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Abstract12

The classic Ham-Sandwich theorem states that for any d measurable sets in Rd, there is a hyperplane13

that bisects them simultaneously. An extension by Bárány, Hubard, and Jerónimo [DCG2008]14

states that if the sets are convex and well-separated, then for any given α1, . . . , αd ∈ [0, 1], there is a15

unique oriented hyperplane that cuts off a respective fraction α1, . . . , αd from each set. Steiger and16

Zhao [DCG2010] proved a discrete analogue of this theorem, which we call the α-Ham-Sandwich17

theorem. They gave an algorithm to find the hyperplane in time O(n(logn)d−3), where n is the total18

number of input points. The computational complexity of this search problem in high dimensions19

is open, quite unlike the complexity of the Ham-Sandwich problem, which is now known to be20

PPA-complete (Filos-Ratsikas and Goldberg [STOC 2019]).21

Recently, Fearnley, Gordon, Mehta, and Savani [ICALP2019] introduced a new sub-class of22

CLS (Continuous Local Search) called Unique End-of-Potential Line (UEOPL). This class captures23

problems in CLS that have unique solutions. We show that for the α-Ham-Sandwich theorem, the24

search problem of finding the dividing hyperplane lies in UEOPL. This gives the first non-trivial25

containment of the problem in a complexity class and places it in the company of classic search26

problems such as finding the fixed point of a contraction map, the unique sink orientation problem27

and the P -matrix linear complementarity problem.28
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1 Introduction37

The Ham-Sandwich Theorem [41] is a classic result about partitioning sets in high dimensions:38

for any d measurable sets S1, . . . , Sd ⊂ Rd in d dimensions, there is an oriented hyperplane H39

that simultaneously bisects S1, . . . , Sd. More precisely, if H+, H− are the closed half-spaces40

bounded by H, then for i = 1, . . . , d, the measure of Si ∩H+ equals the measure of Si ∩H−.41

The traditional proof goes through the Borsuk-Ulam Theorem [30]. The Ham-Sandwich42
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31:2 Computational Complexity of the α-Ham-Sandwich Problem

Theorem is a cornerstone of geometry and topology, and it has found applications in other43

areas of mathematics.44

Let [n] = {1, . . . , n}. The discrete Ham-Sandwich Theorem [28,30] states that for any d45

finite point sets P1, . . . , Pd ⊂ Rd in d dimensions, there is an oriented hyperplane H such that46

H bisects each Pi, i.e., for i ∈ [d], we have min{|Pi ∩H+|, |Pi ∩H−|} ≥ d|Pi|/2e. We denote47

the associated search problem as Ham-Sandwich. Lo, Matoušek, and Steiger [28] gave an48

nO(d)-time algorithm for Ham-Sandwich. They also provided a linear-time algorithm for49

points in R3, under additional constraints.50

There are many alternative and more general variants of both the continuous and the51

discrete Ham-Sandwich Theorem. For example, Bárány and Matoušek [5] derived a version52

where measures in the plane can be divided into any (possibly different) ratios by fans instead53

of hyperplanes (lines). A discrete variant of this result was given by Bereg [7]. Schnider [37]54

and Karasev [27] studied generalizations in higher dimensions. Recently Barba, Pilz, and55

Schnider [6] showed that four measures in the plane can be bisected with two lines. Higher56

dimensional generalizations of this result were presented in [9,25]. Zivaljević and Vrećica [44]57

and independently, Dol’nikov [19] proved a result called the Center Transversal Theorem58

that interpolates between the Ham-Sandwich Theorem and the Centerpoint Theorem [35].59

There is also a no-dimensional version [14] for the Center Transversal Theorem. Schnider [38]60

presented a generalization based on this result among others.61

Here, we focus on a version that allows for dividing the sets into arbitrary given ratios62

instead of simply bisecting them. The sets S1, . . . , Sd ⊂ Rd are well-separated if every63

selection of them can be strictly separated from the others by a hyperplane. Bárány, Hubard,64

and Jerónimo [4] showed that if S1, . . . , Sd are well-separated and convex, then for any given65

reals α1, . . . , αd ∈ [0, 1], there is a unique hyperplane that divides S1, . . . , Sd in the ratios66

α1, . . . , αd, respectively. Their proof goes through Brouwer’s Fixed Point Theorem. Steiger67

and Zhao [40] formulated a discrete version. In this setup, S1, . . . , Sd are finite point sets.68

Again, we need that the (convex hulls of the) Si are well-separated. Additionally, we require69

that the Si follow a weak version of general position. Let α1, . . . , αd ∈ N be d integers70

with 1 ≤ αi ≤ |Si|, for i ∈ [d]. Then, there is a unique oriented hyperplane H that passes71

through one point from each Si and has |H+ ∩ Si| = αi, for i ∈ [d] [40]. In other words, H72

simultaneously cuts off αi points from Si, for i ∈ [d]. This statement does not necessarily73

hold if the sets are not well-separated, see Figure 1 for an example.74

Steiger and Zhao called their result the Generalized Ham-Sandwich Theorem, yet it is75

not a strict generalization of the classic Ham-Sandwich Theorem. Their result requires that76

the point sets obey well-separation and weak general position, while the classic theorem77

always holds without these assumptions. Therefore, we call this result the α-Ham-Sandwich78

theorem, for a clearer distinction. Set n =
∑

i∈[d] |Si|. Steiger and Zhao gave an algorithm79

that computes the dividing hyperplane in O
(
n(logn)d−3) time, which is exponential in d.80

Later, Bereg [8] improved this algorithm to achieve a running time of n2O(d), which is linear81

in n but still exponential in d. We denote the associated computational search problem of82

finding the dividing hyperplane as Alpha-HS.83

No polynomial algorithms are known for Ham-Sandwich and for Alpha-HS if the84

dimension is not fixed, and the notion of approximation is also not well-explored. Despite85

their superficial similarity, it is not immediately apparent whether the two problems are86

comparable in terms of their complexity. Due to the additional requirements on an input for87

Alpha-HS, an instance of Ham-Sandwich may not be reducible to Alpha-HS in general.88

A dividing hyperplane for Alpha-HS is guaranteed to exist if the sets satisfy the conditions89

of well-separation and (weak) general position. Therefore, the search problem Alpha-HS90
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Figure 1 The red (square) and the blue (round) point sets are not well-separated. Every halfplane
that contains three red points must contain at least five blue points. Thus, there is no halfplane
that contains exactly three red and three blue points.

is total, that is, there is a solution for every valid instance. In general, such problems are91

modelled by the complexity class TFNP (Total Function Nondeterministic Polynomial) of92

