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Abstract. Let T be a triangulation of a simple polygon. A flip in T
is the operation of removing one diagonal of T and adding a different
one such that the resulting graph is again a triangulation. The flip dis-
tance between two triangulations is the smallest number of flips required
to transform one triangulation into the other. For the special case of
convex polygons, the problem of determining the shortest flip distance
between two triangulations is equivalent to determining the rotation dis-
tance between two binary trees, a central problem which is still open
after over 25 years of intensive study.
We show that computing the flip distance between two triangulations
of a simple polygon is NP-complete. This complements a recent result
that shows APX-hardness of determining the flip distance between two
triangulations of a planar point set.

1 Introduction

Let P be a simple polygon in the plane, that is, a closed region bounded by a
piece-wise linear, simple cycle. A triangulation T of P is a geometric (straight-
line) maximal outerplanar graph whose outer face is the complement of P and
whose vertex set consists of the vertices of P . The edges of T that are not on
the outer face are called diagonals. Let d be a diagonal whose removal creates a
convex quadrilateral f . Replacing d with the other diagonal of f yields another
triangulation of P . This operation is called a flip. The flip graph of P is the
abstract graph whose vertices are the triangulations of P and in which two
triangulations are adjacent if and only if they differ by a single flip. We study
the flip distance, i.e., the minimum number of flips required to transform a given
source triangulation into a target triangulation.

Edge flips became popular in the context of Delaunay triangulations. Law-
son [9] proved that any triangulation of a planar n-point set can be transformed
into any other by O(n2) flips. Hence, for every planar n-point set the flip graph
is connected with diameter O(n2). Later, he showed that in fact every triangula-
tion can be transformed to the Delaunay triangulation by O(n2) flips that locally
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fix the Delaunay property [10]. Hurtado, Noy, and Urrutia [7] gave an example
where the flip distance is Ω(n2), and they showed that the same bounds hold
for triangulations of simple polygons. They also proved that if the polygon has k
reflex vertices, then the flip graph has diameter O(n+k2). In particular, the flip
graph of any planar polygon has diameter O(n2). Their result also generalizes
the well-known fact that the flip distance between any two triangulations of a
convex polygon is at most 2n − 10, for n > 12, as shown by Sleator, Tarjan,
and Thurston [15] in their work on the flip distance in convex polygons. The
latter case is particularly interesting due to the correspondence between flips in
triangulations of convex polygons and rotations in binary trees: The dual graph
of such a triangulation is a binary tree, and a flip corresponds to a rotation in
that tree; also, for every binary tree, a triangulation can be constructed.

We mention two further remarkable results on flip graphs for point sets.
Hanke, Ottmann, and Schuierer [6] showed that the flip distance between two
triangulations is bounded by the number of crossings in their overlay. Eppstein [5]
gave a polynomial-time algorithm for calculating a lower bound on the flip dis-
tance. His bound is tight for point sets with no empty 5-gons; however, except
for small instances, such point sets are not in general position (i.e., they must
contain collinear triples) [1]. For a recent survey on flips see Bose and Hurtado [3].

Very recently, the problem of finding the flip distance between two triangu-
lations of a point set was shown to be NP-hard by Lubiw and Pathak [11] and,
independently, by Pilz [12], and the latter proof was later improved to show
APX-hardness of the problem. Here, we show that the corresponding problem
remains NP-hard even for simple polygons. This can be seen as a further step
towards settling the complexity of deciding the flip distance between triangula-
tions of convex polygons or, equivalently, the rotation distance between binary
trees. This variant of the problem was probably first addressed by Culik and
Wood [4] in 1982 (showing a flip distance of 2n− 6).

The formal problem definition is as follows: given a simple polygon P , two
triangulations T1 and T2 of P , and an integer l, decide whether T1 can be trans-
formed into T2 by at most l flips. We call this decision problem PolyFlip.
To show NP-hardness, we give a polynomial-time reduction from Rectilin-
ear Steiner Arborescence to PolyFlip. Rectilinear Steiner Arbores-
cence was shown to be NP-hard by Shi and Su [14]. In Section 2, we describe
the problem in detail. We present the well-known double chain (used by Hur-
tado, Noy, and Urrutia [7] for giving their lower bound), a major building block
in our reduction, in Section 3. Finally, in Section 4, we describe our reduction
and prove that it is correct. An extended abstract of this work was presented at
the 29th EuroCG, 2013; for omitted proofs, see [2].

