ut229

4 The Reduction230

We reduce YRSA to PolyFlip. Let S be a set of N sinks. By Corollary 2.3, we can231

assume that the coordinates of sinks of S are multiples of a factor β = 2N in {0, . . . , βn}.232

Further, we can restrict ourselves to YRSA instances of the form (S, βk). Thus, we233

imagine that the sinks are embedded on a βn× βn grid. The reasons for the choice of β234

will become clear below.235

We construct a polygon P and two triangulations T1, T2 in P such that a shortest236

flip sequence from T1 to T2 corresponds to a shortest RSA for S. To this end, we will237

describe how to interpret any triangulation of P as a chain path, a path in the integer238

grid that starts at the root and uses only edges that go north or east. It will turn out239

that flips in P essentially correspond to moving the endpoint of the chain path along the240

grid. We choose P , T1, and T2 in such a way that a shortest flip sequence between T1 and241

T2 moves the endpoint of the chain path according to an Eulerian traversal of a shortest242

RSA for S. To force the chain path to visit all sinks, we use the observations from243

Section 3: the polygon P contains a double chain for each sink, so that only for certain244

triangulations of P it is possible to flip the double chain quickly. These triangulations will245

be exactly the triangulations that correspond to the chain path visiting the appropriate246

sink. To force the sinks to be visited, we, with foresight, fix the number of points in247
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u0 u1

l0 l1

4

4

7

l4

u2 u4

l7 2

Fig. 4 The sink gadget for a sink (xs, ys) is obtained by replacing the edge lys lys+1 by a double chain

with d vertices on each chain. The double chain is oriented such that uxs is the only point inside its

hourglass and its flip-kernel.

each of the two chains of a double chain representing a sink to d = nN (recall that n is248

polynomial in N).249

4.1 The Construction250

We take a double chain D with βn + 2 vertices on each chain such that the flip-kernel251

of D extends to the right of lβn+1uβn+1. We add a point z to that part of the flip-kernel,252

and we let Q be the polygon defined by 〈l0, . . . , lβn+1, z, uβn+1, . . . , u0〉, i.e., a double253

chain extended by z (recall Definition 3.2). Next, we add double chains to Q in order254

to encode the sinks in S. For each sink s = (xs, ys), we remove the edge lys lys+1, and255

we replace it by a (rotated) double chain Ds with d vertices on each chain, such that lys256

and lys+1 become the last point on the lower and the upper chain of Ds, respectively.257

We orient Ds in such a way that uxs is the only point inside the hourglass of Ds and so258

that uxs
lies in the flip-kernel of Ds; see Fig. 4. We refer to the added double chains as259

the sink gadgets, and we call the resulting polygon P . Since the y-coordinates in S are260

pairwise distinct, there is at most one sink gadget per edge of the lower chain of Q. Since261

β ≥ 2, no two sink gadgets are placed on neighboring edges of Q, and can be constructed262

such that they do not overlap. Hence, P is a simple polygon. The precise placement of263

the sink gadgets is flexible, so given an appropriate embedding of D, we can make all264

coordinates integers whose value is polynomial in the input size; see Appendix A for265

details.266

Next, we describe the source and target triangulation for P . In the source triangula-267

tion T1, the interior of Q is triangulated such that all edges are incident to z. The sink268

gadgets are all triangulated with the upper extreme triangulation. The target triangula-269
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tion T2 is similar, but now the sink gadgets are all triangulated with the lower extreme270

triangulation.271

To get from T1 to T2, we must go from one extreme triangulation to the other for272

each sink gadget Ds. By Lemma 3.4, this requires (d− 1)2 flips, unless the flip sequence273

creates a triangle that allows us to use the vertex in the flip-kernel of Ds. In this case,274

we say that the flip sequence visits the sink s. The main idea is that, since the value275

chosen for d is large, a shortest flip sequence must visit all sinks, and we will show that276

this induces an RSA for S of comparable length. Conversely, we will show how to derive277

a flip sequence from an RSA. The precise statement is given in the following theorem.278

Theorem 4.1 Let N ≥ 3, and set β = 2N . Let S be a set of N sinks such that279

the coordinates of the sinks are multiples of β in {0, . . . , βn}, where n is polynomially280

bounded in N . Set d = nN and let P be the simple polygon and T1 and T2 the two281

triangulations of P as described above. Then for any k ≥ 1, the flip distance between T1282

and T2 w.r.t. P is at most 2βk + (4d − 2)N if and only if S has an RSA of length at283

most βk.284

We will prove Theorem 4.1 in the following sections. But first, let us show how to285

use it for our NP-completeness result.286

Theorem 4.2 PolyFlip is NP-complete.287

Proof As mentioned in the introduction, the flip distance in polygons is polynomially288

bounded, so PolyFlip is in NP. We reduce from YRSA. Let (S, βk) be an instance of289