NP-search problems that always admit a solution. Two popular subclasses of TFNP, originally93

defined by Papadimitriou [34], are PPA (Polynomial Parity Argument) and its sub-class94

PPAD (Polynomial Parity Arguments on Directed graphs). These classes contain total search95

problems where the existence of a solution is based on a parity argument in an undirected or96

in a directed graph, respectively. Another sub-class of TFNP is PLS (polynomial local search).97

It models total search problems where the solutions can be obtained as minima in a local98

search process, while the number of steps in the local search may be exponential in the input99

size. The class PLS was introduced by Johnson, Papadimitriou, and Yannakakis [26]. A100

noteworthy sub-class of PPAD ∩ PLS is CLS (continuous local search) [18]. It models similar101

local search problems over a continuous domain using a continuous potential function.102

Up to very recently, these complexity classes had mostly been studied in the context of103

algorithmic game theory. These classes have also found relevance in the study of fairness [33]104

and markets [10, 12]. However, there have been increasing efforts towards mapping the105

complexity landscape of existence theorems in high-dimensional discrete geometry. Computing106

an approximate solution for the search problem associated with the Borsuk-Ulam Theorem107

is in PPA. In fact, this problem is complete for this class. The discrete analogue of the108

Borsuk-Ulam Theorem, Tucker’s Lemma [42], is also PPA-complete [1, 34]. Therefore, since109

the traditional proof of the Ham-Sandwich Theorem goes through the Borsuk-Ulam Theorem,110

it follows that Ham-Sandwich lies in PPA. In fact, Filos-Ratsikas and Goldberg [21] recently111

showed that Ham-Sandwich is complete for PPA. The (presumably smaller) class PPAD112

is associated with fixed-point type problems: computing an approximate Brouwer fixed113

point is a prototypical complete problem for PPAD. The discrete analogue of Brouwer’s114

Fixed Point Theorem, Sperner’s Lemma, is also complete for PPAD [34]. The computational115

version of the Hairy Ball Theorem has recently been shown to be PPAD-complete [24]. In a116

celebrated result, the relevance of PPAD for algorithmic game theory was made clear when it117

turned out that computing a Nash-equilibrium in a three player game is PPAD-complete [17].118
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31:4 Computational Complexity of the α-Ham-Sandwich Problem

Subsequently, this was also shown for the two player game [11]. In discrete geometry, finding119

a solution to the Colorful Carathéodory problem [3] was shown to lie in the intersection120

PPAD∩PLS [31,32]. This further implies that finding a Tverberg partition (and computing a121

centerpoint) also lies in the intersection [29,36,43]. The problem of computing the (unique)122

fixed point of a contraction map is known to lie in CLS [18].123

Recently, at ICALP 2019, Fearnley, Gordon, Mehta, and Savani defined a sub-class of124

CLS that represents a family of total search problems with unique solutions [20]. They125

named the class Unique End of Potential Line (UEOPL) and defined it through the canonical126

complete problem UniqueEOPL. This problem is modelled as a directed graph. There are127

polynomially-sized Boolean circuits that compute the successor and predecessor of each node,128

and a potential value that always increases on a directed path. There is supposed to be129

only a single vertex with no predecessor (start of line). Under these conditions, there is a130

unique path in the graph that ends on a vertex (called end of line) with the highest potential131

along the path. This vertex is the solution to UniqueEOPL. Since the uniqueness of the132

solution is guaranteed only under certain assumptions, such a formulation is called a promise133

problem. Since there seems to be no efficient way to verify the assumptions, the authors allow134

two possible outcomes of the search algorithm: either report a correct solution, or provide135

any solution that was found to be in violation of the assumptions. This formulation turns136

UniqueEOPL into a non-promise problem and places it in TFNP, since a correct solution is137

bound to exist when there are no violations, and otherwise a violation can be reported as a138

solution. Fearnley et al. [20] also introduced the concept of a promise-preserving reduction139

between two problems A and B, such that if an instance of A has no violations, then the140

reduced instance of B is also free of violations. This notion is particularly meaningful for141

non-promise problems.142

Contributions. We provide the first non-trivial containment in a complexity class for the143

α-Ham-Sandwich problem by locating it in UEOPL. More precisely, we formulate Alpha-HS144

as a non-promise problem in which we allow for both valid solutions representing the correct145

dividing hyperplane, as well as violations accounting for the lack of well-separation and/or146

(weak) general position of the input point sets. A precise formulation of the problem is147

given in Definition 4 in Section 2. We then show a promise-preserving reduction from148

Alpha-HS to UniqueEOPL. This implies that Alpha-HS lies in UEOPL, and hence in149

CLS ⊆ PPAD ∩ PLS. See Figure 2 for a pictorial description.150

It is not surprising to discover that Alpha-HS lies in PPAD, since the proof of the151

continuous version in [4] was based on Brouwer’s Fixed Point Theorem. The observation152

that it also lies in PLS is new and noteworthy, putting Alpha-HS into the reach of local153

search algorithms. In contrast, given our current understanding of total search problems, it154

is unlikely that the problem Ham-Sandwich would be in PLS.155

Since Alpha-HS lies in PPAD ⊆ PPA, it is computationally easier than Ham-Sandwich,156

which is PPA-complete. This implies the existence of a polynomial-time reduction from157

Alpha-HS to Ham-Sandwich. A reduction in the other direction is unlikely. It thus turns158

out that well-separation brings down the complexity of the problem significantly.159

Often, problems in TFNP come in the guise of a polynomial-size Boolean circuit with160

some property. In contrast, Alpha-HS is a purely geometric problem that has no circuit in161

its problem definition. Apart from the P -Matrix Linear complementarity problem, this is162

one of the few problems in UEOPL and hence in CLS that do not have a description in terms163

of circuits.164

Our local-search formulation is based on the intuition of rotating a hyperplane until we165
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Figure 2 The hierarchy of complexity classes.

reach the desired solution. We essentially start with a hyperplane that is tangent to the166

convex hull of each input set, and we deterministically rotate the hyperplane until it hits a167

new point. This rotation can be continued whenever the hyperplane hits a new point, until we168

reach the correct dividing hyperplane. In other words, we can follow a local-search argument169

to find the solution. We show that this sequence of rotations can be modelled as a canonical170

path in a grid graph, and we give a potential function that guides the rotation and always171

increases along this path. Every violation of well-separation and (weak) general position can172

destroy this path. Furthermore, no efficient methods to verify these two assumptions are173

known. This poses a major challenge in handling the violations. One of our main technical174

contributions is to handle the violation solutions concisely.175

An alternative approach would have been to look at the dual space of points where we get176

an arrangement of hyperplanes. The dividing hyperplane could then be found by looking at177

the correct level sets of the arrangement. However, this approach has the problem that the178

orientations of the hyperplanes in the original space and the dual space are not consistent.179

