
Four Soviets Walk the Dog—with an Application to Alt’s Conjecture

Kevin Buchin∗ Maike Buchin† Wouter Meulemans∗ Wolfgang Mulzer‡

Abstract

Given two polygonal curves in the plane, there are
many ways to define a notion of similarity between
them. One measure that is extremely popular is the
Fréchet distance. Since it has been proposed by Alt and
Godau in 1992, many variants and extensions have been
studied. Nonetheless, even more than 20 years later,
the original O(n2 log n) algorithm by Alt and Godau
for computing the Fréchet distance remains the state of
the art (here n denotes the number of vertices on each
curve). This has led Helmut Alt to conjecture that the
associated decision problem is 3SUM-hard.

In recent work, Agarwal et al. show how to break
the quadratic barrier for the discrete version of the
Fréchet distance, where one considers sequences of
points instead of polygonal curves. Building on their
work, we give a randomized algorithm to compute the
Fréchet distance between two polygonal curves in time
O(n2

√
log n(log log n)3/2) on a pointer machine and in

time O(n2(log log n)2) on a word RAM. Furthermore,
we show that there exists an algebraic decision tree for
the decision problem of depth O(n2−ε), for some ε > 0.
This provides evidence that the decision problem may
not be 3SUM-hard after all and reveals an intriguing
new aspect of this well-studied problem.

1 Introduction

Shape matching is a fundamental problem in computa-
tional geometry, computer vision, and image process-
ing. A simple version can be stated as follows: given
a database D of shapes (or images) and a query shape
S, find the shape in D that most resembles S. How-
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ever, before we can solve this problem, we first need
to address a much more fundamental issue: what does
it mean for two shapes to be similar? In the mathe-
matical literature, there are many different notions of
distance between two sets, a prominent example being
the Hausdorff distance. Informally, the Hausdorff dis-
tance is defined as the maximal distance between two
elements when every element of one set is mapped to
the closest element in the other. It has the advantage
of being simple to describe and easy to compute for dis-
crete sets. In the context of shape matching, however,
the Hausdorff distance often turns out to be unsatis-
factory: it does not take the continuity of the shapes
into account. There are well known examples where
the distance fails to capture the similarity of shapes as
perceived by human observers [4].

In order to address this issue, Alt and Godau intro-
duced the Fréchet distance into the computational ge-
ometry literature [6, 37]. They argued that the Fréchet
distance is better suited as a similarity measure, and
they described an O(n2 log n) time algorithm to com-
pute it on a real RAM or pointer machine.1 Since
Alt and Godau’s seminal paper, there has been a
wealth of research in various directions, such as ex-
tensions to higher dimensions [5, 19, 22, 24, 29, 38], ap-
proximation algorithms [7, 8, 32], the geodesic and the
homotopic Fréchet distance [25, 30, 33, 40], and much
more [2, 12, 18, 21, 31, 42, 44, 45]. All known approx-
imation algorithms make further assumptions on the
curves, and only an O(n2)-time approximation algo-
rithm is known for arbitrary polygonal curves [20]. The
Fréchet distance and its variants, such as dynamic time-
warping [11], have found various applications, with re-
cent work particularly focusing on geographic applica-
tions such as map-matching tracking data [13, 49] and
moving objects analysis [15,16,39].

Despite the large amount of published research,
the original algorithm by Alt and Godau has not been
improved, and the quadratic barrier on the running time
of the associated decision problem remains unbroken. If
we cannot improve on a quadratic bound for a geometric
problem despite many efforts, a possible culprit may

1For a brief overview of the different computational models in
this paper, refer to Appendix A.



be the underlying 3SUM-hardness [36]. This situation
induced Helmut Alt to make the following conjecture.2

Conjecture 1.1. (Alt’s Conjecture) Let P , Q be
two polygonal curves in the plane. Then it is 3SUM-
hard to decide whether the Fréchet distance between P
and Q is at most 1.

Here, 1 can be considered as an arbitrary constant,
which can be changed to any other bound by scaling
the curves. So far, we know only that this problem
takes Ω(n log n) steps in the algebraic computation tree
model [17].

Recently, Agarwal et al. [1] showed how to achieve
a subquadratic running time for the discrete version
of the Fréchet distance. Their approach relies on
reusing small parts of the solution. We follow a
similar approach based on the so-called Four-Russian-
trick which precomputes small recurring parts of the
solution and uses table-lookup to speed up the whole
computation.3 The result by Agarwal et al. is stated
in the word RAM model of computation. They ask
whether their result can be generalized to the case of
the original (continuous) Fréchet distance.

Our contribution. We address the question by
Agarwal et al. and show how to extend their ap-
proach to the Fréchet distance between two polygo-
nal curves. Our algorithm requires total expected time
O(n2

√
log n(log log n)3/2). This is the first algorithm

with a running time of o(n2 log n) and constitutes the
first improvement for the general case since the original
paper by Alt and Godau [6]. To achieve this running
time we give the first subquadratic algorithm for the de-
cision problem of the Fréchet distance. We emphasize
that these algorithms run on a real RAM/pointer ma-
chine and do not require any bit-manipulation tricks.
Therefore, our results are more in the line of Chan’s
recent subcubic-time algorithms for all-pairs-shortest
paths [26,27] or recent subquadratic-time algorithms for
min-plus convolution [14] than the subquadratic-time
algorithms for 3SUM [10].

If we relax the model to allow constant time table-
lookups, the running time can be improved to be
almost quadratic, up to O(log log n) factors. As in
Agarwal et al., our results are achieved by first giving
a faster algorithm for the decision version, and then
performing an appropriate search over the critical values
to solve the optimization problem.

Finally, we address Alt’s conjecture by showing that
non-uniformly, the Fréchet distance can be computed

2Personal communication 2012, see also [4].
3It is well known that the four Russians are not actually

Russian, so we refer to them as four Soviets in the title.

in subquadratic time. More precisely, we prove that
the decision version of the problem can be solved by an
algebraic decision tree [9] of depth O(n2−ε), for some
fixed ε > 0. It is conjectured that no such decision
tree exists for 3SUM [46] and an Ω(n2) lower bound is
known in a restricted linear decision tree model [3, 34].
Our result therefore provides strong evidence that the
Fréchet distance problem is not 3SUM-hard.

It is, however, not clear how to implement this
decision tree in subquadratic time, which hints at a
discrepancy between the decision tree and the uniform
complexity of the Fréchet problem. This puts it into
the illustrious company of such notorious problems as
Sorting X+Y [35], Min-Plus-Convolution [14], or
finding the Delaunay triangulation for a point set that
has been sorted in two orthogonal directions [23]. We
find that this aspect of the Fréchet distance is highly
intriguing and deserves further study.