YRSA as above. We construct P and T1, T2 as described above. This takes polynomial290

time (see Appendix A for details on the coordinate representation). By Theorem 4.1,291

there exists an RSA for S of length at most βk if and only if there exists a flip sequence292

between T1 and T2 of length at most 2βk + (4d− 2)N . ut293

4.2 Chain Paths294

Now we introduce the chain path, our main tool to establish a correspondence between295

flip sequences and RSAs. Let T be a triangulation of Q (i.e., the polygon P without the296

sink gadgets, cf. Section 4.1). A chain edge is an edge of T between the upper and the297

lower chain of Q. A chain triangle is a triangle of T that contains two chain edges. Let298

e1, . . . , em be the chain edges, sorted from left to right according to their intersection299
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u0 u3 uh−1

l0 l2 l7 lh−1

u6

7

3 6

2

0
0

b

z

Fig. 5 A triangulation of Q and its chain path. Flipping edges to and from z moves the endpoint b

along the grid. A flip between chain triangles changes a bend.

with a line that separates the upper from the lower chain. For i = 1, . . . ,m, write300

ei = (uv, lw) and set ci = (v, w). In particular, c1 = (0, 0). Since T is a triangulation,301

any two consecutive edges ei, ei+1 share one endpoint, while the other endpoints are302

adjacent on the corresponding chain. Thus, ci+1 dominates ci and ‖ci+1 − ci‖1 = 1. It303

follows that c1c2 . . . cm is an x- and y-monotone path, beginning at the root. It is called304

the chain path for T . Each vertex of the chain path corresponds to a chain edge, and305

each edge of the chain path corresponds to a chain triangle. Conversely, every chain path306

induces a triangulation T of Q; see Fig. 5. In the following, we let b denote the upper307

right endpoint of the chain path. We now investigate how flipping edges in T affects the308

chain path.309

Observation 4.3 Suppose we flip an edge that is incident to z. Then the chain path is310

extended by moving b north or east. ut311

Observation 4.4 Suppose that T contains at least one chain triangle. When we flip312

the rightmost chain edge, we shorten the chain path at b. ut313

Finally, we can flip an edge between two chain triangles. This operation is called a314

chain flip.315

Observation 4.5 A chain flip changes a bend from east to north to a bend from north316

to east, or vice versa.317

Proof If a chain edge uilj is incident to two chain triangles and is flippable, then the318

two triangles must be of the form uiui−1lj and lj lj+1ui, or ui+1uilj and lj−1ljui. Thus,319

flipping uilj corresponds exactly to the claimed change in the chain path. ut320

Corollary 4.6 A chain flip does not change the length of the chain path. ut321

We summarize the results of this section in the following lemma:322
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Lemma 4.7 Any triangulation T of Q uniquely determines a chain path, and vice versa.323

A flip in T corresponds to one of the following operations on the chain path: (i) move324

the endpoint b north or east; (ii) shorten the path at b; (iii) change an east-north bend325

to a north-east bend, or vice versa. ut326

4.3 From an RSA to a Short Flip Sequence327

Using the notion of a chain path, we now prove the “if” direction of Theorem 4.1.328

Lemma 4.8 Let k ≥ 1 and A an RSA for S of length βk. Then the flip distance between329

T1 and T2 w.r.t. P is at most 2βk + (4d− 2)N .330

Proof The triangulations T1 and T2 both contain a triangulation of Q whose chain path331

has its endpoint b at the root. We use Lemma 4.7 to generate flips inside Q so that b332

traverses A in a depth-first manner. This needs 2βk flips.333

Each time b reaches a sink s, we move b north. This creates a chain triangle that334

allows the edges in the sink gadget Ds to be flipped to the auxiliary vertex in the335

flip-kernel of Ds. The triangulation of Ds can then be changed with 4d − 4 flips; see336

Lemma 3.3. Next, we move b back south and continue the traversal. Moving b at s needs337

two additional flips, so we take 4d − 2 flips per sink, for a total of 2βk + (4d − 2)N338

flips. ut339

4.4 From a Short Flip Sequence to an RSA340

Finally, we consider the “only if” direction in Theorem 4.1. Let τ be a flip sequence on Q.341

We say that τ visits a sink s = (xs, ys) if τ has at least one triangulation that contains342

the chain triangle uxs
lys lys+1. We call τ a flip traversal for S if (i) τ begins and ends343

in the triangulation whose corresponding chain path has its endpoint b at the root and344