2 The Rectilinear Steiner Arborescence Problem

Let S be a set of N points in the plane whose coordinates are nonnegative
integers. The points in S are called sinks. A rectilinear tree T is a connected
acyclic collection of horizontal and vertical line segments that intersect only



at their endpoints. The length of T is the total length of all segments in T
(cf. [8, p. 205]). The tree T is a rectilinear Steiner tree for S if each sink in
S appears as an endpoint of a segment in T . We call T a rectilinear Steiner
arborescence (RSA) for S if (i) T is rooted at the origin; (ii) each leaf of T lies at
a sink in S; and (iii) for each s = (x, y) ∈ S, the length of the path in T from the
origin to s equals x+ y, i.e., all edges in T point north or east, as seen from the
origin [13]. In the RSA problem, we are given a set of sinks S and an integer k.
The question is whether there is an RSA for S of length at most k. Shi and Su
showed that the RSA problem is strongly NP-complete; in particular, it remains
NP-complete if S is contained in an n × n grid, with n polynomially bounded
in N , the number of points [14].3

We recall an important structural property of the RSA. Let A be an RSA for
a set S of sinks. Let e be a vertical segment in A that does not contain a sink.
Suppose there is a horizontal segment f incident to the upper endpoint a of e.
Since A is an arborescence, a is the left endpoint of f . Suppose further that a is
not the lower endpoint of another vertical edge. Take a copy e′ of e and translate
it to the right until e′ hits a sink or another segment endpoint (this will certainly
happen at the right endpoint of f); see Fig. 1. The segments e and e′ define a
rectangle R. The upper and left side of R are completely covered by e and (a
part of) f . Since a has only two incident segments, every sink-root path in A
that goes through e or f contains these two sides of R, entering the boundary
of R at the upper right corner d and leaving it at the lower left corner b. We
reroute every such path at d to continue clockwise along the boundary of R until
it meets A again (this certainly happens at b), and we delete e and the part of
f on R. In the resulting tree we subsequently remove all unnecessary segments
(this happens if there are no more root-sink paths through b) to obtain another
RSA A′ for S. Observe that A′ is not longer than A. This operation is called
sliding e to the right. If similar conditions apply to a horizontal edge, we can
slide it upwards. The Hanan grid for a point set P is the set of all vertical and
horizontal lines through the points in P . In essence, the following theorem can
be proved constructively by repeated segment slides in a shortest RSA.

Theorem 2.1 ([13]). Let S be a set of sinks. There is a minimum-length RSA
A for S such that all segments of A are on the Hanan grid for S ∪ {(0, 0)}. ut

e e′

f da

b

R

Fig. 1. The slide operation. The dots depict sinks; the rectangle R is drawn gray. The
dotted segments are deleted, since they do no longer lead to a sink.

3 Note that a polynomial-time algorithm was claimed [16] that later has been shown
to be incorrect [13].



We use a restricted version of the RSA problem, called YRSA. An instance
(S, k) of the YRSA problem differs from an instance for the RSA problem in that
we require that no two sinks in S have the same y-coordinate. The NP-hardness
of YRSA follows by a simple perturbation argument; see the full version for all
omitted proofs.

Theorem 2.2. YRSA is strongly NP-complete.

3 Double Chains

Our definitions (and illustrations) follow [12]. A double chain D consists of
two chains, an upper chain and a lower chain. There are n vertices on each
chain, 〈u1, . . . , un〉 on the upper chain and 〈l1, . . . , ln〉 on the lower chain, both
numbered from left to right. Any point on one chain sees every point on the
other chain, and any quadrilateral formed by three vertices of one chain and
one vertex of the other chain is non-convex. Let PD be the polygon defined by
〈l1, . . . , ln, un, . . . , u1〉; see Fig. 2 (left). We call the triangulation Tu of PD where
u1 has maximum degree the upper extreme triangulation; observe that this tri-
angulation is unique. The triangulation Tl of PD where l1 has maximum degree
is called the lower extreme triangulation. The two extreme triangulations are
used to show that the diameter of the flip graph is quadratic; see Fig. 2 (right).