2 Preliminaries and Basic Definitions

Let P and Q be two polygonal curves in the plane, de-
fined by their vertices p0, p1, . . . , pn and q0, q1, . . . , qn.4

Depending on the context, we interpret P and Q ei-
ther as sequences of n edges, or as continuous functions
P,Q : [0, n]→ R2. In the latter case, we have P (i+λ) =
(1− λ)pi + λpi+1 for i = 0, . . . , n− 1 and λ ∈ [0, 1], and
similarly for Q. Let Ψ be the set of all continuous and
nondecreasing functions σ : [0, n]→ [0, n] with σ(0) = 0
and σ(n) = n. The Fréchet distance between P and Q
is defined as

dF (P,Q) := inf
σ∈Ψ

max
x∈[0,n]

‖P (x)−Q(σ(x))‖,

where ‖ · ‖ denotes the Euclidean distance.
The classic approach to computing dF (P,Q) uses

the free-space diagram FSD(P,Q). It is defined as

FSD(P,Q) := {(x, y) ∈ [0, n]2 | ‖P (x)−Q(y)‖ ≤ 1}.

In other words, FSD(P,Q) is the subset of the joint
parameter space for P and Q where the corresponding
points on the curves have distance at most 1, see Fig. 1.

The structure of FSD(P,Q) is easy to describe. Let
R := [0, n]2 be the ground set. We subdivide R into n2

cells C(i, j) = [i, i+ 1]× [j, j+ 1], for i, j = 0, . . . , n− 1.
The cell C(i, j) corresponds to the edge pair ei+1 and
fj+1, where ei+1 is the (i+1)th edge of P and fj+1 is the
(j+1)th edge of Q. Then the set F (i, j) := FSD(P,Q)∩
C(i, j) represents all pairs of points on ei+1× fj+1 with

4For simplicity, we assume that the curves have the same
number of vertices. From a theoretical perspective this is the

most interesting case; it is straightforward to extend our results
to the case when the number of vertices differs.
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Figure 1: Two polygonal curves P and Q, together with their associated free-space diagram. The reachable region
reach(P,Q) is shown in blue.

distance at most 1. Elementary geometry shows that
F (i, j) is the intersection of C(i, j) with an ellipse [6]. In
particular, the set F (i, j) is convex, and the intersection
of FSD(P,Q) with the boundary of C(i, j) consists of
four (possibly empty) intervals, one on each side of
∂C(i, j). We call these intervals the doors of C(i, j)
in FSD(P,Q). A door is said to be closed if the interval
is empty, and open otherwise.

A path π in FSD(P,Q) is bimonotone if it is both x-
and y-monotone, i.e., every vertical and every horizontal
line intersects π in at most one connected component.
Alt and Godau observed that it suffices to determine
whether there exists a bimonotone path from (0, 0) to
(n, n) inside FSD(P,Q). We define reach(P,Q) as the
set of points in FSD(P,Q) that are reachable from (0, 0)
on a bimonotone path. Then dF (P,Q) ≤ 1 if and only
if (n, n) ∈ reach(P,Q). It is not necessary to compute
all of reach(P,Q): since FSD(P,Q) is convex inside
each cell, we need just the intersections reach(P,Q) ∩
∂C(i, j). The sets defined by reach(P,Q) ∩ ∂C(i, j)
are subintervals of the doors of the free-space diagram;
they are defined by endpoints of doors in the free-
space diagram in the same row or column. We call
the intersection of a door with reach(P,Q) a reach-door.
The intersections can be found in O(n2) time through a
simple traversal of the cells [6]. In the next sections, we
show how to obtain the crucial information, i.e. whether
(n, n) ∈ reach(P,Q), in o(n2) instead.

Basic approach and intuition. In our algorithm
for the decision problem, we basically want to compute
reach(P,Q). But instead of propagating the reachability
information cell by cell, we always group τ by τ cells
(with 1 � τ � n) into an elementary box of cells.
When processing a box, we can assume that we know

which parts of the left and the bottom boundary of the
box are reachable. That is, we know the reach-doors on
the bottom and left boundary, and we need to compute
the reach-doors on the top and right boundary of the
elementary box. These reach-doors are determined
by the combinatorial structure of the box. More
specifically, if we know for every row and column the
order of the door endpoints (including the reach-doors
on the left and bottom boundary), we know which door
boundaries determine the reach-doors on the top and
right boundary. We call the sequence of these orders,
the (full) signature of the box.

The total number of possible signatures is bounded
by an expression in terms of τ . Thus, if we pick τ suffi-
ciently small compared to n, we can pre-compute for all
possible signatures the reach-doors on the top and right
boundary, and build a data structure to query these
quickly (Section 3). Since the reach-doors on the bot-
tom and left boundary are required to make the signa-
ture, we initially have only partial signatures. In Sec-
tion 4, we describe how to compute these efficiently.
The partial signatures are then used to preprocess the
data structure such that we can quickly find the full sig-
nature once we know the reach-doors of an elementary
box. After building and preprocessing the data struc-
ture, it is possible to determine dF (P,Q) ≤ 1 efficiently
by traversing the free-space diagram elementary box by
elementary box, as explained in Section 5.

3 Building a Lookup Table

3.1 Preprocessing an elementary box Before it
considers the input, our algorithm builds a lookup table.
As mentioned above, the purpose of this table is to
speed up the computation of small parts of the free-
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Figure 2: The elementary box. The cell D(2, 1) is shown
white. Its boundaries—l(2, 1), l(3, 1), b(2, 1), b(2, 2)—
are indicated.

space diagram.
Let τ ∈ N be a parameter.5 The elementary box is

a subdivision of [0, τ ]2 into τ columns and rows, thus
τ2 cells.6 For i, j = 0, . . . , τ − 1, we denote the cell
[i, i+ 1]× [j, j+ 1] with D(i, j). We denote the left side
of the boundary ∂D(i, j) by l(i, j) and the bottom side
by b(i, j). Note that l(i, j) coincides with the right side
of ∂D(i − 1, j) and b(i, j) with the top of ∂D(i, j − 1).
Thus, we write l(τ + 1, j) for the right side of D(τ, j)
and b(i, τ + 1) for the top side of D(i, τ). Fig. 2 shows
the elementary box.