This complicates the arguments on the level sets, so we found it more convenient to use180

our notion of rotating hyperplanes. We show that we can maintain a consistent orientation181

throughout the rotation, and an inconsistent rotation is detected as a violation of the promise.182

Outline of the paper. We discuss the background about the α-Ham-sandwich Theorem183

and UniqueEOPL in Section 2. In Section 3, we describe our instance of Alpha-HS and184

give an overview of the reduction and violation-handling. We conclude in Section 4. The185

technical details of the reduction and some proofs can be found in the full version of the186

paper in [13].187

2 Preliminaries188

2.1 The α-Ham-Sandwich problem189

For conciseness, we describe the discrete version of α-Ham-Sandwich Theorem [40] here. The190

continuous version [4] follows a similar formulation.191

Let P1, . . . , Pd ⊂ Rd be a collection of d finite point sets. Let n1, . . . , nd denote the192

sizes of P1, . . . , Pd, respectively. For each i ∈ [d] we say that the point set Pi represents a193

unique color and let P := P1 ∪ · · · ∪ Pd denote the union of all the points. A set of points194

ICALP 2020



31:6 Computational Complexity of the α-Ham-Sandwich Problem

{p1, . . . , pm} is said to be colorful if there are no two points pi, pj both from the same color.195

Indeed a colorful point set can have size at most d.196

Weak general position. We say that P has very weak general position [40], if for every197

choice of points x1 ∈ P1, . . . , xd ∈ Pd, the affine hull of the set {x1, . . . , xd} is a (d− 1)-flat198

and does not contain any other point of P . This definition is sufficient for the result of Steiger199

and Zhao, where they simply call it as weak general position. Of course, this definition of200

weak general position has no restriction on sets {x1, . . . , xd} that contain multiple points201

from the same color. To simplify our proofs we need a slightly stronger form of general202

position. We discuss how to deal with very weak general position at the end of Section 3.203

We say that P has weak general position if the above restriction also applies to sets having204

exactly d− 1 colors. That means, each color may contribute at most one point to the set,205

except perhaps one color which is allowed to contribute two points. A certificate for checking206

violations of weak general position is a set of d+ 1 points whose affine hull has dimension at207

most d− 1, with at least d− 1 colors in the set. Testing whether a point set is in general208

position can be shown to be NP-Hard, using the result in [23]. It is easy to see that when209

d = 2, weak general position is equivalent to general position.210

Well-separation. The point set P is said to be well-separated [4, 40], if for every choice of211

points y1 ∈ conv(Pi1), . . . , yk ∈ conv(Pik
), where i1, . . . , ik are distinct indices and 1 ≤ k ≤ d,212

the affine hull of {y1, . . . , yk} is a (k − 1)-flat. An equivalent definition is as follows: P213

is well-separated if and only if for every disjoint pair of index sets I, J ⊂ [d], there is a214

hyperplane that separates the set {∪i∈IPi} from the set {∪j∈JPj} strictly. Formally:215

I Lemma 1. Let y1, . . . , yd be a colorful set of points in the corresponding conv(Pi). The216

affine hull of y1, . . . , yd has dimension d− 2 or less if and only if there is a partition of [d]217

into index sets I, J such that conv ({∪i∈IPi}) ∩ conv ({∪j∈JPj}) 6= ∅.218

Given such a colorful set, the partition of [d] can be computed in poly(n, d) time. Vice-219

versa, given such a partition, the colorful set can be computed in poly(n, d) time.220

A certificate for checking violations of well-separation is a colorful set {x1, . . . , xd} whose221

affine hull has dimension at most d− 2. Another certificate is a partition I, J ⊂ [d] such that222

the convex hulls of the indexed sets are not separable. Due to Lemma 1, both certificates are223

equivalent and either can be converted into the other in polynomial time. To the best of our224

knowledge, the complexity of testing well-separation is unknown.225

Given any set of positive integers {α1, . . . , αd} satisfying 1 ≤ αi ≤ ni, i ∈ [d], an226

(α1, . . . , αd)-cut is an oriented hyperplane H that contains one point from each color and227

satisfies |H+ ∩ Pi| = αi for i ∈ [d], where H+ is the closed positive half-space defined by H.228

I Theorem 2 (α-Ham-Sandwich Theorem [40]). Let P1, . . . , Pd be finite, well-separated point229

sets in Rd. Let α = (α1, . . . , αd) be a vector, where αi ∈ [ni] for i ∈ [d].230

1. If an α-cut exists, then it is unique.231

2. If P has weak general position, then an α-cut exists for each choice of α.232

That means, every colorful d-tuple of P represents an oriented hyperplane that corresponds233

to exactly one α-vector. Steiger and Zhao [40] also presented an algorithm to compute the234

cut in O(n(logn)d−3) time, where n =
∑d

i=1 ni. The algorithm proceeds inductively in235

dimension and employs a prune-and-search technique. Bereg [8] improved the pruning step236

to improve the runtime to n2O(d).237
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2.2 Unique End of Potential Line238

We briefly explain the Unique end of potential line problem that was introduced in [20]. More239

details about the problem and the associated class can be found in the above reference.240

I Definition 3 (from [20]). Let n,m be positive integers. The input consists of241

a pair of Boolean circuits S,P : {0, 1}n → {0, 1}n such that P(0n) = 0n 6= S(0n), and242

a Boolean circuit V : {0, 1}n → {0, 1, . . . , 2m − 1} such that V(0n) = 0,243

each circuit having poly(n,m) size. The UniqueEOPL problem is to report one of the244

following:245

(U1). A point v ∈ {0, 1}n such that P(S(v)) 6= v.246

(UV1). A point v ∈ {0, 1}n such that S(v) 6= v, P(S(v)) = v, and V(S(v))− V(v) ≤ 0.247

(UV2). A point v ∈ {0, 1}n such that S(P(v)) 6= v 6= 0n.248

(UV3). Two points v, u ∈ {0, 1}n such that v 6= u, S(v) 6= v, S(u) 6= u, and either249

V(v) = V(u) or V(v) < V(u) < V(S(v)).250

The problem defines a graph G with up to 2n vertices. Informally, S(·),P(·),V(·) represent251

the successor, predecessor and potential functions that act on each vertex in G. The in-degree252

and out-degree of each vertex is at most one. There is an edge from vertex u to vertex v if253

and only if S(u) = v, P(v) = u and V(u) < V(v). Thus, G is a directed acyclic path graph254