(ii) τ visits every sink in S. The following lemma shows that every short flip sequence σ345

in P can be mapped to a flip traversal (where with “short”, we mean |σ| < (d− 1)2).346

Lemma 4.9 Let σ be a flip sequence from T1 to T2 w.r.t. P with |σ| < (d− 1)2. Then347

there is a flip traversal τ for S with |τ | ≤ |σ| − (4d− 4)N .348

Proof We show how to obtain a flip traversal τ for S from σ. Let T be a triangulation349

of P . A triangle of T is an inner triangle if all its sides are diagonals. It is an ear if two350
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∆s

∆sls
l′s

us us

ls
l′s

Fig. 6 Triangulations of Ds in P with ∆s = ∆ (left), and with ∆ being an ear (red) and ∆s an inner

triangle (right). The fat tree indicates the dual.

of its sides are polygon edges. By construction, every inner triangle of T must have (i)351

one vertex incident to z (the rightmost vertex of Q), or (ii) two vertices incident to a352

sink gadget (or both). There can be only one triangle of type (ii) per sink gadget. The353

weak (graph theoretic) dual of T is a tree in which ears correspond to leaves and inner354

triangles have degree 3.355

For a sink s = (xs, ys), let Ds be the corresponding sink gadget. It lies between356

the vertices lys and lys+1 and has exactly uxs in its flip kernel. For brevity, we will357

write ls for lys , l′s for lys+1, and us for uxs
. We define a triangle ∆s for Ds. Consider358

the bottommost edge e of Ds, and let ∆ be the triangle of T that is incident to e. By359

construction, ∆ is either an ear of T , or it is the triangle defined by e and us. In the360

latter case, we set ∆s = ∆. In the former case, we claim that T has an inner triangle361

∆′ with two vertices on Ds: follow the path from ∆ in the weak dual of T ; while the362

path does not encounter an inner triangle, the next triangle must have an edge of Ds363

as a side. There is only a limited number of such edges, so eventually we must meet an364

inner triangle ∆′. We then set ∆s = ∆′; see Fig. 6. Note that ∆s might be lsl
′
sus.365

For each sink s, let the polygon Qs consist of Ds extended by the vertex us (cf. Def-366

inition 3.2). Let T be a triangulation of P . We show how to map T to a triangulation367

TQ of Q and to triangulations Ts of Qs, for each s.368

We first describe TQ. It contains every triangle of T with all three vertices in Q. For369

each triangle ∆ in T with two vertices on Q and one vertex on the left chain of a sink370

gadget Ds, we replace the vertex on Ds by ls. Similarly, if the third vertex of ∆ is on the371

right chain of Ds, we replace it by l′s. For every sink s, the triangle ∆s has one vertex372
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∆s

us

ls
l′s

TQ

Ts

us

ls
l′s

∆s

∆s

us

ls
l′s

Fig. 7 Obtaining TQ and Ts from T .

at a point ui of the upper chain. In TQ, we replace ∆s by the triangle lsl
′
sui. No two373

triangles in TQ overlap, and they cover all of Q. Thus, TQ is indeed a triangulation of Q.374

Now we describe how to obtain Ts, for a sink s ∈ S. Each triangle of T with all375

vertices on Qs is also in Ts. Each triangle with two vertices on Ds and one vertex not376

in Qs is replaced in Ts by a triangle whose third vertex is moved to us in Ts (note that377

this includes ∆s); see Fig. 7. Again, all triangles cover Qs and no two triangles overlap.378

Finally, we show that a flip in T corresponds to at most one flip either in TQ or in379

precisely one Ts for some sink s. We do this by considering all the possibilities for two380

triangles that share a common flippable edge. By construction, no two triangles that are381

mapped to two different triangulations Ts and Tt for sinks s 6= t ∈ S can share an edge.382

Case 1. We flip an edge between two triangles that are either both mapped to TQ or383

to Ts and are different from ∆s. This flip clearly happens in at most one triangulation.384

Case 2. We flip an edge between a triangle ∆1 that is mapped to Ts and a triangle ∆2385

that is mapped to TQ, such that both ∆1 and ∆2 are different from ∆s. This results in386

a triangle ∆′1 that is incident to the same edge of Qs as ∆1, and a triangle ∆′2 having387

the same vertices of Q as ∆2. Since the apex of ∆1 is a vertex of the upper chain or z388

(otherwise, it would not share an edge with ∆2), it is mapped to us, as is the apex of ∆′1.389