The door-order σrj for a row j is a permutation of
{s0, t0, . . . , sτ , tτ}, thus having 2τ + 2 elements. For i =
1, . . . , τ , the element si represents the lower endpoint
of the door on l(i, j), and ti represents the upper
endpoint. The elements s0 and t0 are an exception:
they describe the reach-door on the boundary l(0, j) (i.e.
its intersection with reach(P,Q)). The door-order σrj
represents the combinatorial order of these endpoints,
as projected onto a vertical line, i.e., they are sorted
into their vertical order. Some door-orders may encode
the same combinatorial structure. In particular when
door i is closed, the exact position of si and ti in a
door-order is irrelevant, up to ti being before si. For a
closed door i (i > 0), we assign si to the upper endpoint
of l(i, j) and ti to the lower endpoint. The values of s0

and t0 are defined by the reach-door and their relative
order is thus a result of computation. We break ties
between si and ti′ by placing si before ti′ , and any other
ties are resolved by index. A door-order σci is defined

5A preview for the impatient reader: we later set τ =
Θ(

√
logn/ log logn).

6For now, the elementary box is a combinatorial concept. In
the next section, we overlay these boxes on the free-space diagram
to obtain “concrete” elementary boxes.

analogously for a column i. We write x <ci y if x comes
before y in σci , and x <rj y if x comes before y in σrj . A
partial door-order is a door-order in which s0 and t0 are
omitted (i.e. the intersection of reach(P,Q) with the
door is still unknown); see Fig. 3.

We can now define the (full) signature of the
elementary box as the aggregation of the door-orders
of its rows and columns. Therefore, a signature Σ =
(σc1, . . . , σ

c
τ , σ

r
1, . . . , σ

r
τ ) consists of 2τ door-orders: one

door-order σci for each column i and one door-order σrj
for each row j of the elementary box. Similarly, a partial
signature is the aggregation of partial door-orders.

For a given signature, we define the combinatorial
reachability structure of the elementary box as follows.
For each column i and for each row j, the combinatorial
reachability structure indicates which door boundaries
in the respective column or row define the reach-door of
b(i, τ) or l(τ, j).

Lemma 3.1. Let Σ be a signature for the elementary
box. Then we can determine the combinatorial reacha-
bility structure of Σ in total time O(τ2).

Proof. We use dynamic programming, very similar to
the algorithm by Alt and Godau [6]. For each vertical

edge l(i, j) we define a variable l̂(i, j), and for each

horizontal edge b(i, j) we define a variable b̂(i, j). The

l̂(i, j) are pairs of the form (su, tv), representing the
reach-door reach(P,Q) ∩ l(i, j). If this reach-door is
closed, then tv <

r
j su holds. If the reach-door is open,

then it is bounded by the lower endpoint of the door on
l(u, j) and by the upper endpoint of the door on l(v, j).
(Note that in this case we have v = i.) Once again
s0 and t0 are special and represent the reach-door on
l(0, j). The variables b̂(i, j) are defined analogously.

Now we can compute l̂(i, j) and b̂(i, j) recursively
as follows: first, we set

l̂(0, j) = b̂(i, 0) = (s0, t0), for i, j = 0, . . . , τ − 1.

Next, we describe how to find l̂(i, j) given l̂(i−1, j) and

b̂(i− 1, j), see Fig. 4.

Case 1: Suppose b̂(i − 1, j) is open. This means that
b(i− 1, j) intersects reach(P,Q), so reach(P,Q)∩ l(i, j)
is limited only by the door on l(i, j), and we can set

l̂(i, j) := (si, ti).

Case 2: If both b̂(i− 1, j) and l̂(i− 1, j) are closed, it

is impossible to reach l(i, j) and thus we set l̂(i, j) :=

l̂(i− 1, j).

Case 3: If b̂(i − 1, j) is closed and l̂(i − 1, j) is open,
we may be able to reach l(i, j) via l(i − 1, j). Let su
be the lower endpoint of l̂(i − 1, j). We need to pass
l(i, j) above su and si and below ti, and therefore set
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Figure 4: The three cases for the recursive definition
of l̂(i, j). If the lower boundary is reachable, we can
reach the whole right door (left). If neither the lower
nor the left boundary is reachable, the right door is
not reachable either (middle). Otherwise, the lower

boundary is the maximum of l̂(i − 1, j) and the lower
boundary of the right door (right).

l̂(i, j) := (max(su, si), ti), where the maximum is taken
according to the order <rj .

The recursion for the variable b̂(i, j) is defined
similarly. We can implement the recursion in timeO(τ2)
for any given signature, for example by traversing the
elementary box column by column, while processing
each column from bottom to top. �

There are at most ((2τ + 2)!)2τ = τO(τ2) dis-
tinct signatures for the elementary box. We choose
τ = λ

√
log n/ log log n for a sufficiently small constant

λ > 0, so that this number becomes o(n). Thus, dur-
ing the preprocessing stage we have time to enumerate
all possible signatures and determine the corresponding
combinatorial reachability structure inside the elemen-
tary box. This information is then stored in an appro-
priate data structure.

3.2 Building the data structure Before we de-
scribe this data structure, we first explain how the door-
orders are represented. This depends on the computa-
tional model. By our choice of τ , there are o(n) dis-
tinct door-orders. On the word RAM, we represent each
door-order and partial door-order by an integer between
1 and (2τ)!. This fits into a word of log n bits. On
the pointer machine, we create a record for each door-

order and partial door-order; we represent an order by
a pointer to the corresponding record.

The data structure has two stages, as schematized
in Fig. 5. In the first stage (Fig. 5 (a-b)), we assume
we know the partial door-order for each row and for
each column of the elementary box7, and we wish to
determine the partial signature. In the second stage
(Fig. 5 (c-d)), we have obtained the reach-doors for the
left and bottom sides of the elementary box, and we
are looking for the full signature. The details of our
method depend on the computational model. One way
uses table lookup and requires the word RAM; the other
way works on the pointer machine, but is a bit more
involved.

Word RAM. We organize the lookup table as
a large tree T . In the first stage, each level of T
corresponds to a row or column of the elementary box.
Thus, there are 2τ levels. Each node has (2τ)! children,
representing the possible partial door-orders for the
next row or column. Since we represent door-orders
by positive integers, each node of T may store an array
for its children; we can choose the appropriate child
for a given partial door-order in constant time. Thus,
determining the partial signature for an elementary box
requires O(τ) steps on a word RAM.

For the second stage, we again use a tree structure.
Now the tree has O(τ) layers, each with O(log τ) levels.
Again, each layer corresponds to a row or column of
the elementary box. The levels inside each layer then
implement a balanced binary search tree that allows us
to locate the endpoints of the reach-door within the
partial signature. Since there are 2τ endpoints, this
requires O(log τ) levels. Thus, it takes O(τ log τ) time
to find the full signature of a given elementary box.

