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Abstract. Let P be an x-monotone orthogonal polygon with n vertices.
We call P a simple histogram if its upper boundary is a single edge; and a
double histogram if it has a horizontal chord from the left boundary to the
right boundary. Two points p and q in P are co-visible if and only if the
(axis-parallel) rectangle spanned by p and q completely lies in P . In the
r-visibility graph G(P ) of P , we connect two vertices of P with an edge if
and only if they are co-visible. We consider routing with preprocessing in
G(P ). We may preprocess P to obtain a label and a routing table for each
vertex of P . Then, we must be able to route a packet between any two
vertices s and t of P , where each step may use only the label of the target
node t, the routing table and the neighborhood of the current node, and
the packet header. The routing problem has been studied extensively for
general graphs, where truly compact and efficient routing schemes with
polylogartihmic routing tables have turned out to be impossible. Thus,
special graphs classes are of interest.
We present a routing scheme for double histograms that sends any data
packet along a path of length at most twice the (unweighted) shortest
path distance between the endpoints. The labels, routing tables, and
headers need O(logn) bits. For the simple histograms, we obtain a rout-
ing scheme with optimal routing paths, O(logn)-bit labels, one-bit rout-
ing tables, and no headers.

1 Introduction

The routing problem is a classic question in distributed graph algorithms [6,10].
We would like to preprocess a graph G for the following task: given a data packet
located at a source vertex s, route the packet to a target vertex t, identified by
its label. We strive for three main properties: locality (to find the next step of
the packet, the scheme should use only information at the current vertex or in
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the packet header), efficiency (the packet should choose a path that is similar to
a shortest path between s and t), and compactness (the space for labels, routing
tables, and packet headers should be as small as possible). The ratio between
the length of the routing path and a shortest path is called stretch factor.

Obviously, we could store at each vertex v of G the complete shortest path
tree of v. This routing scheme is local and perfectly efficient: we can send the
packet along a shortest path. However, the scheme lacks compactness. Thus, the
general challenge is to balance the (potentially) conflicting goals of compactness
and efficiency, while maintaining locality.

There are many routing schemes for general graphs (e.g., [11] and the ref-
erences therein). For example, the scheme by Roditty and Tov [11] stores a
poly-logarithmic number of bits in the packet header, and it routes a packet
from s to t on a path of length O

(
k∆ + m1/k

)
, where k > 2 is any fixed inte-

ger, ∆ is the shortest path distance between s and t, and m is the number of
edges. The routing tables use mnO(1/

√
logn) total space, where n is the number

of vertices. In the late 1980’s, Peleg and Upfal [10] proved that in general graphs,
any routing scheme with constant stretch factor must store Ω(nc) bits per ver-
tex, for some constant c > 0. This provides ample motivation to focus on special
graph classes to obtain better routing schemes. For instance, trees admit routing
schemes that always follow the shortest path and that store O(log n) bits at each
node [5, 13]. Moreover, in planar graphs, for any fixed ε > 0, there is a routing
scheme with a poly-logarithmic number of bits in each routing table that always
finds a path that is within a factor of 1 + ε from optimal [12]. Similar results are
also available for unit disk graphs [9, 14].

Another approach is geometric routing : the graph lies in a geometric space,
and the routing algorithm must find the next vertex for the packet based on
the coordinates of the source and the target vertex, the current vertex, and its
neighborhood; e.g., [3] and the references therein. In contrast to compact routing
schemes, there are no routing tables, and the routing is purely based on the local
geometry (and possibly the packet header). For example, the routing algorithm
for triangulations by Bose and Morin [4] uses the line segment between the source
and the target for its routing decisions. In a recent result, Bose et al. [3] show
that if vertices do not store any routing tables, no geometric routing scheme can
achieve stretch factor o(

√
n). This holds irrespective of the header size.

