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—— Abstract

A variant of the Ham-Sandwich Theorem by Barany, Hubard, and Jerénimo [DCG 2008] states
that given any d measurable sets in R? that are convex and well-separated, and any given
a1,...,aq € [0,1], there is a unique oriented hyperplane that cuts off a respective fraction
aq,...,aq from each set. Steiger and Zhao [DCG 2010] proved a discrete analogue, which we
call the a-Ham-Sandwich theorem. They gave an algorithm to find the hyperplane in time
O(n(logn)?=3), where n is the total number of input points. The computational complexity of
this search problem in high dimensions is open, unlike that of the Ham-Sandwich problem, which
is now known to be PPA-complete (Filos-Ratsikas and Goldberg [STOC 2019]).

Recently, Fearley, Gordon, Mehta, and Savani [[CALP 2019] introduced a new sub-class of CLS
(Continuous Local Search) called Unique End-of-Potential Line (UEOPL). This class captures
problems in CLS that have unique solutions. We show that for the a-Ham-Sandwich theorem, the

search problem of finding the dividing hyperplane lies in UEOPL. This gives the first non-trivial
containment of the problem in a complexity class and places it in the company of several classic
search problems.

1 Introduction and preliminaries

The classic Ham-Sandwich theorem [7,8,12] states that for any d measurable sets in R?,
there is a hyperplane that bisects them simultaneously. Bardny et al. [2] proved a variant of
this classic theorem that aims at dividing sets into arbitrary given ratios instead of simply
bisecting them. The sets S1,...,Sq C R? are well-separated if every selection of the sets can
be strictly separated from the others by a hyperplane. If the sets are well-separated and
convex, then for any given choice ay,...,aq € [0, 1], there is a unique oriented hyperplane
that divides S1,...,.5; in the ratios aq, ..., a4, respectively.

Steiger and Zhao [11] gave a discrete version of [2] and called their result the Generalized
Ham-Sandwich Theorem, yet it is not a strict generalization of the classic Ham-Sandwich
Theorem. Their result requires that the point sets obey well-separation and weak general
position, while the classic theorem always holds without these assumptions. Therefore, we
call this result the a-Ham-Sandwich theorem, for a clearer distinction. Formally, given d
finite point sets Py,..., Py C R? and any set of positive integers {ai,...,aq} satisfying
1 < a; < |PBy, for all i € [d], where [d] denotes the set {1,...,d}, an (a1,...,aq)-cut is an
oriented hyperplane H that contains one point from each set and satisfies |H+ N P;| = o; for
all 4 € [d], where HT is the closed positive half-space bounded by H.

» Theorem 1.1 (a-Ham-Sandwich Theorem [11]). Let Pi,..., Py be finite, well-separated
point sets in RY. Let a = (v, ..., aq) be a vector, where a; € [|P;|] for all i € [d].

1. If an a-cut exists, then it is unique.
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2. If P isin a sufficiently general position, then a cut exists for each choice of «.
This statement does not necessarily hold if the sets are not well-separated, see Figure 1.

Figure 1 The red (square) and the blue (round) point sets are not well-separated. There is no
halfplane that contains exactly three red and three blue points.

We call the associated computational search problem of finding the dividing hyperplane
ALPHA-HS. Set n = Zie[d] |P;]. Steiger and Zhao gave an algorithm that computes the
dividing hyperplane in O (n(log n)d’S) time, which is exponential in d. Later, Bereg [3]
improved this algorithm to achieve a running time of n2°(®  which is linear in n but still
exponential in d. No polynomial algorithms are known for ALPHA-HS if d is not fixed.
Despite their superficial similarity, it is not immediately apparent whether the classic Ham-
Sandwich theorem problem and ALPHA-HS are comparable in terms of their complexity. Due
to the additional requirements on an input for ALPHA-HS, an instance of the Ham-sandwich
problem may not be reducible to ALPHA-HS in general.

ALPHA-HS is a total search problem and is modeled by the complexity class TFNP
(Total Function Nondeterministic Polynomial) of NP-search problems that always admit a
solution. A noteworthy sub-class is CLS (continuous local search), that was introduced by
Daskalakis and Papadimitriou [4]. It models optimization problems that can be solved by
local search over a continuous domain using a continuous potential function. Recently there
have been increasing efforts towards mapping the complexity landscape of existence theorems
in high-dimensional discrete geometry in such classes. It was shown in [6] that the search
problem for the Ham-Sandwich theorem is complete for PPA. Finding a solution to the
Colorful Carathéodory problem [1] was shown to lie in the intersection PPAD N PLS [9,10].
Here, PPAD C PPA, CLS C PLS N PPAD are other sub-classes of TFNP.

Recently, Fearley et al. [5] defined a sub-class of CLS by the name Unique End of
Potential Line that represents problems in CLS with unique solutions. They define it through
a canonical complete problem UNIQUEEOPL:

» Definition 1.2 (from [5]). Let n,m be positive integers. The input consists of

a pair of Boolean circuits S,P : {0,1}™ — {0,1}" such that P(0™) = 0™ # S(0™), and

a Boolean circuit V: {0,1}" — {0,1,...,2™ — 1} such that V(0™) =0,
each circuit having poly(n,m) size. The UNIQUEEOPL problem is to report one of the
following:
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(U1). A point v € {0,1}" such that P(S(v)) #

(UV1). A point v € {0,1}" such that S(v) # v, P(S(v)) = v, and V(S(v)) — V(v) < 0.