Pointer model. Unlike in the word RAM model,
we are not allowed to store a lookup table on every level
of the tree T , and there is no way to quickly find the
appropriate child for a given door-order. Instead, we
must rely on batch processing to achieve a reasonable

7In the next section, we describe how to determine the partial

door-orders efficiently.
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Figure 3: The door-order of a row (the vertical order of the points) encodes the combinatorial structure of the
doors. The door-order for the row in the figure is s1s3s4t5t3t0s2t4s0s5t1t2. Note that s0 and t0 represent the
reach-door, which is empty in this case. These are omitted in the partial door-order.
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Figure 5: Overview of the data structure. a–b) Using partial door-orders, we find the partial signature of an
elementary box. c–d) Using the reach-doors on the bottom and left boundary of a box, we find the full signature
and the combinatorial reachability.

running time.
Thus, suppose that during the first stage we want to

find the partial signatures for a set B of m elementary
boxes, where again for each box in B we know the
partial door-order for each row and each column. Recall
that we represent the door-order by a pointer to the
corresponding record. With each such record, we store
a queue of elementary boxes that is empty initially.

We now simultaneously propagate the boxes in B
through T , proceeding level by level. In the first level,
all ofB is assigned to the root of T . Then, we go through
the nodes of one level of T , from left to right. Let v be
the current node of T . We consider each elementary
box b assigned to v. We determine the next partial
door-order for b, and we append b to the queue for this
partial door-order—the queue is addressed through the
corresponding record, so all elementary boxes with the
same next partial door-order end up in the same queue.
Next, we go through the nodes of the next level, again
from left to right. Let v′ be the current node. The
node v′ corresponds to a next partial door-order σ that
extends the known signature of its parents. We consider
the queue stored at the record for σ. By construction,
the elementary boxes that should be assigned to v′

appear consecutively at the beginning of this queue. We
remove these boxes from the queue and assign them to
v′. After this, all the queues are empty, and we can
continue by propagating the boxes to the next level.
During this procedure, we traverse each node of T a
constant number of times, and in each level of the T we
consider all the boxes in B. Since T has o(n) nodes, the
total running time is O(n+mτ).

For the second stage, the data structure works just
as in the word RAM case, because no table lookup is
necessary. Again, we need O(τ log τ) steps to process
one box.

After the second stage we obtain the combinatorial
reachability structure of the box in constant time since

we precomputed this information for each box. Thus,
we have shown the following lemma, independently of
the computational model.

Lemma 3.2. For τ = λ
√

log n/ log log n with a suffi-
ciently small constant λ > 0, we can construct in o(n)
time a data structure of size o(n) such that

• given a set of m elementary boxes where the partial
door-orders are known, we can find the partial
signature of each box in total time O(n+mτ);

• given the partial signature and the reach-doors on
the bottom and left boundary of an elementary box,
we can find the full signature in O(τ log τ) time;

• given the full signature of an elementary box, we
can find the combinatorial reachability structure of
the box in constant time.

4 Preprocessing a Given Input

Next, we perform a second preprocessing phase that
considers the input curves P andQ. Our eventual goal is
to compute the intersection of reach(P,Q) with the cell
boundaries, taking advantage of the data structure from
Section 3. For this, we aggregate the cells of FSD(P,Q)
into (concrete) elementary boxes consisting of τ×τ cells.
There are n2/τ2 such boxes. We may avoid rounding
issues by either duplicating vertices or handling a small
part of FSD(P,Q) without lookup tables.

The goal is to determine the signature for each
elementary box S. At this point this is not quite possible
yet, since the signature depends on the intersection
of reach(P,Q) with the lower and left boundary of S.
Nonetheless, we can find the partial signature, in which
the positions of s0, t0 (the reach-door) in the (partial)
door-orders σri , σ

c
j are still to be determined.

We aggregate the columns of FSD(P,Q) into ver-
tical strips, each corresponding to a single column of
elementary boxes (i.e. τ consecutive columns of cells in
FSD(P,Q)). See Fig. 6.
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Let A be such a strip. It corresponds to a subcurve
P ′ of P with τ edges. The following lemma implies that
we can build a data structure for A such that, given any
segment of Q, we can efficiently find its partial door-
order within the elementary box in A.

Lemma 4.1. There exists a constant c such that the
following holds: given a subcurve P ′ with τ edges, we
can compute in O(τ c) time a data structure that requires
O(τ c) space and that allows us to determine the partial
door-order of any line segment on Q in time O(log τ).

Proof. Consider the arrangementA of unit circles whose
centers are the vertices of P ′ (see Fig. 7). The partial
door-order of a line segment s is determined by the
intersections of s with the arcs of A (and for a circle
not intersecting s by whether s lies inside or outside of
the circle). Let `s be the line spanned by line segment
s. Suppose we wiggle `s. The order of intersections of
`s and the arcs of A changes only when `s moves over
a vertex of A or if `s leaves or enters a circle.

We use the standard duality transform that maps
a line ` : y = ax + b to the point `∗ : (a,−b), and
vice versa. Consider a unit circle C in A with center
(cx, cy). Elementary geometry shows that the set of
all lines that are tangent to C from above dualizes to
the curve t∗a(C) : y = cxx − cy −

√
1 + x2. Similarly,

the lines that are tangent to C from below dualize to
the curve t∗b(C) : y = cxx − cy +

√
1 + x2. Define

C∗ := {t∗a(C), t∗b(C) | C ∈ A}. Since any pair of distinct
circles C1, C2 has at most four common tangents, one
for each choice of above/below C1 and above/below C2,
it follows that any two curves in C∗ intersect at most
once.

Let V be the set of vertices in A, and let V ∗ be the
lines dual to the points in V (note that |V | = O(τ2)).

Since for any vertex v ∈ V and any circle C ∈ A
there are at most two tangents through v on C, each
line in V ∗ intersects each curve in C∗ at most once.
Thus, the arrangement B of the curves in V ∗ ∪ C∗ is
an arrangement of pseudolines with complexity O(τ4).
Furthermore, it can be constructed in the same expected
time, together with a point location structure that finds
the containing cell in B of any given point in time
O(log τ) [47, Chapter 6.6.1].

Now consider a line segment s and the supporting
line `s. As observed in the first paragraph, the combi-
natorial structure of the intersection between `s and A
is completely determined by the cell of B that contains
the dual point `∗s. Thus, for every cell f(s) ∈ B, we
construct a list Lf(s) that represents the combinatorial
structure of `s ∩ A. There are O(τ4) such lists, each
having size O(τ). We can compute Lf(s) by traversing
the zone of `s in A. Since circles intersect at most twice
and also a line intersects any circle at most twice, the
zone has complexity O(τ2α(τ)), where α(·) denotes the
inverse Ackermann function [47, Theorem 5.11]. Since
O(τ2α(τ)) ⊂ O(τ2), we can compute all lists in O(τ6)
time.