Here, we combine the approaches from routing in abstract graphs and from
geometric routing. For this, we consider a particularly interesting and practically
relevant class of geometric graphs, namely visibility graphs of polygons. Banyas-
sady et al. [1] presented a routing scheme for polygonal domains with n vertices
and h holes that uses O(log n) bits for the label, O((ε−1 + h) log n) bits for the
routing tables, and achieves a stretch of 1+ε, for any fixed ε > 0. However, their
approach is efficient only if the edges of the visibility graph are weighted with
their Euclidean lengths. Banyassady et al. ask whether there is an efficient rout-
ing scheme for visibility graphs with unit weights (the hop-distance). This setting
seems to be more relevant in practice, and similar results have already been ob-
tained in unit disk graphs for routing schemes [9, 14] and for spanners [2, 8].
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To address this problem, we use routing tables at the vertices to represent
information about the structure of the graph (as in abstract routing), but we
also assume that the labels of all adjacent vertices are directly visible at a node
(as in geometric routing). This aligns well with the practical situation, as a
node must be aware of its physical neighbors and their labels for meaningful
communication to be possible. The size of the neighbor list does not count for
the compactness, as it depends on the graph and cannot be influenced during
preprocessing. We focus on r-visibility graphs of orthogonal simple and double
histograms. At first, this may seem a strong restriction. However, even this case
turns out to be quite challenging and reveals the whole richness of the compact
routing problem in unweighted, geometrically defined graphs: on the one hand,
the problem is still highly nontrivial, while on the other hand, much better results
than in general graphs are possible. Histograms constitute a natural starting
point, as they are often crucial building blocks in visibility problems. Moreover,
r-visibility is a popular concept in orthogonal polygons that enjoys many useful
structural properties; see, e.g., [7] and the references therein for more background
on histograms and r-visibility.

A simple histogram is a monotone orthogonal polygon whose upper boundary
consists of a single edge; a double histogram is a monotone orthogonal polygon
that has a horizontal chord that touches the boundary of P only at the left and
the right boundary. Let P be a (simple or double) histogram with n vertices.
Two vertices v and w in P are connected in the visibility graph G(P ) by an
unweighted edge if and only if the axis-parallel rectangle spanned by v and w
is contained in the (closed) region P . We say that v and w are co-visible. We
present the first efficient and compact routing schemes for polygonal domains
under the hop-distance. In particular, in simple histograms, we can route along
a shortest path with no headers, O(log n)-bit labels, and O(1)-bit routing tables.
In double histograms, we achieve stretch factor 2 and need labels, routing tables,
and headers of O(log n) bits. The precise results are in Theorems 3.4 and 4.12.
For space reasons, all proofs are moved to the appendix.

2 Preliminaries

Let G = (V,E) be a simple, undirected, unweighted, connected graph. The
(closed) neighborhood N(v) of a vertex v ∈ V is the set containing v and its
adjacent nodes. Let v, w ∈ V . A sequence π : 〈v = p0, p1, . . . , pk = w〉 of vertices
with pi−1pi ∈ E, for i = 1, . . . , k, is called a path of length k between v and w.
The length of π is denoted |π|. We define d(v, w) = minπ |π| as the length of a
shortest path between v and w, where π goes over all paths between v and w.
Next, we define a routing scheme. The algorithm that decides the next step of
the packet is modeled by a routing function. During preprocessing, every node
is assigned a (binary) label that identifies it in the network. The routing func-
tion uses local information at the current node, the label of the target node,
and the header stored in the packet. The local information of a node v has
two parts: (i) the link table, a list of the labels of N(v), and (ii) the routing
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table, a bitstring chosen during preprocessing to represent relevant topological
properties of G. Formally, a routing scheme of a graph G consists of (a) a label
lab(v) ∈ {0, 1}+ for each node v ∈ V ; (b) a routing table ρ(v) ∈ {0, 1}∗ for each

node v ∈ V ; and (c) a routing function f :
(
{0, 1}∗

)4 → (
{0, 1}∗

)2
. The routing

function takes the link table and routing table of a current node s ∈ V , the
label lab(t) of a target t, and a header h ∈ {0, 1}∗. From these, it determines
the label lab(v) of a node adjacent to s and a new header h′. The local infor-
mation in the packet is updated to h′, and it is sent to v. The routing scheme is
correct if: for any two sites s, t ∈ V , consider the sequence (`0, h0) = (lab(s), ε)

and (lab(pi+1), hi+1) = f
(

lab
(
N(pi)