Theorem 3.1 ([7]). The flip distance between Tu and Tl is (n− 1)2. ut
Through a slight modification of D, we can reduce the flip distance between

the upper and the lower extreme triangulation to linear. This will enable us in
our reduction to impose a certain structure on short flip sequences. To describe
this modification, we first define the flip-kernel of a double chain.

u1 u2
un−1

un

l1 l2 ln−1 ln

Fig. 2. Left: The polygon and the hourglass (gray) of a double chain. The diamond-
shaped flip-kernel can be extended arbitrarily by flattening the chains. Right: The
upper extreme triangulation Tu and the lower extreme triangulation Tl.

Let W1 be the wedge defined by the lines through u1u2 and l1l2 whose interior
contains no point from D but intersects the segment u1l1. Define Wn analogously
by the lines through unun−1 and lnln−1. We call W := W1 ∪Wn the hourglass
of D. The unbounded set W ∪ PD is defined by four rays and the two chains.
The flip-kernel of D is the intersection of the closed half-planes below the lines
through u1u2 and un−1un, as well as above the lines through l1l2 and ln−1ln.4

4 The flip-kernel of D might not be completely inside the polygon PD. This is in
contrast to the “visibility kernel” of a polygon.
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Fig. 3. The extra point p in the flip-kernel of D allows flipping one extreme triangula-
tion of P pD to the other in 4n− 4 flips.

Definition 3.2. Let D be a double chain whose flip-kernel contains a point p
to the right of the directed line lnun. The polygon P pD is given by the sequence
〈l1, . . . , ln, p, un, . . . , u1〉. The upper and the lower extreme triangulation of P pD
contain the edge unln and otherwise are defined in the same way as for PD.

The flip distance between the two extreme triangulations for P pD is much
smaller than for PD [17]. Fig. 3 shows how to transform them into each other
with 4n − 4 flips. The next lemma shows that this is optimal, even for more
general polygons. The lemma is a slight generalization of a lemma by Lubiw and
Pathak [11] on double chains of constant size.

Lemma 3.3. Let P be a polygon that contains PD and has 〈l1, . . . , ln〉 and
〈un, . . . , u1〉 as part of its boundary. Further, let T1 and T2 be two triangulations
that contain the upper extreme triangulation and the lower extreme triangulation
of PD as a sub-triangulation, respectively. Then T1 and T2 have flip distance at
least 4n− 4.

The following result can be seen as a special case of [12, Proposition 1].

Lemma 3.4. Let P be a polygon that contains PD and has
〈un, . . . , u1, l1, . . . , ln〉 as part of its boundary. Let T1 and T2 be two tri-
angulations that contain the upper and the lower extreme triangulation of PD
as a sub-triangulation, respectively. Consider any flip sequence σ from T1 to T2
and suppose there is no triangulation in σ containing a triangle with one vertex
at the upper chain, the other vertex at the lower chain, and the third vertex at
a point in the interior of the hourglass of PD. Then |σ| ≥ (n− 1)2.

4 The Reduction

We reduce YRSA to PolyFlip. Let S be a set of N sinks on an n × n grid
with root at (1, 1) (recall that n is polynomial in N). We construct a polygon
P ∗D and two triangulations T1, T2 in P ∗D such that a shortest flip sequence from
T1 to T2 corresponds to a shortest RSA for S. To this end, we will describe how
to interpret any triangulation of P ∗D as a chain path, a path in the integer grid
that starts at the origin and uses only edges that go north or east. It will turn
out that flips in P ∗D essentially correspond to moving the endpoint of the chain
path along the grid. We choose P ∗D, T1, and T2 in such a way that a shortest
flip sequence between T1 and T2 moves the endpoint of the chain path according
to an Eulerian traversal of a shortest RSA for S. To force the chain path to



visit all sites, we use the observations from Section 3: the polygon P ∗D contains
a double chain for each sink, so that only for certain triangulations of P ∗D it is
possible to flip the double chain quickly. These triangulations will be exactly the
triangulations that correspond to the chain path visiting the appropriate site.