Given the list Lf(s), the partial door-order of s is
determined by the position of the endpoints of s in Lf(s).
There are O(τ2) possible ways for this, and we build a
table Tf(s) that represents them. For each entry in Tf(s),
we store a representative for the corresponding partial
door-order. As described in the previous section, the
representative is a positive integer in the word RAM
model and a pointer to the appropriate record on a
pointer machine.

The total size of the data structure is O(τ6) and it
can be constructed in the same time. A query works as
follows: given s, we can compute `∗s in constant time.
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s

`s

A
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1 B

Figure 7: By using the arrangement A defined by unit circles centered at vertices of P ′, we can determine the
partial door-order of each segment s on Q. This is done by locating the dual point of `s in the dual arrangement
B. The dual arrangement also contains pseudolines to determine when `s leaves a circle of A.

Then we use the point location structure of B to find
f(s) in O(log τ) time. Using binary search on Tf(s)

(or an appropriate tree structure in the case of a point
machine), we can then determine the position of the
endpoints of s in the list Lf(s) in O(log τ) time. This
bound holds both on the word RAM and on the pointer
machine. �

Lemma 4.2. Given the data structure of Lemma 3.2,
the partial signature for each elementary box can be
determined in time O(nτ c−1 + n2(log τ)/τ) for some
constant c.

Proof. By building and using the data structure from
Lemma 4.1, we determine the partial door-order for
each row in each vertical τ -strip in O(nτ (τ c+n log τ)) =
O(nτ c−1 + n2 log τ/τ) time. We repeat the procedure
with the horizontal strips. Now we know for each
elementary box in FSD(P,Q) the partial door-order for
each row and each column. We use the data structure
of Lemma 3.2 to combine these. As there are n2/τ2

boxes, the number of steps is O(n2/τ + n) = O(n2/τ).
Hence, the partial signature for each elementary box is
computed in O(nτ c−1 + n2(log τ)/τ). �

5 Solving the Decision Problem

With the data structures and preprocessing from the
previous sections, we have all elements in place to
determine whether dF (P,Q) ≤ 1. We know for each
elementary box its partial signature and we have a
data structure to derive its full signature (and with
it, the combinatorial reachability structure) when its
reach-doors are known. What remains to be shown is
that we can efficiently process the free-space diagram
to determine whether (n, n) ∈ reach(P,Q). This is
captured in the following lemma.

Lemma 5.1. If the partial signature for each elemen-
tary box is known, we can determine whether (n, n) ∈
reach(P,Q) in time O(n2(log τ)/τ).

Proof. We go through all of the elementary boxes of
FSD(P,Q), processing them one column at a time, going
from bottom to top in each column. Initially, we know
the full signature for the box S in the lower left corner
of FSD(P,Q). We use the signature to determine the
intersections of reach(P,Q) with the upper and right
boundary of S. There is a subtlety here: the signature
gives us only the combinatorial reachability structure,
and we need to map the resulting si, tj back to the
corresponding vertices on the curves. On the word
RAM, this can be done easily through table lookups. On
the pointer machine, we use representative records for
the si, ti elements and use O(τ) time before processing
the box to store a pointer from each representative
record to the appropriate vertices on P and Q.

We proceed similarly for the other boxes. By
the choice of the processing order of the elementary
boxes we always know the incoming reach-doors on
the bottom and left boundary when processing a box.
Given the incoming reach-doors, we can determine the
full signature and find the structure of the outgoing
reach-doors in total time O(τ log τ), using Lemma 3.2.
Again, we need O(τ) additional time on the pointer
machine to establish the mapping from the abstract si,
ti elements to the concrete vertices of P and Q. In total,
we spend O(τ log τ) time per box. Thus, it takes time
O(n2(log τ)/τ) to process all boxes, as claimed. �

As a result, we obtain the following theorem for a
pointer machine (and by extension, for the real RAM
model). For the word RAM model, we obtain an even
faster algorithm (see Section 6).



Theorem 5.1. The decision version of the Fréchet
problem can be solved in O(n2(log log n)3/2/

√
log n)

time on a pointer machine.

Proof. Set τ = λ
√

log n/ log log n for a sufficiently small
constant λ > 0. The theorem follows by applying
Lemmas 3.2, 4.2, and 5.1 in sequence. �

6 Improved Bound on Word RAM

We now explain how the running time of our algorithm
can be improved if our computational model allows for
constant time table-lookup. We use the same τ as above
(up to a constant factor). However, we change a number
of things. “Signatures” are represented differently and
the data structure to obtain combinatorial reachability
structures is changed accordingly. Furthermore, we
aggregate elementary boxes into clusters and determine
“partial door-orders” for multiple boxes at the same
time. Finally, we walk the free-space diagram based
on the clusters to decide dF (P,Q) ≤ 1.

Clusters and extended signatures. We intro-
duce a second level of aggregation in the free-space dia-
gram: a cluster is a collection of τ×τ elementary boxes,
that is, τ2 × τ2 cells in FSD(P,Q). Let R be a row of
cells in FSD(P,Q) of a certain cluster. As before, the
row R corresponds to an edge e on Q and a subcurve
P ′ of P with τ2 edges. We associate with R an ordered
set Z = 〈e0, z

′
0, z1, z

′
1, z2, z

′
2, . . . , zk, z

′
k, e1〉 with 2 · k + 3

elements. Here k is the number of intersections of e with
the unit circles centered at the τ vertices of P ′ (all but
the very first). Hence, k is bounded by 2τ and |Z| is
bounded by 4τ+3. The order of Z indicates the order of
these intersections with e directed along Q. Elements e0

and e1 represent the endpoints of e and take a special
role. In particular, these are used to represent closed
doors and snap open doors to the edge e. The elements
z′i are placeholders for the positions of the endpoints
of the reach-doors: z′0 represents a possible reach-door
endpoint between e0 and z1, the element z′1 is an end-
point between z1 and z2, etc.