(line) along which the potential strictly increases. The condition S(P(x)) 6= x means that255

x is the start of the line, P(S(x)) 6= x means that x is the end of the line, and P(S(x)) = x256

occurs when x is neither. The vertex 0n is a given start of the line in G.257

(U1) is a solution representing the end of a line. (UV1), (UV2) and (UV3) are258

violations. (UV1) gives a vertex v that is not the end of line, and the potential of S(v) is259

not strictly larger than that of v, which is a violation of our assumption that the potential260

increases strictly along the line. (UV2) gives a vertex that is the start of a line, but is not261

0n. (UV3) shows that G has more than one line, which is witnessed by the fact that v262

and u cannot lie on the same line if they have the same potential, or if the potential of u is263

sandwiched between that of v and the successor of v. Under the promise that there are no264

violations, G is a single line starting at 0n and ending at a vertex that is the unique solution.265

UniqueEOPL is formulated in the non-promise setting, placing it in the class TFNP.266

The complexity class UEOPL represents the class of problems that can be reduced in267

polynomial time to UniqueEOPL. This has been shown to lie in CLS and contains three268

classical problems in [20]: finding the fixed point of a piecewise-linear contraction map,269

solving the P-Matrix Linear complementarity problem, and finding the unique sink of a270

directed graph (with arbitrary edge orientations such that each face has a sink) on the271

1-skeleton of a hypercube. Note that finding the fixed point of a contraction map is in272

CLS [18], but is not known to lie in UEOPL.273

A notion of promise-preserving reductions is also defined in [20]. Let X and Y be two274

problems both having a formulation that allows for valid and violation solutions. A reduction275

from X to Y is said to be promise-preserving, if whenever it is promised that X has no276

violations, then the reduced instance of Y also has no violations. Thus a promise-preserving277

reduction to UniqueEOPL would mean that whenever the original problem is free of278

violations, then the reduced instance always has a single line that ends at a valid solution.279

2.3 Formulating the search problem280

We formalize the search problem for α-Ham-Sandwich in a non-promise setting:281

ICALP 2020



31:8 Computational Complexity of the α-Ham-Sandwich Problem

I Definition 4 (Alpha-HS). Given d finite sets of points P = P1∪ . . .∪Pd in Rd and a vector282

(α1, . . . , αd) of positive integers such that αi ≤ |Pi| for all i ∈ [d], the Alpha-HS problem is283

to find one of the following:284

(G1). An (α1, . . . , αd)-cut.285

(GV1). A subset of P of size d+ 1 and at least d− 1 colors that lies on a hyperplane.286

(GV2). A disjoint pair of sets I, J ⊂ [d] such that conv({∪i∈IPi}) ∩ conv({∪j∈JPj}) 6= ∅.287

Here a solution of type (G1) corresponds to a solution representing a valid cut, while solutions288

of type (GV1) and (GV2) refer to violations of weak general position and well-separation,289

respectively. From Theorem 2 we see that a valid solution is guaranteed if no violations are290

presented, which shows that Alpha-HS is a total search problem.291

3 Alpha-HS is in UEOPL292

In this section we describe our instance of Alpha-HS in more detail and briefly outline a293

reduction to UniqueEOPL.294

Setup. The input consists of d finite point sets P1, . . . , Pd ⊂ Rd each representing a unique295

color, of sizes n1, . . . , nd, respectively, and a vector of integers α = (α1, . . . , αd) such that296

αi ∈ [ni] for each i ∈ [d]. Let k denote the number of coordinates of α that are not equal297

to 1. Without loss of generality, we assume that {α1, . . . , αk} are the non-unit entries in α.298

Let P denote the union P1 ∪ · · · ∪ Pd. For each i ∈ [d] we define an arbitrary order ≺i on299

Pi. Concatenating the orders ≺1,≺2, . . . ,≺d in sequence gives a global order ≺ on P . That300

means, p ≺ q if p ∈ Pi, q ∈ Pj and i < j or p, q ∈ Pj and p ≺j q.301

We follow the notation of [40] to define the orientation of a hyperplane in Rd that has302

a non-empty intersection with the convex hull of each Pi. For any hyperplane H passing303

via {x1 ∈ conv(P1), . . . , xd ∈ conv(Pd)}, the normal is the unit vector n̂ ∈ Rd that satisfies304

〈xi, n̂〉 = t for some fixed t ∈ R and each i ∈ [d], and det
∣∣∣∣x1 x2 . . . xd n̂

1 1 . . . 1 0

∣∣∣∣ > 0, where305

the columns of the matrix are determined using the order ≺. The positive and negative306

half-spaces of H are defined accordingly. In [4, Proposition 2], the authors show that the307

choice of n̂ does not depend on the choice of xi ∈ conv(Pi) for any i, if the colors are308

well-separated. Notice that if the colors are not well-separated, then the dimension of the309

affine hull of {x1, . . . , xd} may be less than d− 1. This makes the value of the determinant310

above to be zero, so the orientation is not well-defined.311

We call a hyperplane colorful if it passes through a colorful set {p1, . . . , pd} ⊂ P . Oth-312

erwise, we call the hyperplane non-colorful. There is a natural orientation for colorful313

hyperplanes using the definition above. In order to define an orientation for non-colorful314

hyperplanes, one needs additional points from the convex hulls of unused colors on the315

hyperplane. Let H ′ denote a hyperplane that passes through points of (d− 1) colors. Let316

Pj denote the missing color in H ′. To define an orientation for H ′, we choose a point from317

conv(Pj) that lies on H ′ as follows. We collect the points of Pj on each side of H ′, and318

choose the highest ranked points under the order ≺j . Let these points on opposite sides319

of H ′ be denoted by x and y. Let z denote the intersection of the line segment xy with320

H ′. By convexity, z is a point in conv(Pj), so we choose z to define the orientation of321

H ′. The intersection point z does not change if x and y are interchanged, giving a valid322

definition of orientation for H ′. We can also extend this construction to define orientations323

for hyperplanes containing points from fewer than d − 1 colors, but for our purpose this324

definition suffices. The α-vector of any oriented hyperplane H is a d-tuple (α1, . . . , αd) of325

integers where αi is the number of points of Pi in the closed halfspace H+ for i ∈ [d].326
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3.1 An overview of the reduction327

We give a short overview of the ideas used in the reduction from Alpha-HS to UniqueEOPL.328