4.1 The Construction

Our construction has two integral parameters, β and d. With foresight, we set
β = 2N and d = nN . We imagine that the sinks of S lie on a βn×βn grid, with
their coordinates multiplied by β.

We take a double chain D with βn vertices on each chain such that the flip-
kernel of D extends to the right of lβnuβn. We add a point z to that part of the
flip-kernel, and we let P+

D be the polygon defined by 〈l1, . . . , lβn, z, uβn, . . . , u1〉.
Next, we add double chains to P+

D in order to encode the sinks. For each sink
s = (x, y), we remove the edge lβylβy+1, and we replace it by a (rotated) double
chain Ds with d vertices on each chain, such that lβy and lβy+1 correspond to
the last point on the lower and the upper chain of Ds, respectively. We orient Ds

in such a way that uβx is the only point inside the hourglass of Ds and so that
uβx lies in the flip-kernel of Ds; see Fig. 4. We refer to the added double chains
as sink gadgets, and we call the resulting polygon P ∗D. For β large enough, the
sink gadgets do not overlap, and P ∗D is a simple polygon. Since the y-coordinates
in S are pairwise distinct, there is at most one sink gadget per edge of the lower
chain of P+

D . The precise placement of the sink gadgets is flexible, so we can
make all coordinates polynomial in n; see the full version for details.

u1 u2

l1 l2

5

5

8

l5

u3 u5

l8 3

Fig. 4. The sink gadget for a site (x, y) is obtained by replacing the edge lβylβy+1 by
a double chain with d vertices on each chain. The double chain is oriented such that
uβx is the only point inside its hourglass and its flip-kernel. In our example, β = 1.

Next, we describe the source and target triangulation for P ∗D. In the source
triangulation T1, the interior of P+

D is triangulated such that all edges are incident
to z. The sink gadgets are all triangulated with the upper extreme triangulation.
The target triangulation T2 is similar, but now the sink gadgets are triangulated
with the lower extreme triangulation.

To get from T1 to T2, we must go from one extreme triangulation to the other
for each sink gadget Ds. By Lemma 3.4, this requires (d − 1)2 flips, unless the



flip sequence creates a triangle that allows us to use the vertex in the flip-kernel
of Ds. In this case, we say that the flip sequence visits the sink s. For d large
enough, a shortest flip sequence must visit each sink, and we will show that this
induces an RSA for S of similar length. Conversely, we will show how to derive
a flip sequence from an RSA. The precise statement is given in the following
theorem.

Theorem 4.1. Let k ≥ 1. The flip distance between T1 and T2 w.r.t. P ∗D is at
most 2βk + (4d− 2)N if and only if S has an RSA of length at most k.

We will prove Theorem 4.1 in the following sections. But first, let us show
how to use it for our NP-completeness result.

Theorem 4.2. PolyFlip is NP-complete.

Proof. As mentioned in the introduction, the flip distance in polygons is polyno-
mially bounded, so PolyFlip is in NP. We reduce from YRSA. Let (S, k) be an
instance of YRSA such that S lies on a grid of polynomial size. We construct P ∗D
and T1, T2 as described above. This takes polynomial time (see the full version
for details). Set l = 2βk + (4d− 2)N . By Theorem 4.1, there exists an RSA for
S of length at most k if and only if there exists a flip sequence between T1 and
T2 of length at most l. ut

4.2 Chain Paths

Now we introduce the chain path, our main tool to establish a correspondence
between flip sequences and RSAs. Let T be a triangulation of P+

D (i.e., the
polygon P ∗D without the sink gadgets, cf. Section 4.1). A chain edge is an edge
of T between the upper and the lower chain of P+