)
, ρ(pi), lab(t), hi

)
, for i ≥ 0. Then, there

is a k = k(s, t) ≥ 0 with pk = t and pi 6= t, for i = 0, . . . , k − 1. We say the
routing scheme reaches t in k steps, and π : 〈p0, . . . , pk〉 is the routing path
from s to t. The routing distance is denoted dρ(s, t) = |π|. Let R be a cor-
rect routing scheme for a graph class G, i.e., R is a correct routing scheme for
every graph in G. There are several measures for the quality of R. For one,
the various pieces of information used for the routing should be small. This is
measured by the maximum label size Lab(n), the maximum routing table size
Tab(n), and the maximum header size H(n), over all graphs in G of a cer-
tain size. They are defined as Lab(n) = max|V |=n maxv∈V | lab(v)|, Tab(n) =
max|V |=n maxv∈V |ρ(v)|, and H(n) = max|V |=n maxs6=t∈V maxi=0,...,k(s,t) |hi|.
Furthermore, the stretch ζ(n) relates the length of the routing path to the short-
est path: ζ(n) = max|V |=n maxs6=t∈V dρ(s, t)/d(s, t).

Let P be a simple orthogonal (axis-aligned) polygon with n vertices V (P )
so that no three vertices in V (P ) are on the same vertical or horizontal line.
The vertices are indexed counterclockwise from 0 to n− 1; the lexicographically
largest vertex has index n− 1. For v ∈ V (P ), we write vx and vy for the x- and
y-coordinate, and vid for the index. We consider r-visibility : p, q ∈ P see each
other (are co-visible) if and only if the axis-aligned rectangle spanned by p and q
is inside (the closed set) P . The visibility graph G(P ) =

(
V (P ), E(P )

)
of P has

an edge between two vertices v, w ∈ V (P ) if and only if v and w are co-visible.
The distance d(v, w) between two vertices v, w ∈ V (P ) is called the hop distance
of v and w in P .

A histogram is an x-monotone orthogonal polygon where the upper bound-
ary consists of exactly one horizontal edge, the base edge. By our convention, the
endpoints of the base edge have index 0 (left) and n− 1 (right). They are called
the base vertices. A double histogram is an x-monotone orthogonal polygon P
with a base line, a horizontal line segment whose relative interior lies in the inte-
rior of P and whose left and right endpoints are on the left and right boundary
edge of P . We assume that the base line lies on the x-axis. Two vertices v, w in
P lie on the same side if both are below or above the base line, i.e., if vywy > 0.
Every histogram is also a double histogram. From now on, we let P denote a
(double) histogram.

Next, we classify the vertices of P . A vertex v in P is incident to exactly one
horizontal edge h. We call v a left vertex if it is the left endpoint of h; otherwise,
v is a right vertex. Furthermore, v is convex if the interior angle at v is π/2;
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otherwise, v is reflex. Accordingly, every vertex of P is either `-convex, r-convex,
`-reflex, or r-reflex.

To understand the shortest paths in P , we associate with each v ∈ V (P ) three
landmark points in P (not necessarily vertices); see Fig. 1. The corresponding

v

cv(w)w

`(v)
`(w)r(v)

u`(u)

s r(s)
I(v)

w

fd(s, w)

nd(s, u)

Fig. 1. Left and right points, the corresponding vertex, and the near and far domina-
tors. The interval I(v) of v is the set of vertices between `(v) and r(v). The dashed
line is the base line.

vertex of v, cv(v), is the unique vertex with the same horizontal edge as v. To
obtain the left point `(v) of v, we shoot a leftward horizontal ray r from v. Let e
be the vertical edge where r first hits the boundary of P . If e is the left boundary
of P ; then if P is a simple histogram, we let `(v) be the left base vertex; and
otherwise `(v) is the point where r hits e. If e is not the left boundary of P , we
let `(v) be the endpoint of e closer to the base line. The right point r(v) of v is
defined analogously, by shooting the horizontal ray to the right.