The details are technical and we encourage the interested reader to go through the details of329

our reduction in [13].330

Our intuition is based on rotating a colorful hyperplane H to another colorful hyperplane331

H ′ through a sequence of local changes of the points on the hyperplanes such that the332

α-vector of H ′ increases in some coordinate by one from that of H. We next define the333

rotation operation in a little more detail. An anchor is a colorful (d− 1)-tuple of P which334

spans a (d − 2)-flat. The following procedure takes as input an anchor R and some point335

p ∈ P \R and determines the next hyperplane obtained by a rotation. The output is (R′, p′),336

where R′ is an anchor and p′ ∈ P \R′ is some point.337

Procedure (R′, p′) = NextRotate(R, p)338

1. Let H denote the hyperplane defined by R ∪ {p} and t1 be the missing color in R.339

2. If the orientation of H is not well-defined, report a violation of weak general position and340

well-separation.341

3. Let P+
t1

be the subset of Pt1 that lies in the closed halfspace H+ and P−t1
be the subset of342

Pt1 that lies in the open halfspace H−. Let x ∈ P+
t1

be the highest ranked point according343

to the order ≺t1 and y ∈ P−t1
be the highest ranked point according to ≺t1 .344

4. If p has color t1 and |P+
t1
| = nt1 , report out of range.345

5. We rotate H around the anchor R in a direction such that the hyperplane is moving away346

from x along the segment xy until it hits some point q ∈ P .347

6. If the hyperplane hits multiple points at the same time, report a violation of weak general348

position.349

7. If q is not color t1, set R′ := R ∪ {q} \ {r} and p′ = r, where r is a point in R with the350

same color as q. Otherwise, set R′ = R and p′ = q.351

8. Return (R′, p′).352

Figure 3 shows an application of this procedure, rotating H0 to H4 through H1, H2, H3.353

This rotation function can be interpreted as a function that assigns each hyperplane to354

the next hyperplane. The set of colorful hyperplanes can be interpreted as vertices in a graph355

with the rotation function determining the connectivity of the graph.356

Canonical path. Each colorful hyperplane H is incident to a colorful set of d points. This357

set of points defines d possible anchors, and each anchor can be used to rotate H in a different358

fashion. To define a unique sequence of rotations, we pick a specific order as follows: first, we359

assume that the colorful hyperplane H whose α-vector is (1, . . . , 1) is given (we show later360

how this assumption can be removed). We start at H and pick the anchor that excludes the361

first color, then apply a sequence of rotations until we hit another colorful hyperplane with362

α-vector (2, 1, . . . , 1). Similarly, we move to a colorful hyperplane with α-vector (3, 1, . . . , 1)363

and so on until we reach (α1, 1, . . . , 1). Then, we repeat this for the other colors in order to364

reach (α1, α2, 1, . . . , 1) and so on until we reach the target α-vector. This pattern of α-vectors365

helps in defining a potential function that strictly increases along the path. We can encode366

this sequence of rotations as a unique path in the UniqueEOPL instance, and we call it367

canonical path.368

A natural way to define the UniqueEOPL graph would be to consider hyperplanes as the369

vertices in the graph. However, this leads to complications. Figure 3 shows a rotation from370

H0 to H4, with α-vectors (3, 2) and (3, 3) respectively. During the rotation, we encounter371

a hyperplane H2 for which its α-vector is (4, 2), which differs from our desired sequence372
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H1, α = (3, 2)

H2, α = (4, 2)

H3, α = (3, 2)

H0, α = (3, 2)

H4, α = (3, 3)

+

+

+

+

+

z1

z2

z3

x

y

H12, α = (3, 2)

+

Figure 3 An example showing a sequence of rotations from H0 to H4 through H1, H2, H3.
Red (square) is the first color and purple (disk) is the second color. This sequence represents a
path between two vertices in the UniqueEOPL graph that is generated in the reduction. The
double-wedge is shaded and its angular bisector H12 has the desired α-vector.

of (3, 2), . . . , (3, 2), (3, 3). This makes it difficult to define a potential function in the graph373

that strictly increases along the path vH0 , . . . , vH4 where vHi is the vertex representing374

hyperplane Hi. One way to alleviate this problem is to not use Hi as a vertex directly, but375

the double-wedge that is traced out by the rotation from Hi to Hi+1. If the α-vector is376

now measured using the hyperplane that bisects the double-wedge, then we get the desired377

sequence of (3, 2), . . . , (3, 2), (3, 3). See Figure 3 for an example.378

With additional overhead, the rotation function can be extended to double-wedges. This379

in turn also leads to a neighborhood graph where the vertices are the double-wedges and380

the rotations can be used to define the edges. The graph is connected and has a grid-like381

structure that may be of independent interest. Due to lack of space, the description of382

double-wedges and the associated graph can be found in [13].383

Distance parameter and potential function. The α-vector is not sufficient to define the384

potential function, since the sequence of rotations between two colorful hyperplanes may385

have the same α-vector. For instance, the bisectors of the rotations in H0, . . . ,H3 in Figure 3386

all have the same α-vector. Hence, we need an additional measurement in order to determine387

the direction of rotation that increases the α-vector.388

Similar to how we define the orientation for a non-colorful hyperplane, let H denote a389

hyperplane that passes through points of (d− 1) colors. Let Pj denote the missing color in390

H. Let x, y ∈ Pj be the highest ranked points under ≺j in H+ and H− respectively. Let z391

denote the intersection of xy and H. We define a distance parameter called dist-value of H392

to be the distance ‖x− z‖. In Figure 3, we can see that rotating from H0 to H4 sweeps the393

segment xy in one direction, with the dist-value of the hyperplanes increasing strictly. This394



M.-K. Chiu, A. Choudhary and W. Mulzer 31:11

is sufficient to break ties and hence determine the correct direction of rotation. The precise395

statement is given in Lemma 6. We can extend this definition to the domain of double-wedges.396

We define a potential value for each vertex on the canonical path in UniqueEOPL using397

the sum of weighed components of α-vector and dist-value for the tie-breaker.398

Correctness. We show that if there are no violations, we can always apply Procedure399

NextRotate to increment the α-vector until we find the desired solution, which implies that400

the canonical path exists. If the input satisfies weak general position, we can see that the401

rotating hyperplane always hits a unique point in Step 5, which may be swapped to form a402

new anchor in Step 7.403

The well-separation condition guarantees that the potential function always increases404

along the rotation. Let H1, H2 denote a pair of hyperplanes that are the input and output405

of Procedure NextRotate respectively. Let H denote any intermediate hyperplane during406

the rotation from H1 to H2 through the common anchor. Let Pj be the color missing from407

the anchor and x be the highest ranked point under ≺j in H+
1 . We say that the orientation408

of H2 (resp. H) is consistent with that of H1 if x ∈ H+
2 (resp. x ∈ H+). Lemma 5 shows409

that the orientations are always consistent when H1 and H2 are non-colorful hyperplanes410

even without the assumption of well-separation.411

I Lemma 5 (consistency of orientation). Assume that weak general position holds. Let412