D . A chain triangle is a triangle
of T that contains two chain edges. Let e1, . . . , em be the chain edges, sorted
from left to right according to their intersection with a line that separates the
upper from the lower chain. For i = 1, . . . ,m, write ei = (uv, lw) and set ci =
(v, w). In particular, c1 = (1, 1). Since T is a triangulation, any two consecutive
edges ei, ei+1 share one endpoint, while the other endpoints are adjacent on the
corresponding chain. Thus, ci+1 dominates ci and ‖ci+1−ci‖1 = 1. It follows that
c1c2 . . . cm is an x- and y-monotone path in the βn× βn-grid, beginning at the
root. It is called the chain path for T . Each vertex of the chain path corresponds
to a chain edge, and each edge of the chain path corresponds to a chain triangle.
Conversely, every chain path induces a triangulation T of P+

D ; see Fig. 5. In the
following, we let b denote the upper right endpoint of the chain path. The next
lemma describes how the chain path is affected by flips; see Fig. 5.

Lemma 4.3. Any triangulation T of P+
D uniquely determines a chain path, and

vice versa. A flip in T corresponds to one of the following operations on the
chain path: (i) move the endpoint b north or east; (ii) shorten the path at b; (iii)
change an east-north bend to a north-east bend, or vice versa. ut
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Fig. 5. A triangulation of P+
D and its chain path. Flipping edges to and from z moves

the endpoint b along the grid. A flip between chain triangles changes a bend.

4.3 From an RSA to a Short Flip Sequence

Using the notion of a chain path, we now prove the “if” direction of Theorem 4.1.

Lemma 4.4. Let k ≥ 1 and A an RSA for S of length k. Then the flip distance
between T1 and T2 w.r.t. P ∗D is at most 2βk + (4d− 2)N .

Proof. The triangulations T1 and T2 both contain a triangulation of P+
D whose

chain path has its endpoint b at the root. We use Lemma 4.3 to generate flips
inside P+

D so that b traverses A in a depth-first manner. This needs 2βk flips.
Each time b reaches a sink s, we move b north. This creates a chain triangle

that allows the edges in the sink gadget Ds to be flipped to the auxiliary vertex
in the flip-kernel of Ds. The triangulation of Ds can then be changed with 4d−4
flips; see Lemma 3.3. Next, we move b back south and continue the traversal.
Moving b at s needs two additional flips, so we take 4d − 2 flips per sink, for a
total of 2βk + (4d− 2)N flips. ut

4.4 From a Short Flip Sequence to an RSA

Finally, we consider the “only if” direction in Theorem 4.1. Let σ1 be a flip
sequence on P+

D . We say that σ1 visits a sink s = (x, y) if σ1 has at least one
triangulation T that contains the chain triangle uβxlβylβy+1. We call σ1 a flip
traversal for S if (i) σ1 begins and ends in the triangulation whose corresponding
chain path has its endpoint b at the root and (ii) σ1 visits every sink in S. The
following lemma shows that every short flip sequence in P ∗D can be mapped to
a flip traversal.

Lemma 4.5. Let σ be a flip sequence from T1 to T2 w.r.t. P ∗D with |σ| < (d−1)2.
Then there is a flip traversal σ1 for S with |σ1| ≤ |σ| − (4d− 4)N .

Proof. We show how to obtain a flip traversal σ1 for S from σ. Let T ∗ be a
triangulation of P ∗D. A triangle of T ∗ is an inner triangle if all its sides are
diagonals. It is an ear if two of its sides are polygon edges. By construction, every
inner triangle of T ∗ must have (i) one vertex incident to z (the rightmost vertex
of P+

D ), or (ii) two vertices incident to a sink gadget (or both). In the latter case,



there can be only one such triangle per sink gadget. The weak (graph theoretic)
dual of T ∗ is a tree in which ears correspond to leaves and inner triangles have
degree 3.

Let Ds be a sink gadget placed between the vertices ls and l′s. Let us be
the vertex in the flip-kernel of Ds. We define a triangle ∆s for Ds. Consider the
bottommost edge e of Ds, and let ∆ be the triangle of T ∗ that is incident to e.
By construction, ∆ is either an ear of T ∗ or is the triangle defined by e and us. In
the latter case, we set ∆s = ∆. In the former case, we claim that T ∗ has an inner
triangle ∆′ with two vertices on Ds: follow the path from ∆ in the weak dual of
T ∗; while the path does not encounter an inner triangle, the next triangle must
have an edge of Ds as a side. There is only a limited number of such edges, so
eventually we must meet an inner triangle ∆′. We then set ∆s = ∆′; see Fig. 6.
Note that ∆s might be lsl

′
sus.