Also, the apex of ∆′2 is on the same chain of Ds as the one of ∆2. Hence, the flip affects390

neither TQ nor Ts.391

Case 3. We flip the edge between a triangle ∆2 mapped to TQ and ∆s. By construc-392

tion, this can only happen if ∆s is an inner triangle. The flip affects only TQ, because393

the new inner triangle ∆′s is mapped to the same triangle in Ts as ∆s, since both apexes394

are moved to us.395
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Case 4. We flip the edge between a triangle ∆ of Ts and ∆s. Similar to Case 3,396

this affects only Ts, because the new triangle ∆′s is mapped to the same triangle in TQ397

as ∆s, since the two corners are always mapped to ls and l′s.398

Thus, σ induces a flip sequence τ in Q and flip sequences σs in each Qs so that399

|τ | +
∑
s∈S |σs| ≤ |σ|. Furthermore, each flip sequence σs transforms Qs from one ex-400

treme triangulation to the other. Since |σ| < (d − 1)2, Lemma 3.4 tells us that the401

triangulations Ts have to be transformed so that ∆s has a vertex at us at some point.402

Moreover, by Lemma 3.3, we have |σs| ≥ 4d−4 for each s ∈ S. Thus, τ is a flip traversal,403

and |τ | ≤ |σ| −N(4d− 4), as claimed. ut404

In order to obtain a static RSA from a changing flip traversal, we use the notion405

of a trace. A trace is a domain on the grid. It consists of edges and boxes: an edge is406

a line segment of length 1 whose endpoints have positive integer coordinates; a box is407

a square of side length 1 whose corners have positive integer coordinates. Similar to408

arborescences, we require that a trace R (i) is (topologically) connected; (ii) contains409

the root (0, 0); and (iii) from every grid point contained in R there exists an x- and410

y-monotone path to the root that lies completely in R. We say R is a covering trace411

for S (or, R covers S) if every sink in S is covered by R (i.e., incident to a box or an412

edge in R).413

Let τ be a flip traversal as in Lemma 4.9. By Lemma 4.7, each triangulation in τ414

corresponds to a chain path. This gives a covering trace R for S in the following way.415

For every flip in τ that extends the chain path, we add the corresponding edge to R.416

For every flip in τ that changes a bend, we add the corresponding box to R. Afterwards,417

we remove from R all edges that coincide with a side of a box in R. Clearly, R is418

(topologically) connected. Since τ is a flip traversal for S, every sink is covered by R.419

Note that every grid point p in R is connected to the root by an x- and y-monotone420

path on R, since at some point p belonged to a chain path in τ . Hence, R is indeed a421

trace, the unique trace of τ . Note that not only a flip traversal but any flip sequence422

starting with a zero-length chain path defines a trace in this way.423

Next, we define the cost of a trace R, cost(R), so that if R is the trace of a flip424

traversal τ , then cost(R) gives a lower bound on |τ |. An edge has cost 2. Let B be a box425

in R. A boundary side of B is a side that is not part of another box. The cost of B is 1426

plus the number of boundary sides of B. Then, cost(R) is the total cost over all boxes427
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and edges in R. For example, the cost of a tree is twice the number of its edges, and428

the cost of a rectangle is its area plus its perimeter. An edge can be interpreted as a429

degenerated box, having two boundary sides and no interior.430

Proposition 4.10 Let τ be a flip traversal and R the trace of τ . Then cost(R) ≤ |τ |.431

Proof Let ςi be the sequence of the first i triangulations of τ , Ri the trace defined by ςi,432

and let κi be the length of the chain path for the ith triangulation. We will show by433

induction on i that cost(Ri) ≤ i + κi, for i = 1, . . . , |τ |. Since ς|τ | = τ , R|τ | = R, and434

κ|τ | = 0, this gives the desired result.435

After the first flip, R1 is an edge (so cost(R1) = 2), and κ1 = 1, which fulfills the436

invariant. Consider the ith flip. If the flip extends the chain path, the cost of the trace437

increases by at most 2, and the length of the chain path increases by 1, fulfilling the438

invariant. If the flip contracts the chain path, the trace does not change, but the length439

of the chain path is decreased by 1, again fulfilling the invariant. We are therefore left440

with the case where the flip is a chain flip. We have κi−1 = κi, so we have to show441

that cost(Ri) ≤ cost(Ri−1) + 1. We may assume that the flip adds a box B to Ri−1442

(otherwise, the cost of the trace remains unchanged). Consider the intersection of the443

boundary of B with the one of Ri−1. This intersection contains at least two elements,444

as the chain path is part of Ri−1. An edge in the intersection becomes a boundary side445

in Ri, reducing the cost by 1. A boundary side in the intersection vanishes in Ri, also446

reducing the cost by 1. Thus, adding B creates a box and at most two boundary sides,447

causing a cost of at most 3, but it simultaneously reduces the cost by at least 2. See448

the examples in Fig. 8. The overall cost increases at most by 1, and the invariant is449

maintained. ut450

(a) (b) (c) (d)