Let p and q be two points in P . We say that p is (strictly) to the left of q, if
px ≤ qx (or px < qx). The term (strictly) to the right of is defined analogously.
The interval [p, q] of p and q is the set of vertices in P between p and q, i.e.,
[p, q] =

{
v ∈ V (P ) | px ≤ vx ≤ qx

}
. By general position, this corresponds to

index intervals in simple histograms. More precisely, if P is a simple histogram
and p is either an r-reflex vertex or the left base vertex and q is either `-reflex or
the right base vertex, then [p, q] =

{
v ∈ V (P ) | pid ≤ vid ≤ qid

}
. The interval of

a vertex v, I(v), is the interval of the left and right point of v, I(v) = [`(v), r(v)].
Every vertex visible from v is in I(v), i.e., N(v) ⊆ I(v). This interval will be
crucial in our routing schemes and gives a very useful characterization of visibility
in double histograms.

Let s and t be two vertices with t ∈ I(s) \ N(s). We define two more land-
marks for s and t. Assume that t lies strictly to the right of s, the other case is
symmetric. The near dominator nd(s, t) of t with respect to s is the rightmost
vertex in N(s) to the left of t. If there is more than one such vertex, nd(s, t) is the
vertex closest to the base line. Since t is not visible from s, the near dominator
always exists. The far dominator fd(s, t) of t with respect to s is the leftmost
vertex in N(s) to the right of t. If there is no such vertex, we set fd(s, t) = r(s),
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the projection of s on the right boundary. The interval I(s, t) =
[
nd(s, t), fd(s, t)

]
has all vertices between the near and far dominator; see Fig. 1.

3 Simple Histograms

Let P be a simple histogram with n vertices. The idea for our routing scheme is
as follows: as long as the target vertex t is not in the interval I(s) of the current
vertex s, i.e., as long as there is a higher vertex that blocks visibility between s
and t, we have to leave the current pocket as fast as possible. Once t ∈ I(s), we
have to find the pocket containing t. To do this, we must analyse in detail how
shortest paths between vertices in P behave.

Paths in a Simple Histogram. We analyze the (shortest) paths in a simple his-
togram. The following lemma identifies certain “bottleneck” vertices that appear
on any path; see. Fig. 2.

Lemma 3.1. Let v, w ∈ V (P ) be co-visible vertices such that v is either r-reflex
or the left base vertex and w is either `-reflex or the right base vertex. Let s and
t be two vertices with s ∈ [v, w] and t /∈ [v, w]. Then, any path between s and t
includes v or w.

v
w = r(v)

s

cv(v)

⊆ P

t

t

s

Fig. 2. Left: Any path from s to t includes v or w, since the blue rectangle contains
only v and w as vertices. Right: A shortest path from s to t using the highest vertex.

An immediate consequence of Lemma 3.1 is that if t /∈ I(s), then any path
from s to t uses `(s) or r(s). The next lemma shows that if t /∈ I(s), there is a
shortest path from s to t that uses the higher vertex of `(s) and r(s), see Fig. 2.

Lemma 3.2. Let s and t be two vertices with t /∈ I(s). If `(s)y > r(s)y (resp.,
`(s)y < r(s)y), then there is a shortest path from s to t using `(s) (r(s)).

The next lemma considers the case where t is in I(s). Then, the near and far
dominator are the potential vertices that lie on a shortest path from s to t (see
also Fig. 3).

Lemma 3.3. Let s and t be two vertices with t ∈ I(s) \N(s). Then, nd(s, t) is
reflex and either fd(s, t) = `(nd(s, t)) or fd(s, t) = r(nd(s, t)).
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The Routing Scheme. We now describe our routing scheme and prove that it
gives a shortest path. Let v ∈ V (P ). If v is convex and not a base vertex, it is
labeled with its id, i.e., lab(v) = vid. Otherwise, suppose that v is an r-reflex
vertex or the left base vertex. The breakpoint of v, br(v), is defined as the left
endpoint of the horizontal edge with the highest y-coordinate to the right of and
below v that is visible from v; analogous definitions apply to `-reflex vertices and
the right base vertex. The label of v consists of the ids of v and its breakpoint,
i.e., lab(v) = (vid,br(v)id). Therefore, Lab(n) = 2 · dlog ne. The routing table of
v stores one bit, indicating whether `(v)y > r(v)y. Hence, Tab(n) = 1.