∆s

∆sls
l′s

us us

ls
l′s

Fig. 6. Triangulations of Ds in P ∗
D with ∆s = ∆ (left), and with ∆ being an ear (red)

and ∆s an inner triangle (right). The fat tree indicates the dual.

For each sink s, let the polygon Pus

Ds
consist of the Ds extended by the

vertex us (cf. Definition 3.2). Let T ∗ be a triangulation of P ∗D. We show how to
map T ∗ to a triangulation T+ of P+

D and to triangulations Ts of Pus

Ds
, for each s.

We first describe T+. It contains every triangle of T ∗ with all three vertices
in P+

D . For each triangle ∆ in T ∗ with two vertices on P+
D and one vertex on the

left chain of a sink gadget Ds, we replace the vertex on Ds by ls. Similarly, if
the third vertex of ∆ is on the right chain of Ds, we replace it by l′s. For every
sink s, the triangle ∆s has one vertex at a point ui of the upper chain. In T+,
we replace ∆s by the triangle lsl

′
sui. No two triangles overlap, and they cover

all of P+
D . Thus, T+ is indeed a triangulation of P+

D .

Now we describe how to obtain Ts, for a sink s ∈ S. Each triangle of T ∗ with
all vertices on Pus

Ds
is also in Ts. Each triangle with two vertices on Ds and one

vertex not in Pus

Ds
is replaced in Ts by a triangle whose third vertex is moved to

us in Ts (note that this includes ∆s); see Fig. 7. Again, all triangles cover Pus

Ds

and no two triangles overlap.
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l′s
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∆s
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ls
l′s

Fig. 7. Obtaining T+ and Ts from T ∗.

Eventually, we show that a flip in T ∗ corresponds to at most one flip either
in T+ or in precisely one Ts for some sink s. We do this by considering all the
possibilities for two triangles that share a common flippable edge. Note that by
construction no two triangles mapped to triangulations of different polygons Pus

Ds

and Put

Dt
can share an edge (with t 6= s being another sink).

Case 1. We flip an edge between two triangles that are either both mapped
to T+ or to Ts and are different from ∆s. This flip clearly happens in at most
one triangulation.

Case 2. We flip an edge between a triangle ∆1 that is mapped to Ts and
a triangle ∆2 that is mapped to T+, such that both ∆1 and ∆2 are different
from ∆s. This results in a triangle ∆′1 that is incident to the same edge of Pus

Ds

as ∆1(for each such triangle, the point not incident to that edge is called the
apex ), and a triangle ∆′2 having the same vertices of P+

D as ∆2. Since the apex
of ∆1 is a vertex of the upper chain or z (otherwise, it would not share an edge
with ∆2), it is mapped to us, as is the apex of ∆′1. Also, the apex of ∆′2 is on
the same chain of Ds as the one of ∆2. Hence, the flip affects neither T+ nor Ts.

Case 3. We flip the edge between a triangle ∆2 mapped to T+ and ∆s. By
construction, this can only happen if ∆s is an inner triangle. The flip affects
only T+, because the new inner triangle ∆′s is mapped to the same triangle in
Ts as ∆s, since both apexes are moved to us.

Case 4. We flip the edge between a triangle ∆ of Ts and ∆s. Similar to
Case 3, this affects only Ts, because the new triangle ∆′s is mapped to the same
triangle in T+ as ∆s, since the two corners are always mapped to ls and l′s.

Thus, σ induces a flip sequence σ1 in P+
D and flip sequences σs in each Pus

Ds
so

that |σ1|+
∑
s∈S |σs| ≤ |σ|. Furthermore, each flip sequence σs transforms Pus

Ds

from one extreme triangulation to the other. By the choice of d and Lemma 3.4,
the triangulations Ts have to be transformed so that ∆s has a vertex at us at
some point, and |σs| ≥ 4d − 4. Thus, σ1 is a flip traversal, and |σ1| ≤ |σ| −
N(4d− 4), as claimed. ut

In order to obtain a static RSA from a changing flip traversal, we use the
notion of a trace. A trace is a domain on the βn × βn grid. It consists of edges



and boxes: an edge is a line segment of length 1 whose endpoints have positive
integer coordinates; a box is a square of side length 1 whose corners have positive
integer coordinates. Similar to arborescences, we require that a trace R (i) is
(topologically) connected; (ii) contains the root (1, 1); and (iii) from every grid
point contained in R there exists an x- and y-monotone path to the root that
lies completely in R. We say R is a covering trace for S (or, R covers S) if every
sink in S is part of R.