H1, H2 be the input and output of Procedure NextRotate respectively. Let H denote any413

intermediate hyperplane within the rotation. The orientations of H1 (resp. H2) and H are414

consistent when H1 (resp. H2) is a non-colorful hyperplane.415

Proof. Since H1 is a non-colorful hyperplane, let Pj denote the color missing from H1. H1416

and H give the same partition of Pj into two sets because the continuous rotation from H1417

to H does not hit any point in Pj . Let x and y be the highest ranked points under ≺j in418

each set. Since we have weak general position, the segment xy cannot pass through the419

anchor of the rotation so that the orientations of H1 and H are well-defined by the (d− 1)420

colored points in the anchor and the intersections of the hyperplanes with the segment xy.421

Thus, the determinant defining the normal of the rotating hyperplane from H1 to H for the422

orientation is always non-zero. Since the intersection of the rotating hyperplane from H1 to423

H and the segment xy moves continuously along xy, by a continuity argument, the normal424

of the hyperplane does not flip during the rotation. Without loss of generality, assume that425

x ∈ H+
1 . This implies that x is always in the positive half-space of H and hence H has a426

consistent orientation as H1. The same proof holds for H2. J427

Next, we show that the dist-value is strictly increasing for all the intermediate hyperplanes428

in the sequence of rotations from one colorful hyperplane to another colorful hyperplane.429

I Lemma 6. Assume that weak general position holds. Let H0 be a colorful hyperplane430

and Hk be the first colorful hyperplane obtained by a sequence of rotations by Procedure431

NextRotate. We denote by H1, . . . ,Hk−1 the non-colorful hyperplanes obtained from the432

above sequence of rotations. The dist-values of H1, . . . ,Hk−1 are strictly increasing.433

Proof. Let Pj denote the color missing from H1. Then, H2, . . . ,Hk−1 all miss the color Pj ,434

otherwise Hk is not the first colorful hyperplane obtained by the rotations. Therefore, each Hi435

gives the same partition of Pj into two sets for i = 1, . . . , k−1 because the continuous rotations436

from H1 to Hk−1 does not hit any point in Pj . Let x and y be the highest ranked points437

under ≺j in each set. Without loss of generality, assume that x ∈ H+
1 . Since H1, . . . ,Hk−1438

are non-colorful hyperplanes, by Lemma 5, the consistent of the orientation can carry from439
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H1 to H2 and so on. Then we have x ∈ H+
1 , . . . , x ∈ H+

k−1 and y ∈ H−1 , . . . , y ∈ H−k−1.440

Let z1 = xy ∩H1, . . . , zk−1 = xy ∩Hk−1. According to Step 5 of Procedure NextRotate,441

each rotation is performed by moving away from x along the segment xy. Hence we have442

‖x− z1‖ < ‖x− z2‖ < · · · < ‖x− zk−1‖. J443

The last step for proving that the potential function always increases along the canonical444

path is to show that the α-vector increases in some coordinate from one colorful hyperplane to445

another colorful hyperplane through Procedure NextRotate. This requires the assumption446

of well-separation. Lemma 7 shows that if the orientations of H1, H2 and H are inconsistent,447

then well-separation is violated. By the contrapositive, if well-separation is satisfied, then448

all hyperplanes in the rotation always give consistent orientations. Then, it implies that449

rotating from a colorful hyperplane H0 to another colorful hyperplane Hk through a sequence450

of non-colorful hyperplanes that miss color Pj , we have H+
0 ∩Pj ⊂ H+

k ∩Pj and Hk contains451

one additional point in Pj that is hit by the last rotation. Therefore, αj is increased by 1452

and other αis keep the same value because of the way we swap the point of repeated color453

with the one in the anchor and the direction of rotation.454

I Lemma 7. Assume that weak general position holds. Let H1, H2 be the input and output455

of Procedure NextRotate respectively. Let R denote the anchor of the rotation from H1456

to H2, and Pj denote the color missing from R. Let H denote any intermediate hyperplane457

within the rotation. If the orientations of H1 (resp. H2) and H are inconsistent, then458

H1 (resp. H2) is a colorful hyperplane and we can find a colorful set R ∪ {x′} lying in a459

(d− 2)-flat where x′ ∈ conv(Pj), in O(d3) arithmetic operations. The set R ∪ {x′} witnesses460

the violation of well-separation.461

Proof. Since the orientations of H1 and H are inconsistent, H1 must be a colorful hyperplane462

by Lemma 5. Therefore, the point in H1 that is not in the anchor is in Pj , denoted by p.463

Let x and y be the points defined in Lemma 5 such that x, y ∈ Pj , and x and y are on464

different sides of H1 and H. The (d − 2)-flat containing R separates H1 and H into two465

(d− 1)-dimensional half-subspaces each. Let H+
1,R and H+

R be the half-subspaces intersecting466

with xy on H1 and H respectively, and let us denote the intersection points by zp and z,467

respectively. The opposite half-subspaces are denoted by H−1,R and H−R , respectively. By468

definition of the orientation for non-colorful hyperplanes, the orientation of H is defined by469

R∪{z}. Although the orientation of H1 is defined by R∪{p}, if we consider the determinant470

defining the orientation using R ∪ {zp}, it gives an orientation consistent with that of H.471

Therefore, it must be that p ∈ H−1,R. Then, we can see that the line segment pzp intersects472

the (d− 2)-flat of R. We can compute zp and also the intersection point x′ of pzp and the473

(d− 2)-flat of R by solving systems of linear equations with d equations and d variables in474

O(d3) arithmetic operations. Since x′ ∈ conv(Pj), R ∪ {x′} is a colorful set contained in the475

(d− 2)-flat of R. J476

In order to guarantee that there is no other path in UniqueEOPL apart from the477

canonical path, we introduce self-loops for vertices that are not on the canonical path. The478

detailed proof in [13] shows that if there are no violations, then the reduced instance of479