Consider a row R′ of an elementary box inside the
row R of a cluster, corresponding to an edge e of Q. The
door-index of R′ is an ordered set 〈s0, t0, . . . , sτ , tτ 〉 of
size 2τ + 2. Similar to a door-order, elements s0 and
t0 represent the reach-door at the leftmost boundary
of R′; the elements si and ti (1 ≤ i ≤ τ) represent
the door at the right boundary of the ith cell in R′.
However, instead of rearranging the set to indicate
relative positions, the elements si and ti simply refer
to an element in Z. If the door is open, they refer
to the intersections with e (possibly snapped to e0 or
e1). If the door is closed, si is set to e1 and ti is set
to e0. The elements s0 and t0 are special, representing

the reach-door and refer to one of the elements z′i. A
partial door-index is a door-index without s0 and t0.
The advantage of a door-index over a door-order is that
the reach-door is always at the start. Hence, completing
a partial door-index to a full door-index can be done in
constant time. Since a door-index has size 2τ + 2, the
number of possible door-indices for R′ is τO(τ).

We define the door-indices for the columns analo-
gously. We concatenate the door-indices for the rows
and the columns to obtain the indexed signature for an
elementary box. Similarly, we define the partial indexed
signature. The total number of possible indexed signa-
tures remains τO(τ2).

For each possible partial indexed signature Σ we
build a lookup table TΣ as follows: the input is a word
with 4τ fields of O(log τ) bits each. Each field stores
the positions in Z of the endpoints of the ingoing reach-
doors for the elementary box: 2τ fields for the left side,
2τ fields for the lower side. The output consists of a
word that represents the indices for the elements in Z
that represent the outgoing reach-doors for the upper
and right boundary of the box. Thus, the input of TΣ is
a word of O(τ log τ) bits, and TΣ has size τO(τ). Hence,
for all partial indexed signatures combined, the size is
τO(τ2) = o(n) by our choice of τ .

Preprocessing a given input. During the pre-
processing for a given input P,Q, we use superstrips
consisting of τ strips. That is, a superstrip is a col-
umn of clusters and consists of τ2 columns of the free-
space diagram. Lemma 4.1 still holds, albeit with a
larger constant c. The data structure gets as input a
query edge e, and it returns in O(log τ) time a word
that contains τ fields. Each field represents the par-
tial door-index for e in the corresponding elementary
box and thus consists of O(τ log τ) bits. Hence, the
word size is O(τ2 log τ) = O(log n) by our choice of
τ . Thus, the total time for building a data struc-
ture for each superstrip and for processing all rows is
O(n/τ2 (τ c+n log τ)) = O(n2(log τ)/τ2). We now have
parts of the partial indexed signature for each elemen-
tary box packed into different words. To obtain the
partial indexed signature, we need to rearrange the in-
formation such that the partial door-indices of the rows
in one elementary box are in a single word. This cor-
responds to computing a transposition of a matrix, as
is illustrated in Fig. 8. For this, we need the following
lemma, which can be found—in slightly different form—
in Thorup [48, Lemma 9].

Lemma 6.1. Let X be a sequence of τ words that
contain τ fields each, so that X can be interpreted as a
τ × τ matrix. Then we can compute in time O(τ log τ)
on a word RAM a sequence Y of τ words with τ fields
each that represents the transposition of X.



Figure 8: (left) Every field represents the partial door-index of a row in an elementary box. (center) The fields
are grouped into words per row in a cluster. (right) Transposition yields the desired organization, where a word
represents the partial door-index of the rows in an elementary box.

Proof. The algorithm is recursive and solves a more
general problem: let X be a sequence of a words that
represents a sequence M of b different a × a matrices,
such that the ith word in X contains the fields of the ith

row of each matrix in M from left to right. Compute
a sequence of words Y that represents the sequence M ′

of the transposed matrices in M .
The recursion works as follows: if a = 1, there is

nothing to be done. Otherwise, we split X into the
sequence X1 of the first a/2 words and the sequence
X2 of the remaining words. X1 and X2 now represent
a sequence of 2b (a/2) × (a/2) matrices, which we
transpose recursively. After the recursion, we put the
(a/2)× (a/2) submatrices back together in the obvious
way. To finish, we need to transpose the off-diagonal
submatrices. This can be done simultaneously for
all matrices in time O(a), by using appropriate bit-
operations (or table lookup). Hence, the running time
obeys a recursion of the form T (a) = 2T (a/2) + O(a),
giving T (a) = O(a log a), as desired. �

By applying the lemma to the words that represent
τ consecutive rows in a superstrip, we obtain the
partial door-indices of the rows for each elementary
box. This takes total time O((n/τ2) · (n/τ) · τ log τ) =
O(n2(log τ)/τ2). We repeat this procedure for the
horizontal superstrips. By using an appropriate lookup
table to combine the partial door-indices of the rows
and columns, we obtain the partial indexed signature
for each elementary box in total time O(n2(log τ)/τ2).

The actual computation. We traverse the free-
space diagram cluster by cluster (recall that a cluster
consists of τ×τ elementary boxes). The clusters are pro-
cessed column by column from left to right, and inside
each column from bottom to top. Before processing a
cluster, we walk along the left and lower boundary of the
cluster to determine the incoming reach-doors. This is
done by performing a binary search for each box on the
boundary, and determining the appropriate elements z′i
which correspond to the incoming reach-doors. Using
this information, we assemble the appropriate words
that represent the incoming information for each ele-
mentary box. Since there are n2/τ4 clusters, this step
requires time O((n2/τ4)τ2 log τ) = O(n2(log τ)/τ2).

We then process the elementary boxes inside the clus-
ter, in a similar fashion. Now, however, we can process
each elementary box in constant time through a single
table lookup, so the total time is O(n2/τ2). Hence, the
total running time of our algorithm is O(n2(log τ)/τ2).
By our choice of τ = λ

√
log n/ log log n for a sufficiently

small λ > 0, we obtain the following theorem.

Theorem 6.1. The decision version of the Fréchet
problem can be solved in O(n2(log log n)2/ log n) time
on a word RAM machine.

7 Computing the Fréchet Distance

The optimization version of the Fréchet problem,
i.e., computing the Fréchet distance, can be done in
O(n2 log n) time using parametric search with the de-
cision version as a subroutine [6]. We showed that the
decision problem can be solved in o(n2) time. However,
this does not directly yield a faster algorithm for the op-
timization problem: if the running time of the decision
problem is T (n), parametric search gives an O((T (n) +
n2) log n) time algorithm [6]. There is an alternative
randomized algorithm by Raichel and Har-Peled [41].
Their algorithm also needs O((T (n) + n2) log n) time,
but below we adapt it to obtain the following lemma.

Lemma 7.1. The Fréchet distance of two polygonal
curves with n vertices each can be computed by a ran-
domized algorithm in O(n22α(n) + T (n) log n) expected
time, where T (n) is the time for the decision problem.