Fig. 8 Examples of how boundary sides (red) are added to a trace. To a trace of cost 16 (a) a box (gray)

is added (b), which transforms two edges in boundary sides and adds two boundary sides, resulting in

an overall cost of 17. The next box removes one boundary side and one edge and adds three boundary

sides (c), the cost becomes 18. A box might also remove more than two elements (d), reducing the

overall cost to 17.
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B

B
c

B

(a) (b)

c

(c)

c
B

(d)

c
B
c

B

e

f

e′

f

B′

Fig. 9 Parts of traces to be modified; the boundary sides are shown in red. (a) A box that has a

corner c with no incident elements can be removed. (b) Two adjacent boxes that have a shared corner

c without any incident elements can be removed. (c) Replacing a single edge. (d) Sliding an edge.

Now we relate the length of an RSA for S to the cost of a covering trace for S, and451

thus to the length of a flip traversal. Since each sink is connected in R to the root by an452

x- and y-monotone path, traces can be regarded as generalized RSAs. In particular, we453

make the following observation.454

Observation 4.11 Let R be a covering trace for S that contains no boxes, and let Aτ455

be a shortest path tree in R from the root to all sinks in S. Then Aτ is an RSA for S. ut456

If τ contains no flips that change bends, the corresponding trace R has no boxes.457

Then, R contains an RSA Aτ with 2|Aτ | ≤ cost(R), by Observation 4.11. The next458

lemma shows that, due to the fact that β is even, there is always a shortest covering459

trace for S that does not contain any boxes.460

Lemma 4.12 Let τ be a flip traversal of S. Then there exists a covering trace R for S461

such that R does not contain a box and such that cost(R) ≤ |τ |.462

To prove the lemma, we investigate the structure of minimal covering traces. There463

exists at least one trace of cost at most |τ |, namely the trace of τ . Let R1 be the set of464

all covering traces for S that have minimum cost. Let R2 ⊆ R1 be those covering traces465

among R1 that contain the minimum number of boxes. If R2 contains a trace without466

boxes, we are done, as every covering trace inR2 fulfills the requirements of Lemma 4.12.467

We show that this is actually the case by assuming, for the sake of contradiction, that468

every covering trace in R2 contains at least one box.469

Let R ∈ R2 and suppose that R contains a box. Let B be a maximal box in R, i.e., R470

has no other box whose lower left corner has both x- and y-coordinate at least as large471

as the lower left corner of B. In order to prove Lemma 4.12, we need several lemmata472

on traces of minimum cost.473

Lemma 4.13 Let B be a maximal box and let c a corner of B that is not the root (0, 0).474

Then c is incident either to a sink, an edge, or another box.475



Flip Distance Between Triangulations of a Simple Polygon is NP-Complete 19

Proof Suppose there exists a corner c for which this is not the case. Note that such a c476

cannot be the lower left corner of B, as there has to be an x- and y-monotone path to477

the root. Hence, we could remove c and B while keeping the sides of B not incident to c478

as edges, if necessary; see Fig. 9(a). In the resulting structure, every element still has479

an x- and y-monotone path to the root: If c is the lower right or upper left corner, any480

path initially passing through c could be rerouted to pass through the corner opposite481

of c in B. If c is the upper right corner of B, no path is passing through c. Hence, the482

resulting structure would be a covering trace with smaller cost, contradicting the choice483

of R. ut484

Lemma 4.14 Suppose B shares a horizontal side with another box B′. Let c be the right485

endpoint of the common side. Then c is incident either to a sink, an edge, or another486

box.487

Proof Suppose this is not the case. Then we could remove B and B′ from R while488

keeping the sides not incident to c as edges, if necessary; see Fig. 9(b). This results in489

a valid trace that has no higher cost but less boxes than R, contradicting the choice490

of R. ut491

Lemma 4.15 Let c be the lower right corner of B. Then c has no incident vertical edge.492