(UV2). A point v € {0,1}" such that S(P(v)) # v # 0™.

(UV3). Two points v,u € {0,1}™ such that v # u, S(v) # v, S(u) # u, and either
V(v) = V(u) or V(v) < V(u) < V(S(v)).

The problem defines a graph G with up to 2™ vertices. Informally, S(-),P(-), V(-) represent

the successor, predecessor and potential functions that act on the vertices. There is an edge

(u,v) € G if and only if S(u) = v, P(v) = w and V(u) < V(v). Thus, G is a directed path

(line) along which the potential strictly increases. S(P(z)) # x represents a start of a line,

P(S(z)) # x represents the end, P(S(x)) = x otherwise, and 0™ is a given starting vertex.
(U1) is a solution representing the end of a path. (UV1), (UV2) and (UV3) are

violations. (UV1) gives a violation of our assumption that V increases strictly along the

path. (UV2) gives a start of a path that is not 0™. (UV3) shows that G has more than

one path. If there are no violations, G is a single path starting at 0™ and ending at (U1).

UNIQUEEOPL is formulated in the non-promise setting, placing it in TFNP. UEOPL contains
three classical problems [5], including finding the fixed point of a contraction map.
A notion of promise-preserving reductions is also defined in [5]. A reduction from problem

X to Y is said to be promise-preserving, if whenever it is promised that X has no violations,

then the reduced instance of Y is free of violations. Such a reduction would imply that
whenever the original problem is free of violations, then the reduced instance always has a
single line that ends at a valid solution.

Contributions. We formalize the search problem for ALPHA-HS in a non-promise setting:

» Definition 1.3 (ALPHA-HS). Given d finite point sets P = P, U---U Py C R? each
interpreted as a different color, and a vector (aq,...,aq) of positive integers such that
a; < |P;| for i € [d], the ALPHA-HS problem is to find one of the following:

(G1). A (aq,...,aq)-cut.

(GV1). A subset of P of size d+ 1 and at least d — 1 colors that lies on a hyperplane.
(GV2). A disjoint pair of sets I, J C [d] such that conv({U;erP;}) Nconv({UjcsP;}) # 0.

(G1) corresponds to a solution representing a valid cut, while (GV1) and (GV2) refer
to violations of weak general position and well-separation, respectively. From Theorem 1.1 we
see that (G1) is guaranteed if no violations are presented, so that ALPHA-HS is a total search
problem. We give the first non-trivial complexity-theoretic upper bound for ALPHA-HS:

» Theorem 1.4. There is a poly(n,d)-time promise-preserving reduction from ALPHA-HS
to UNIQUEEOPL, so that ALpHA-HS € UEOPL C CLS.

It is not surprising to discover that ALPHA-HS € PPAD, since the proof of the continuous
version [2] was based on Brouwer’s Fixed Point Theorem. The observation that it also lies in

PLS is new and noteworthy, putting ALPHA-HS into the reach of local search algorithms.

See Figure 2 for a pictorial view.

2 Alpha-HS is in UEOPL

For space reasons, we cannot provide much technical detail. Instead, we give a broad overview
and some difficulties we encountered. We call a hyperplane colorful if it passes through
exactly d colorful points py,...,pq C P. Otherwise, we call the hyperplane non-colorful. We
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Ham-Sandwich

Figure 2 The hierarchy of complexity classes.

follow the notation of [11] to define the orientation of hyperplanes. If a hyperplane is colorful,
the orientation is determined by the d colorful points. If a hyperplane is non-colorful, we
design a deterministic way to pick a point in the intersection of the convex of the missing
color with the hyperplane to define the orientation (see Figure 3). The a-vector of any
oriented hyperplane H is a d-tuple (aq,...,aq) of integers where «; is the number of points
of P; in the closed halfspace H* for i € [d].

A dist-value

Figure 3 Purple (disk) is the first color and red (square) is the second color. Hs is a hyperplane
that rotates from Hi at the anchor p. z,y are the highest ranked points of red color on each side of
Hi, H> under a given order. The orientations of Hi, H2 are determined by p and z1, 22 respectively.

Our intuition is based on rotating a colorful hyperplane H to another colorful hyperplane
H'’ through a sequence of local changes of the points on the hyperplanes such that the
a-vector of H' increases in some coordinate by one from that of H. The hyperplane rotates
about an anchor, which is a colorful (d — 1)-tuple of P that spans a (d — 2)-flat. Whenever
the non-colorful hyperplane hits a new point of a repeated color, the point in the anchor of
the same color is swapped with it and continues the rotation until a point of the missing
color is hit (see Figure 4). Roughly speaking, the colorful hyperplanes represent the vertices
of the UNIQUEEOPL instance and the rotations determine the edges. We first describe our
approach assuming that both well-separation and sufficient general position hold. We then
describe how to handle the cases when these assumptions are violated.
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Figure 4 An example showing a sequence of rotations from Hy to H4 through Hi, Ha, Hs. Purple
(disk) is the first color and red (square) is the second color. This sequence represents a path
between two vertices in the UNIQUEEOPL graph that is generated in the reduction. The shaded
region represents a rotation and His is its angular bisector. The segment zy is used to define the
orientations of Hiy, Ha, Hs, H1s.