Before we prove the lemma, we recall that possible
values of the Fréchet distance are limited to a certain
set of critical values [6]:

1. the distance between a vertex of one curve and a
vertex of the other curve (vertex-vertex);

2. the distance between a vertex of one curve and an
edge of the other curve (vertex-edge); and

3. for two vertices of one curve and an edge of
the other curve, the distance between one of the
vertices and the intersection of e with the bisector
of the two vertices (if this intersection exists)
(vertex-vertex-edge).



If we also include vertex-vertex-edge tuples with no
intersection, we can sample a critical value uniformly at
random in constant time. The algorithm now works
as follows (see Har-Peled and Raichel [41] for more
details): first, we sample a set S of K = 4n2 critical
values uniformly at random. Next, we find a, b ∈ S
such that the Fréchet distance lies between a and b
and such that [a, b] contains no other value from S.
In the original algorithm this is done by sorting S and
performing a binary search using the decision version.
Using median-finding instead, this step can be done in
O(K + T (n) logK) time. Alternatively, the running
time of this step could be reduced by picking a smaller
K. However, this does not improve the final bound,
since it is dominated by a O(n22α(n)) component. The
interval [a, b] with high probability contains only a small
number of the remaining critical values. More precisely,
for K = 4n2 the probability that [a, b] has more than
2cn lnn critical values is at most 1/nc [41, Lemma 6.2].

The remainder of the algorithm determines the K ′

critical values in the interval [a, b], sorts them, and per-
forms a binary search. Excluding the time to determine
the critical values, this takes O(K ′ + T (n) logK ′) time
with median-finding. Thus the crucial part is to deter-
mine the K ′ critical values. In O(n2) time we can check
for each vertex-vertex and vertex-edge pair whether the
corresponding critical value lies in [a, b]. It remains to
determine the critical values corresponding to vertex-
vertex-edge tuples. These critical values are found by a
standard sweepline algorithm. For this, take an edge e
of P and the vertices of Q. The sweep starts with cir-
cles of radius a around the vertices of Q, and it increases
the radii until they reach b. During this sweep, the al-
gorithm maintains the order in which the circle arcs
intersect e. A critical value of the vertex-vertex-edge
type corresponds to the event that two different circles
intersect e in the same point. Besides these events the
sweepline algorithm requires the following events: (a)
a circle intersects e for the first time, and (b) a circle
intersects one of the vertices of e. Both event types cor-
respond to critical values involving e or a vertex of e.
Thus if we perform a sweep for each edge of P (and
similarly for Q), the total number of events is O(K ′).
Thus, the overall running time of all sweeps ignoring the
time for initialization is O(K ′ log n).

It remains to show that we can quickly find the
initial order in which the circle arcs intersect e. First,
compute the arrangement A of circles with radius a
around the vertices of Q. This takes O(n2) time [28].
To find the intersection order, traverse in A the zone
of the line ` spanned by e. The time for the traversal
is bounded by the complexity of the zone. Since the
circles pairwise intersect at most twice and ` intersects

each circle only twice, the complexity of the zone is
O(n2α(n)) [47, Theorem 5.11]. Summing over all edges
e, this adds a total of O(n22α(n)) to the running time.
Thus the overall time is O(T (n) log(n) + n22α(n) +
K ′ log n). The event K ′ > 8n lnn has probability
less than 1/n4, and we always have K ′ = O(n3).
Thus, this case adds o(1) to the expected running time.
Given K ′ ≤ 8n lnn, the running time is O(n log2 n).
Lemma 7.1 follows. Theorem 7.1 now results from
Lemma 7.1, Theorem 5.1, and Theorem 6.1.

Theorem 7.1. The Fréchet distance of two polygonal
curves with n vertices each can be computed by a
randomized algorithm in time O(n2

√
log n(log logn)3/2)

on a pointer machine and in time O(n2(log log n)2) on
a word RAM.

8 Decision Trees

Our results also have implications for the decision-tree
complexity of the Fréchet problem. Since in that model
we account only for comparisons between the input
elements, the preprocessing comes for free, and hence
the size of the elementary boxes can be increased.

Before we consider the continuous Fréchet problem,
we first note that a similar result can be obtained for
the discrete Fréchet problem: suppose we have two
sequences P = 〈p1, p2, . . . , pn〉 and Q = 〈q1, q2, . . . , qn〉.
For δ > 0, we define a directed graph Gδ with vertex
set P ×Q. In Gδ, there is an edge between two vertices
(pi, qj), (pi, qj+1) if and only if both d(pi, qj) ≤ δ
and d(pi, qj+1) ≤ δ. The condition is similar for an
edge between vertices (pi, qj) and (pi+1, qj), and vertices
(pi, qj) and (pi+1, qj+1). There are no further edges in
Gδ. Now the problem is to find the smallest δ for which
Gδ has a path from (p1, q1) to (pn, qn). For the discrete
Fréchet problem we obtain the following bound.8

Theorem 8.1. There is an algebraic computation tree
for the discrete Fréchet problem of depth Õ(n4/3).

Proof. We first discuss the decision problem, where we
are given P , Q and a δ, and we need to decide whether
we can reach (pn, qn) from (p1, q1). For the discrete
case, the analogue of the reachable free-space is just an
n × n boolean matrix M , where the bit in the ith row
and the jth column indicates whether the pair (pi, qj)
can be reached from (p1, q1) in Gδ.

As shown by Katz and Sharir [43], we can compute
a representation of the set of points (pi, qj) with ||pi −
qj || ≤ δ in Õ(n4/3). This information suffices to
complete M without further comparisons. As shown

8The notation Õ(·) (pronounced “soft-Oh”) stands for O(·) up
to poly-logarithmic factors.



by Agarwal et al., one can then solve the optimization
problem at the cost of another O(log n)-factor, which is

absorbed into the Õ-notation. �

Given our results above, we prove an analogous
statement for the continuous Fréchet distance.

Theorem 8.2. There exists an algebraic decision tree
for the Fréchet problem (decision version) of depth
O(n2−ε), for a fixed constant ε > 0.

Proof. We reconsider the steps of our algorithm. The
only phases that actually involve the input are the sec-
ond preprocessing phase and the traversal of the elemen-
tary boxes. The reason of our choice for τ was to keep
the time for the first preprocessing phase polynomial.
This is no longer a problem. By Lemmas 4.2 and 5.1, the
remaining cost is bounded by O(nτ c−1 + n2(log τ)/τ),
where c is the constant from Lemma 4.1. Choosing

τ = n1/c, we get a decision tree of depth n · n c−1
c +

n2 log n/n1/c. This is O(n2−(1/c) log n) = O(n2−ε) for,
say, ε = 1/2c. �

Assuming linear time reductions, this has the fol-
lowing consequence for Alt’s conjecture.