Proof Such an edge would be redundant, since c already has an x- and y-monotone path493

to the root that goes through the lower left corner of B. ut494

Proof (Proof of Lemma 4.12) Using the Lemmata 4.13, 4.14, and 4.15, we derive a495

contradiction from the choice of R and the maximal box B. Note that since β is even,496

all sinks in S have even x- and y-coordinates. We distinguish two cases.497

Case 1. There exists a maximal box B whose top right corner c′ does not have both498

coordinates even. Suppose that the x-coordinate of c′ is odd. (Otherwise, mirror the499

plane at the line x = y to swap the x- and the y-axis. Note that the property of being500

a trace is invariant under mirroring the plane along the line x = y; in particular, the501

choice of B in R as a maximal box remains valid) By Lemma 4.13, there is at least502

one edge incident to the top right corner of B (it cannot be a box by the choice of B,503

and it cannot be a sink because of the current case). Recall the slide operation for an504

edge in an arborescence. This operation can easily be adapted in an analogous way to505

traces. If there is a vertical edge v incident to c′, it cannot be incident to a sink. Thus,506
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we could slide v to the right (together with all other vertical edges that are above v507

and on the supporting line of v). Hence, we may assume that c′ is incident to a single508

horizontal edge e; see Fig. 9(c). By Lemma 4.13, the bottom right corner c of B must be509

incident to an element. We know that c cannot be the top right corner of another box510

(Lemma 4.14), nor can it be incident to a vertical segment (Lemma 4.15). Thus, c is511

incident to an element f that is either a horizontal edge or a box with top left corner c.512

But then e could be replaced by a vertical segment e′ incident to f , and afterwards B513

could be removed as in the proof of Lemma 4.13, contradicting the choice of R.514

Case 2. The top right corner of each maximal box has even coordinates. Let B be515

the rightmost maximal box. As before, let c be the bottom right corner of B. The y-516

coordinate of c is odd; see Fig. 9(d). By the choice of B, we know that c is not the517

top left corner of another box: this would imply that there is another maximal box to518

the right of B. We may assume that c is not incident to a horizontal edge, as we could519

slide such an edge up, as in Case 1. Furthermore, c cannot be incident to a vertical520

edge (Lemma 4.15), nor be the top right corner of another box (Lemma 4.14). Thus, B521

violates Lemma 4.13, and Case 2 also leads to a contradiction.522

Thus, the choice of R forces a contradiction in either case. Hence, the minimum523

number of boxes in a minimum covering trace for S is 0. ut524

Now we can finally complete the proof of Theorem 4.1 by giving the second direction of525

the correspondence.526

Lemma 4.16 Let k ≥ 1 and let σ be a flip sequence on P from T1 to T2 with |σ| ≤527

2βk + (4d− 2)N . Then there exists an RSA for S of length at most βk.528

Proof Trivially, there always exists an RSA on S of length less than 2βnN , so we may529

assume that k < 2nN . Hence (recall that β = 2N and d = nN),530

2βk + (4d− 2)N < 2 · 2N · 2nN + 4nN2 − 2N < 12nN2 < (d− 1)2,531

for n ≥ 14 and positive N . Thus, σ meets the requirements of Lemma 4.9, and therefore532

we can obtain a flip traversal τ for S with |τ | ≤ 2βk + 2N . By Lemma 4.12 and533

Observation 4.11, we can conclude that there is an RSA A for S that has length at most534

βk +N . By Theorem 2.1, there is an RSA A′ for S that is not longer than A and that535

lies on the Hanan grid for S. The length of A′ must be a multiple of β. Thus, since536

β > N , we get that A′ has length at most βk. ut537
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5 Conclusion538

In this paper, we showed NP-hardness of determining a shortest flip sequence between539

two triangulations of a simple polygon. This complements the recent hardness results540

for point sets (obtained by reduction from variants of Vertex Cover). However, while541

for point sets the problem is hard to approximate as well, our reduction does not rule542

out the existence of a polynomial-time approximation scheme (PTAS), since a PTAS543

is known for the RSA problem [17]. When problems that are hard for point sets are544

restricted to simple polygons, the application of standard techniques—like dynamic545

programming—often gives polynomial-time algorithms. This is, for example, the case546

for the construction of the minimum weight triangulation. Our result illustrates that de-547

termining the flip distance is a different, harder type of problem. Is there a PTAS for the548

flip distance between triangulations of a polygon? Even a constant-factor approximation549

would be interesting.550

For convex polygons (or, equivalently, points in convex position), the complexity551

of the problem remains unknown. Our construction heavily relies on the double chain552

construction, using many reflex vertices. Does the problem remain hard if we restrict553

the number of reflex vertices to some constant fraction?554
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A A Note on Coordinate Representation604

Since it is necessary for the validity of the proof that the input polygon can be represented in size605

polynomial in the size of the YRSA instance, we give a possible method to embed the polygon with606

vertices at rational coordinates whose numerator and denominator are polynomial inN . By an additional607

perturbation argument we can guarantee integer coordinates whose values are polynomial in N (which608

slightly strengthens the result). We first introduce the general technique used for the embedding, and609

then give further details on how the sink gadgets are constructed (using methods similar to [19]). Finally,610

we explain how the construction can be transformed to integer points in general position.611