UniqueEOPL only gives a (U1) solution, which readily translates to a (G1) solution, so480

our reduction is promise-preserving, and this can be done in polynomial time.481

Since we do not know the hyperplane with α-vector (1, . . . , 1) in advance, we split the482

problem into two sub-problems: in the first we start with any colorful hyperplane. We reverse483

the direction of the canonical path determined by the potential and construct an Alpha-HS484

instance for which the vertex with α-vector (1, . . . , 1) is the solution. In the second, we use485
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this vertex as the input to the main Alpha-HS instance. If the input is free of violations,486

then both sub-problems give valid solutions and together they answer the original question.487

To merge the two sub-problems into one UniqueEOPL instance, we can make two layer488

copies of the vertices with an additional flag variable to indicate which copy is in the first489

layer. In the first layer, we build the canonical path from any colorful vertex to the colorful490

vertex with α-vector (1, . . . , 1), which connects to the colorful vertex with α-vector (1, . . . , 1)491

in the second layer. Similarly, in the second layer, we build the canonical path from the492

colorful vertex with α-vector (1, . . . , 1) to the vertex with the target α-vector. Then, we can493

also easily modify the potential function accordingly.494

An alternative approach is to define the canonical path directly from any colorful vertex495

to the target vertex. In this case, each coordinate of the current α-vector may increase or496

decrease depending on the signed distance to the target α-vector along the canonical path.497

However, the potential function can still be defined in a way that it is strictly increasing498

along the path.499

Handling violations. The reduction maps violations of Alpha-HS to violations of the500

UniqueEOPL instance, and certificates for the violations can be recovered from additional501

processing. When a violation of weak general position is witnessed on a vertex that lies on502

the canonical path, a hyperplane incident to d colors may contain additional points. This in503

turn implies that some α-cut is missing, so that the correct solution for the target may not504

exist. For cuts that exist in spite of the violation, reporting either the correct solution or the505

violation are sufficient for Alpha-HS.506

In addition, the (highest-ranked) points x, y from the missing color that we choose to507

define the orientation of a non-colorful hyperplane may form a segment xy that passes through508

the (d− 2)-flat spanned by the anchor. In that case the orientation of the hyperplane is not509

well-defined. In the reduction, these problematic vertices are removed from the canonical510

path, thereby creating some additional starting points and end points in the reduced instance.511

These violations can be captured by (U1) with a wrong α-vector or (UV2). Furthermore,512

the hyperplanes that contain the degenerate point sets could be represented by different513

choices of anchors and an additional point on the plane. Each such pair represents a vertex514

in the reduced instance. We join these vertices in the form of a cycle in the UniqueEOPL515

instance with all vertices having the same potential value, so that the violations can also be516

captured by (UV1) and (UV3).517

When a violation of well-separation is witnessed on a vertex on the canonical path, the518

orientations of the two hyperplanes paired by Procedure NextRotate may be inconsistent,519

which may not guarantee that the α-vector is incremented in one component by one (See520

Figure 4). Hence, the canonical path is split into two paths that can be captured by (UV2).521

Furthermore, a violation of well-separation also creates multiple colorful hyperplanes with the522

same α-vector (See Figure 4, left). Two vertices in the UniqueEOPL graph with the same523

potential value, which could correspond to some colorful or non-colorful hyperplanes, can be524

reported by (UV3). We show that this gives a certificate of violation of well-separation in525

the following lemmas, where m0 is the number of bits used to represent each coordinate of526

points of P .527

I Lemma 8. Given two colorful hyperplanes Hp, Hq with the same α-vector, we can find a528

colorful set {x1 ∈ conv(P1), . . . , xd ∈ conv(Pd)} that lies on a (d− 2)-flat in poly(n, d,m0)529

time.530

I Lemma 9. Given two non-colorful hyperplanes that both contain d− 1 points and have531
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H1, α = (3, 2)
+

+

H2, α = (3, 2)

H1, α = (4, 3)

+

+

H2, α = (2, 2)

x

y

Figure 4 The examples show two sets of points that are not well-separated. Purple (circle)
represents the first color and red (square) represents the second color. In both examples the rotation
procedure does not increase the α-vector. Both examples show that the orientation of the hyperplane
may be flipped after the rotation, so the resulting α-vector can go wrong.

the same missing color, α-vector and dist-value, we can find a colorful set of points {x1 ∈532

conv(P1), . . . , xd ∈ conv(Pd)} that lies on a (d− 2)-flat in poly(n, d,m0) time.533

For the second output (V(v) < V(u) < V(S(v))) of (UV3), there are two cases to consider.534

In the first case, if both v and S(v) correspond to the same α-vector, then u also has the same535

α-vector and its dist-value is between that of v and S(v). Since rotating the hyperplane from536

v to S(v) does not pass through u, we can find a different hyperplane that is interpolated537

by v and S(v) and has the same dist-value as u. Hence, we apply Lemma 9 again to find538

a witness of the violation. For the second case that the α-vector of S(v) increases in one539

coordinate by one from that of v, since the role of dist-value is dominated by the role of540

α-vector in the potential function, the dist-value of u can be arbitrarily large. Therefore, we541

may not be able to apply the interpolation technique from the first again. We argue that we542

can transform P to a point set P ′ satisfying conv(P ′i ) ⊆ conv(Pi) for all i ∈ [d], such that543

the hyperplanes of v and u become colorful. Then, we apply Lemma 8 to show that P ′ is544

not well-separated, which also implies that P is not well-separated. The precise statement545

and proof are given in [13]. We also show546

how to compute a (GV1) solution from a (UV1) solution,547

how to compute a (GV1) or (GV2) solution, given a (UV2) or (UV3) solution, and548

a (GV1) or (GV2) solution that can occur with a (U1) solution that has the incorrect549

α-vector.550

We show that converting these solutions always takes poly(n, d) time. The violations may be551

detected in either the first sub-problem or the second sub-problem. Our constructions thus552

culminate in the promised result:553

I Theorem 10. Alpha-HS ∈ UEOPL ⊆ CLS.554

Handling very weak general position. We have described our construction for the case555

when weak general position holds. If we only assume that very weak general position holds,556

then there may exist a hyperplane that passes through more than d points of at most d− 1557

colors. Therefore, in Step 5 of Procedure NextRotate the rotating hyperplane may hit558

more than one point so that it is not clear how to define the new anchor in Step 7. From the559

point of view of the reduction, there are many non-colorful vertices that represent the same560

hyperplane. We need a new approach to define a unique path to traverse these vertices with561

respect to this hyperplane. In other words, we charge the computational time of finding the562

new anchor to traversing these vertices on the path instead of considering it as one operation.563
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α = (6, 1)

H0, b = (6, 1)
+

H,α = (10, 1)

x

y

R
span(R)+, α = (2)

R′

span(R′)+, α = (5)

H1, α = (6, 1)

q

Figure 5 An example showing the relationship between the α-vector in a subproblem in R and
the α-vector in the original problem in R2. Red (square) is the first color and purple (disk) is the
second color. The orientation of span(R) in H is defined such that it is consistent with H0. b = (6, 1)
is the α-vector of H0. k1 = 4 is the number of red points in H+ \H. The α-vector of the starting
vertex (i.e., R) with respect to H is (6− 4 = 2). The α-vector of the end vertex is (6 + 1− 2 = 5).
We can see that q ∈ span(R′)+ and q moves to the negative side of H1 when rotating from H to H1.