Let σ1 be a flip traversal as in Lemma 4.5. By Lemma 4.3, each triangulation
in σ1 corresponds to a chain path. This gives a covering trace R for S in the
following way. For every flip in σ1 that extends the chain path, we add the
corresponding edge to R. For every flip in σ1 that changes a bend, we add the
corresponding box to R. Afterwards, we remove from R all edges that coincide
with a side of a box in R. Clearly, R is (topologically) connected. Since σ1 is a
flip traversal for S, every sink is covered by R (i.e., incident to a box or edge
in R). Note that every grid point p in R is connected to the root by an x- and
y-monotone path on R, since at some point p belonged to a chain path in σ1.
Hence, R is indeed a trace, the unique trace of σ1.

Next, we define the cost of a trace R, cost(R), so that if R is the trace of a
flip traversal σ1, then cost(R) gives a lower bound on |σ1|. An edge has cost 2.
Let B be a box in R. A boundary side of B is a side that is not part of another
box. The cost of B is 1 plus the number of boundary sides of B. Then, cost(R)
is the total cost over all boxes and edges in R. For example, the cost of a tree is
twice the number of its edges, and the cost of an a× b rectangle is ab+ 2(a+ b).
An edge can be interpreted as a degenerated box, having two boundary sides
and no interior. The following proposition is proved in the full version.

Proposition 4.6. Let σ1 be a flip traversal and R the trace of σ1. Then
cost(R) ≤ |σ1|.

Now we relate the length of an RSA for S to the cost of a covering trace for
S, and thus to the length of a flip traversal. Since each sink (sx, sy) is connected
in R to the root by a path of length sx+sy, traces can be regarded as generalized
RSAs. In particular, we make the following observation.

Observation 4.7 Let R be a covering trace for S that contains no boxes, and
let Aσ1

be a shortest path tree in R from the root to all sinks in S. Then Aσ1
is

an RSA for S. ut

If σ1 contains no flips that change bends, the corresponding trace R has no boxes.
Then, R contains an RSA Aσ1

with 2|Aσ1
| ≤ cost(R), by Observation 4.7. The

next lemma shows that, due to the size of β, there is always a shortest covering
trace for S that does not contain any boxes. See the full version for the proof.

Lemma 4.8. Let σ1 be a flip traversal of S. Then there exists a covering trace
R for S in the βn × βn grid such that R does not contain a box and such that
cost(R) ≤ |σ1|.
Now we can finally complete the proof of Theorem 4.1 by giving the second
direction of the correspondence.



Lemma 4.9. Let k ≥ 1 and let σ be a flip sequence on P ∗D from T1 to T2 with
|σ| ≤ 2βk + (4d− 2)N . Then there exists an RSA for S of length at most k.

Proof. Trivially, there always exists an RSA on S of length less than 2nN , so
we may assume that k < 2nN . Hence (recall that β = 2N and d = nN),

2βk + 4dN − 2N < 2× 2N × 2nN + 4nN2 − 2N < 12nN2 < (d− 1)2,

for n ≥ 14 and positive N . Thus, since σ meets the requirements of Lemma 4.5,
we can obtain a flip traversal σ1 for S with |σ1| ≤ 2βk + 2N . By Lemma 4.8
and Observation 4.7, we can conclude that there is an RSA A for S that has
length at most βk + N . By Theorem 2.1, there is an RSA A′ for S that is not
longer than A and that lies on the Hanan grid for S. The length of A′ must be a
multiple of β. Thus, since β > N , we get that A′ has length at most βk, so the
corresponding arborescence for S on the n× n grid has length at most k. ut
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