A.1 Placing Points on Arcs612

The main idea of the construction is to place all vertices on rational points on circular arcs. There are613

two large arcs where we place the vertices of the upper and the lower chain, and smaller arcs on which614

we place the vertices of the sink gadgets. All these circular arcs are chosen from rational circles, i.e.,615

circles that are defined by three rational points. Similarly, a rational line is a line trough a rational616

point with rational slope (or, equivalently, a line defined by two rational points). It is well-known that,617

if one of the two intersection points of a rational line with a rational circle is a rational point, then the618

other intersection point is rational as well (see, e.g., [12, p. 5]). Hence, given a rational point p on a619

rational circle, we can obtain an arbitrary number of rational points on the circle via different rational620

lines through p.621

Let us apply this for one possible way of constructing the double chain D. The construction is shown622

in Fig. 10 (left). We place the βn + 2 points of the lower chain on the unit circle (with center at the623

origin). Let `i be the line through (−1, 0) with slope 1 + i
βn+2

. For i = 1, . . . , βn/2 + 1, we get βn/2 + 1624

rational points on the upper-left quadrant of the unit circle from the intersections with this family of625

lines. We can do the analogous construction for points on the upper-right quadrant by choosing lines626

through (1, 0) with a negative slope (−1)− i
βn+2

. In this way, we obtain the vertices of the lower chain627

of D. For the upper chain, we place points on the unit circle with origin (0, 3) analogously. Note that628

line `βn/2+1 passes through (1, 3), so when picking rational points on the lower-right and lower-left629

quadrant of the second unit circle for the upper chain, the resulting point set is indeed the vertex set of630

a double chain in which the line through l0 and uβn+1 is `βn/2+1. Finally, note that all slopes used in631

the construction have numerators and denominators that are polynomial in N . Hence, this also holds632

for the coordinates of the vertices of D. Note that this is, essentially, the parametrization of the unit633

circle, as discussed in [5].634

Clearly, this method is not restricted to unit circles. We now discuss the following main building635

block for constructing the sink gadgets. Given three rational points p1, p2, p3, we construct a circular636

arc on a rational circle that starts at p1, ends at p2 and is completely contained inside the triangle637

p1p2p3. Then, we choose an arbitrary number of rational points on that circular arc. This is illustrated638

in Fig. 10 (right). W.l.o.g, let the inner angle of the triangle at p1 be less than or equal to the one639

at p2. Let Z be the circle through p1 and p2 such that the line p1p3 is a tangent of Z. Clearly, Z is640

well-defined, and the arc between p1 and p2 is inside the triangle. The circle Z is rational. (Consider641
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(0, 0)

(0, 3)

`βn/2+1

p1

p2
p3

(1, 0)

Fig. 10 Left: Construction of the main double chain D. Right: Picking points on a circular arc inside

a triangle. The line p1p3 is tangent to the corresponding circle.

the line that is perpendicular to the line p1p3 and passes through p1. When mirroring p2 with that642

line as an axis, the resulting point p′2 is rational and also on Z.) We can now choose any number of643

rational points on the circular arc by selecting a family of lines through p1. To this end, we choose a set644

of equidistant points on the segment p2p3, which, together with p1 define this family of rational lines.645

Again, the numerators and the denominators are polynomial in those of p1, p2, and p3, and the number646

of points chosen.647

A.2 Constructing Sink Gadgets648

We now construct the sink gadgets. See Fig. 11 for an accompanying illustration. Recall that, since β is649

even, there are no small double chains on neighboring positions on the lower chain. Hence, for each sink650

we w.l.o.g. can define an orthogonal region within which we can safely draw the small double chain; we651

call this region the bin of the sink (outlined gray in Fig. 11). Consider a sink (i, j). The vertical line652

bounding the left side of its bin passes through the edge lj−1lj (e.g., at the midpoint of the edge), and653

the right side of the bin is defined analogously. (Recall that, since β > 1, there is no sink at lj−1lj .)654

Pick a rational point pa on the boundary of the bin that is to the left of the directed line ljui−1 and to655

the right of the directed line ljui. Similarly, choose a point pb that is to the right of the line lj+1ui+1656

and to the left of the line lj+1ui. As an additional constraint let pa be to the left of the line pbui. Note657

that such points always exist, and can be easily chosen along the boundary of the bin. It remains to658

choose a triangular region with ljpa as one side in which we can place the chain of the sink gadget that659

contains lj . For the second chain, the construction is analogous.660

For the chain to be visible from ui but not from ui−1, the triangular region has to be to the left661

of the line paui, and also to the left of the line ljui−1. Further, to be visible from all vertices of the662

other chain, it has to be to the left of the lines palj+1 and pblj . Let xa be the apex of the triangle that663

is defined by these constraints, and observe that xa is the intersection of two of the four lines. We can664

now add a chain of points on a circular arc inside the triangle ljpaxa, as described above.665

The coordinates are rational, and since every point can be constructed using only a constant number666

of other points, the numerator and denominator of each point are polynomial.667
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lj
lj+1

ui

pa

pb
xa

ui+1ui−1

Fig. 11 Construction of a small double chain for a sink.