If we consider the space of all the points lying on the hyperplane, we have d− 1 sets of564

points each representing a unique color in an affine subspace of d − 1 dimensions. Thus,565

we can consider it as a new instance of Alpha-HS in one dimension lower. Let H be the566

rotating hyperplane that hits more than one point and contains d− 1 colors. Without loss of567

generality, we assume that d is the missing color. We denote by Q = Q1∪Q2∪ . . .∪Qd−1 the568

d− 1 sets of points in H such that Qi ⊆ Pi and denote by Q̂i the set of points represented in569

the new coordinate system in Rd−1 for Qi in H. First, we claim that if P is well-separated570

and in very weak general position, then Q̂ is also well-separated and in very weak general571

position. Since Q ⊂ P , it is clear that well-separation follows. Suppose that Q̂ violates very572

weak general position, then there exists a (d− 2)-flat that contains more than d− 1 points of573

d− 1 colors in Q. In particular, any (d− 1)-flat spanned by the (d− 2)-flat and any point in574

Pd contains more than d points of d colors, which contradicts the fact that P is in very weak575

general position.576

Suppose that P is well-separated and in very weak general position. Now we define577

what is the unique path with respect to Q̂. Let b = (b1, . . . , bd) be the α-vector of the578

rotating hyperplane H0 just before rotating to H at the anchor R. In the new instance of579

Alpha-HS, we would pick the orientation of (d−2)-flats in Rd−1 such that every point p ∈ Q580

lies in H+
0 if and only if the corresponding point p̂ ∈ Q̂ lies in span(R̂)+. Let k1, . . . kd−1581

denote the number of points of P1, . . . , Pd−1 in H+, but not in Qi. Then, we can see that582

the number of points in Q̂i lying in span(R̂)+ is equal to bi − ki. Thus, the α-vector of583

span(R̂)+ is (b1 − k1, . . . , bd−1 − kd−1), which is the α-vector of the starting vertex of the584

path. On the other hand, the α-vector of the end vertex is (|Q1|+ 1− b1 + k1, . . . , |Qd−1|+585

1 − bd−1 + kd−1). It is because the points in H+
0 \ H0 become in the opposite side after586

the rotation passes through H. Therefore, if we rotate at the new anchor with α-vector587

(|Q1|+ 1− b1 + k1, . . . , |Qd−1|+ 1− bd−1 + kd−1) in Q̂, then the α-vector of the new rotating588
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hyperplane is still (b1, . . . , bd). The next question is that if the vertex only stores any d points589

of H, we cannot recover b and H0 so that the orientation cannot be defined consistently and590

the target α-vector for Q̂ is not known. To handle this problem, we need to redefine the591

double-wedge to be (R1, p1, R2, p2) instead of (R, p, q) in such a way that R1 = R2 if the592

double-wedge contains exactly d+ 1 points, otherwise R1 ⊂ span(R2 ∪{p2}). For instance, if593

(R̂1, q̂1)− > . . .− > (R̂m, q̂m) is the unique path in Q̂, where R̂i is an anchor of size d− 2 so594

that R̂i and q̂i represent a (d− 2)-flat in Rd−1, then the corresponding path in the original595

problem is (R, p,R1 ∪ {q1}, p1)− > (R, p,R2 ∪ {q2}, p2)− > . . .− > (R, p,Rm ∪ {qm}, pm),596

where pi is some point in H that is picked under ≺ in a way that the tuple is uniquely defined597

in the path. Hence, b can be computed from the bisector of (R, p) and (Ri ∪ {qi}, pi), and598

the orientation of (d− 2)-flats can also be defined by the bisector. There may exist some599

other double-wedge (∗, ∗, Ri ∪ {qi}, pi) that is incident to H, but it will not have the same b.600

In conclusion, the unique path in the reduction can be defined recursively as above601

in an Alpha-HS instance of one dimension lower. As a result, the representation of the602

double-wedges gets more complicated and the size is increased by a factor of O(d). The603

potential function becomes a weighted sum of the potential function in each recursive level,604

but the number of bits is still in polynomial size. For handling violations, there are not605

many changes. Instead of reporting the violation of weak general position, we now report the606

violation of very weak general position when the rotating hyperplane in Ri contains more607

than i points of i colors. If any recursive subproblem violates very weak general position, it608

also implies that the original input P violates very weak general position.609

4 Conclusion and future work610

We gave a complexity-theoretic upper bound for Alpha-HS. No hardness results are known611

for this search problem, and the next question is determining if this is hard for UEOPL. One612

challenge is that UniqueEOPL is formulated as Boolean circuits, whereas Alpha-HS is613

purely geometric. Emulating circuits using purely geometric arguments is highly non-trivial.614

Filos-Ratsikas and Goldberg showed a reduction of this form in [21]. They reduced the615

PPA-complete 2D-Tucker circuit to Ham-Sandwich, going via the Consensus-Halving [39],616

and the Necklace-splitting problems [2]. A simplified argument was recently presented in [22].617

It could be a worthwhile exercise to investigate if their techniques can provide insights for618

hardness of Alpha-HS.619

Some related problems are determining the complexity of answering whether a point set620

is well-separated, whether it is in weak general position, or whether a given α-cut exists621

for the point set. A given α-cut may exist even when both assumptions are violated. On622

a related note, deciding whether the Linear Complementarity problem has a solution is623

NP-complete [15]. The solution is unique if the problem involves a P -matrix, but checking624

this condition is coNP-complete [16]. However, using witnesses to verify whether a matrix is625

P-matrix or not, a total search version is shown to be in UEOPL. Our result for Alpha-HS626

would go in a similar vein, if the complexities of the above problems were better determined.627

Another line to work could be to determine the computational complexities of other628

extensions of the Ham-Sandwich theorem. For other geometric problems that are total and629

admit unique solutions, it could be worthwhile to explore their place in the class UEOPL.630

Faster algorithms for computing the α-cut can also be explored.631
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