Canonical path. FEach colorful hyperplane H is incident to a colorful set of d points. This
set of points defines d possible anchors, and each anchor can be used to rotate H in a different
fashion. To define a unique sequence of rotations, we pick a specific order as follows: first, we
assume that the colorful hyperplane H whose a-vector is (1,...,1) is given (we show later
how this assumption can be removed). We start at H and pick the anchor that excludes the
first color, then apply a sequence of rotations until we hit another colorful hyperplane with

a-vector (2,1,...,1). Similarly, we move to a colorful hyperplane with a-vector (3,1,...,1)
and so on until we reach (ay,1,...,1). Then, we repeat this for the other colors in order to
reach (aq, as,1,...,1) and so on until we reach the target a-vector. This pattern of a-vectors

helps in defining a potential function that strictly increases along the path. We can encode
this sequence of rotations as a unique path in the UNIQUEEOPL instance, and we call it
canonical path.

Distance parameter and potential function. The a-vector is not sufficient to define the
potential function, since the sequence of rotations between two colorful hyperplanes may
have the same a-vector. For instance, the angular bisectors of the rotations in Hy, ..., Hs in
Figure 4 all have the same a-vector. Hence, we need an additional measurement in order to
determine the direction of rotation that increases the a-vector. Similar to how we define the
orientation for a non-colorful hyperplane H, we deterministically select a directed segment zy
that intersects H. We define a distance parameter called dist-value of H to be the distance
from x to the intersection point (see Figure 3). We define a potential value for each vertex
on the canonical path in UNIQUEEOPL using the sum of weighed components of a-vector
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Figure 5 The examples show two sets of points that are not well-separated. Purple (circle)
represents the first color and red (square) represents the second color. In both examples the rotation
procedure does not increase the a-vector. Both examples show that the orientation of the hyperplane
may be flipped after the rotation, so the resulting a-vector can go wrong.

and dist-value for the tie-breaker.

We do not need to know the vertex with a-vector (1,...,1) in advance. We split the
problem into two sub-problems: in the first we start with a copy of G and any arbitrary
vertex. We reverse the direction determined by the potential and construct a ALPHA-HS
instance for which the vertex with a-vector (1,...,1) is the solution. In the second, we use
this vertex as the input to the main ALPHA-HS instance. If the input is free of violations,
then both sub-problems give valid solutions and together they answer the original question.

Handling violations. We show that if there are no violations, then the reduced instance of
UNIQUEEOPL only gives a (U1) solution, which readily translates to a (G1) solution, so
our reduction is promise-preserving, and this can be done in poly(n,d) time.

If P violates well-separation or weak general position, there may be multiple solutions for
the same a-cut (see Figure 5, left), and no solutions for other cuts. Many nice properties
of rotations are destroyed because the orientation of the rotating hyperplane may flip. For
instance, the a-vector may fail to increment (see Figure 5, right). From the point of view
of the canonical path we create, the path may be split into several pieces, which fails the
assumption of the unique line. The vertex that corresponds to the target a-vector may not
exist.

We design our reduction in such a way that any violations on the canonical path can be
captured from the violations of the UNIQUEEOPL instance. After we obtain a violation
solution from the reduced instance, we can process it to generate a certificate that witnesses
a violation of ALPHA-HS. When weak general position fails, then the hyperplanes may have
additional points of P. These give rise to many different d-tuples (each corresponding to
some vertex in the UNIQUEEOPL graph G) that represent the same hyperplane. We join
these vertices to form a cycle in G. For some other case, we show that when two hyperplanes
have the same a-vector (and dist-value for non-colorful), we can compute a witness for the
violation of well-separation. To summarize, we show how to compute a

(GV1) solution from a (UV1) solution.
(GV1) or (GV2) solution, given a (UV2) or (UV3) solution.
(GV1) or (GV2) solution, that occurs with a (U1) solution with the incorrect a-vector.

We show that converting these solutions always takes poly(n, d) time. See Figure 6 for an
example.
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Figure 6 A subgraph with multiple violations. The vertices that are not on the canonical path

are isolated by self-loops. Some vertex that witnesses a violation splits the canonical path into two.

Since the orientations are not consistent, there may exist multiple paths that contain vertices with

the same a-vector.

3

Conclusion and future work

We gave an upper bound on the complexity of ALPHA-HS. The next question is determining
if the problem is hard for UEOPL. One challenge is that UNIQUEEOPL is formulated as
Boolean circuits, whereas ALPHA-HS is purely geometric. Emulating circuits using purely
geometric arguments is highly non-trivial. It could be worthwhile to investigate if the
techniques used in [6] can prove useful in answering this question.
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