A.3 General Position and Integer Coordinates668

The ways in which a simple polygon can be triangulated is determined by the order type of the vertices,669

i.e., the vector that indicates for each triple of vertices whether it is oriented clockwise or counterclock-670

wise. Up to now, we did not care whether the point set is in general position, so there might also be671

collinear point triples among vertices that are not directly related in the reduction. By simply multi-672

plying all coordinates by all denominators used, we would obtain integer coordinates with exponential673

values. To obtain integer coordinates bounded by a polynomial in the input size and a point set in674

general position, we can use the following lemma.3675

Lemma A.1 Let S be a point set with rational coordinates whose numerators and denominators have676

absolute values of at most ξ. Then there is a point set S′ with integer coordinates bounded by O(ξ3)677

and a bijection between S and S′ such that for every ordered triple of non-collinear points in S, the678

orientation of the corresponding triple in S′ is the same. In particular, if S is in general position, then679

S and S′ have the same order type. Further, S′ can be constructed in O(|S|2) time.680

Proof Consider the set L of lines that are defined by all pairs of points of S. Choose ` = q1q2 ∈ L and681

p ∈ S \` such that the horizontal distance v between p and ` is minimal among all such distances (which682

is non-zero as p is not on `). Then v is rational, with numerator and denominator in O(ξ2). Further,683

our choice required v > 0. When multiplying all x-coordinates by 2/v, this distance is at least 2. The684

basic idea is to round the x-coordinates. The crucial observation is that p has a y-coordinate that is685

between the ones of q1 and q2, as otherwise one of q1 and q2, say, q1, would be horizontally closer to686

the line through p and q2. For an ordered triple of points to change its orientation (from, say, clockwise687

to counterclockwise), the horizontal distance between the point whose y-coordinate is between those688

of the other two points would have to be reduced by more than 2. We can therefore safely round689

the x-coordinates, which, in the worst case, reduces the horizontal distance between p and ` by at690

most 1. Hence, for every non-collinear ordered triple of points in S, the orientation of the corresponding691

3 The exact time bounds shown in the proof are irrelevant for the NP-hardness reduction (which even

requires a different model of computation). We mention them only as they may be of general interest.



26 O. Aichholzer, W. Mulzer, A. Pilz

triple in the resulting point set is the same. We repeat the process analogously for the y-coordinates,692

obtaining S′.693

The horizontal or vertical distance v can easily be found by checking all triples of points. We can694

improve this cubic time bound by considering the dual line arrangement A of S (in which a point695

p = (xp, yp) corresponds to the dual line p∗ : y = x ·xp+yp). The dual arrangement can be constructed696

in quadratic time [6,8]. The shortest vertical distance in the primal corresponds to the shortest vertical697

distance of a vertex and a side of a triangle defined by three dual lines. Clearly, the shortest distance698

can only occur inside a triangle that is not intersected by another line.4 Hence, we only need to test699

the O(|S|2) triangular cells of A. ut700

Hence, if we construct the vertices with rational coordinates such that the vertices are in general701

position, we can apply Lemma A.1 to have all vertices on the integer grid in general position.702

General position can easily be obtained by applying a simple technique used in [19, Appendix A].703

Observe first that the vertices of D are in general position. We take special care when placing the d− 1704

points of each chain of a sink gadget to not produce collinear points. Note that the final polygon P will705

have |P | = 2(βn+ 2) + 2N(d− 1) vertices. Instead of d− 1 points, we choose 2
(|P |

2

)
+ d− 1 candidate706

points on the circular arc for the chain. Consider any line through two already placed points. This line707

intersects the circular arc in at most two points, so there are at most two candidate points that may708

not be points of the double chain because of that line. As there are less than
(|P |

2

)
such lines, there are709

always enough candidate points left for selecting the d− 1 points for the chain among them. Thus, the710

vertices we obtain are in general position.711

4 Actually, any dual transform will do. When thinking of the rounding process as a continuous trans-

formation, a change of the order type would involve a collapsing triangular cell of the dual arrangement,

indicating a “close” point triple.