Corollary 8.1. If the decision version of the Fréchet
problem is 3SUM-hard, then 3SUM has an algebraic
decision tree of depth O(n2−ε).

9 Conclusion

In this paper we have broken the long-standing
quadratic upper bound for the decision version of the
Fréchet problem. Moreover, we have shown that this
problem has an algebraic decision tree of depthO(n2−ε),
for some ε > 0 and where n is the number of vertices of
the polygonal curves. This strongly indicates that the
problem is not 3SUM-hard after all. We have shown
how our faster algorithm for the decision version can
be used for a faster algorithm to compute the Fréchet
distance. If we allow constant-time table-lookup, we
obtain a running time in close reach of O(n2).

This leaves us with intriguing open research ques-
tions. Can we reduce the time needed for the decision
version to O(n2−ε), the bound we obtain from the al-
gebraic decision tree? Can we devise a quadratic or
even subquadratic algorithm for the optimization ver-
sion? Can we devise such an algorithm on the word
RAM, that is, with constant-time table-lookup? Or, on
the other hand, can we establish a connection between
the Fréchet distance and other problems which exhibit
a discrepancy between the decision tree and the uniform
complexity, such as Min-Plus-Convolution?
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[46] M. Pǎtraşcu. Towards polynomial lower bounds for
dynamic problems. In Proc. 42nd Annu. ACM Sympos.
Theory Comput. (STOC), pages 603–610, 2010.

[47] M. Sharir and P. K. Agarwal. Davenport-Schinzel Se-
quences and Their Geometric Applications. Cambridge
University Press, 1995.

[48] M. Thorup. Randomized sorting in O(n log log n)
time and linear space using addition, shift, and bit-
wise boolean operations. J. Algorithms, 42(2):205–230,
2002.

[49] C. Wenk, R. Salas, and D. Pfoser. Addressing the
need for map-matching speed: Localizing global curve-
matching algorithms. In Proc. 18th Int. Conf. on Sci.
and Stat. Database Management, pages 379–388, 2006.

A Computational Models

Real RAM. The standard machine model in compu-
tational geometry is the real RAM. Here, data is rep-
resented as an infinite sequence of storage cells. These
cells can be of two different types: they can store real
numbers or integers. The model supports standard op-
erations on these numbers in constant time, including
addition, multiplication, and elementary functions like
square-root, sine or cosine. Furthermore, the integers
can be used as indices to memory locations. Integers
can be converted to real numbers in constant time, but
we need to be careful about the reverse direction. The
floor function can be used to truncate a real number to
an integer, but if we were allowed to use it arbitrarily,
the real RAM could solve PSPACE-complete problems
in polynomial time. Therefore, we usually have only a
restricted floor function at our disposal.

Word RAM. The word RAM is essentially a real
RAM without support for real numbers. However,
on a real RAM, the integers are usually treated as
atomic, whereas the word RAM allows for powerful bit-
manipulation tricks. More precisely, the word RAM
represents the data as a sequence of w-bit words, where
w = Ω(log n). Data can be accessed arbitrarily, and
standard operations, such as Boolean operations (and,
xor, shl, . . .), addition, or multiplication take constant
time. There are many variants of the word RAM,
depending on precisely which instructions are supported
in constant time. The general consensus seems to be
that any function in AC0 is acceptable.9 However, it is

9AC0 is the class of all functions f : {0, 1}∗ → {0, 1}∗ that can

be computed by a family of circuits (Cn)n∈N with the following
properties: (i) each Cn has n inputs; (ii) there exist constants
a, b, such that Cn has at most anb gates, for n ∈ N; (iii) there is a

constant d such that for all n the length of the longest path from
an input to an output in Cn is at most d (ie, the circuit family

always preferable to rely on a set of operations as small,
and as non-exotic, as possible. Note that multiplication
is not in AC0, but nevertheless is usually included in
the word RAM instruction set.

Pointer machine. The pointer machine model
disallows the use of constant time table lookup, and
is therefore a restriction of the (real) RAM model.
The data structure is modeled as a directed graph G
with bounded out-degree. Each node in G represents
a record, with a bounded number of pointers to other
records and a bounded number of (real or integer) data
items. The algorithm can access data only by following
pointers from the inputs (and a bounded number of
global entry records); random access is not possible.
The data can be manipulated through the usual real
RAM operations, but without support for the floor
function, for reasons mentioned above.

Algebraic computation tree. Algebraic compu-
tation trees (ACTs) [9] are the computational geom-
etry analogue of binary decision trees, and like these
they are mainly used for proving lower bounds. Let
x1, . . . , xn ∈ R be the inputs. An ACT is a binary
tree with two kinds of nodes: computation and branch
nodes. A computation node v has one child and is la-
beled with an expression of the type yv = yu⊕yw, where
⊕ ∈ {+,−, ∗, /,√·} is a operator and yu, yw is either an
input variable x1, . . . , xn or corresponds to a computa-
tion node that is an ancestor of v. A branch node has
degree 2 and is labeled by yu = 0 or yu > 0, where
again yu is either an input or a variable for an ancestor.
A family of algebraic computation trees (Tn)n∈N solves
a computational problem (like Delaunay triangulation
or convex hull computation), if for each n ∈ N, the
tree Tn accepts inputs of size n, and if for any such in-
put x1, . . . , xn the corresponding path in Tn (where the
children of the branch nodes are determined according
the conditions they represent) constitutes a computa-
tion that represents the answer in the variables yv en-
countered during the path.

Algebraic decision trees are defined as follows: we
allow only branch nodes. Each branch node is labeled
with a predicate of the form p(x1, . . . , xn) = 0 or
p(x1, . . . , xn) > 0. The leaves are labeled yes or no.
Fix some r ∈ {1, . . . , n}. If p is restricted to be of
the form p(x1, . . . , xn) =

∑n
i=1 aixi − b, with at most

r coefficients ai 6= 0, we call the decision tree r-linear.
Erickson [34] showed that any 3-linear decision tree for
3SUM has depth Ω(n2). However, this bound does not
say anything about more general predicates (e.g., if p
may include quadratic terms). This severely limits its

has bounded depth); (iv) each gate has an arbitrary number of
incoming edges (i.e., the fan-in is unbounded).



applicability to geometric problems. For example, there
is no r-linear decision tree for the Fréchet problem, no
matter the choice of r: with r-linear decision trees, we
cannot even decide whether two given points p and q
have Euclidean distance at most 1.