We are given the current vertex s and the label lab(t) of the target vertex
t. The routing function does not need a header, i.e., H(n) = 0. If t is visible
from s, i.e., if lab(t) ∈ lab(N(s)), we directly go from s to t on a shortest path.
Thus, assume that t is not visible from s. First, we check if t ∈ I(s). This
is done as follows: we determine the smallest and largest id in the link table
lab(N(s)) of s. The corresponding vertices are `(s) and r(s). Then, we can check
if tid ∈ [`(s)id, r(s)id], which is the case if and only if t ∈ I(s). Now, there are two
cases, illustrated in Fig. 3. First, suppose t /∈ I(s). If the bit in the routing table

s
`(s)

. . . . . .

r(s)

fd

nd

t t t ttt

Fig. 3. The cases where the vertex t lies and the corresponding vertices where the data
packet is sent to. If t ∈ [`(s), s] we have nd(s, t) = cv(s) and fd(s, t) = `(s).

of s indicates that `(s) is higher than r(s), we take the hop to `(s); otherwise,
we hop to r(s). By Lemma 3.2, this hop lies on a shortest path from s to t.

Second, suppose that t ∈ I(s) \ N(s). This case is slightly more involved.
We use the link table lab(N(s)) of s and the label lab(t) of t to determine
fd(s, t) and nd(s, t). Again, we can do this by comparing the ids. Lemma 3.3
states that either fd(s, t) = `(nd(s, t)) or fd(s, t) = r(nd(s, t)). We discuss the
case that fd(s, t) = r(nd(s, t)), the other case is symmetric. By Lemma 3.1, any
shortest path from s to t includes fd(s, t) or nd(s, t). Moreover, due to Lemma 3.3,
nd(s, t) is reflex, and we can use its label to access bid = br(nd(s, t))id. The vertex
b splits I(s, t) = [nd(s, t), fd(s, t)] into two disjoint subintervals [nd(s, t), b] and
[cv(b), fd(s, t)]. Also, b and cv(b) are not visible from s, as they are located strictly
between the far and the near dominator. Based on bid, we can now decide on the
next hop.
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If t ∈ [nd(s, t), b], we take the hop to nd(s, t). If t = b, our packet uses a
shortest path of length 2. Thus, assume that t lies between nd(s, t) and b. This
is only possible if b is `-reflex, and we can apply Lemma 3.1 to see that any
shortest path from s to t includes nd(s, t) or b. But since d(s, b) = 2, our data
packet routes along a shortest path.

If t ∈ [cv(b), fd(s, t)], we take the hop to fd(s, t). If t = cv(b), our packet uses
a shortest path of length 2. Thus, assume that t lies between cv(b) and fd(s, t).
This is only possible if cv(b) is r-reflex, so we can apply Lemma 3.1 to see that
any shortest path from s to t uses fd(s, t) or cv(b). Since d(s, cv(b)) = 2, our
packet routes along a shortest path. Thus:

Theorem 3.4. Let P be a simple histogram with n vertices. There is a routing
scheme for G(P ) with 1-bit routing tables, no header, and label size 2 · dlog ne,
such that we can route between any two vertices on a shortest path.

4 Double Histograms

Let P be a double histogram with n vertices. Similar to the simple histogram
case, we first focus on the structure of shortest paths in P . Again, if the target
vertex t is not in the interval I(s) of the current vertex s, we should widen the
interval as fast as possible. However, in contrast to simple histograms, we can
now change sides arbitrarily often. Nevertheless, we can guarantee that in each
step, the interval comes closer to t. Once we have reached the case that t is in
the interval of the current vertex, we again have to find the right pocket. Unlike
in simple histograms, this case is now simpler to describe.

Paths in a Double Histogram. To understand shortest paths in double his-
tograms, we distinguish three cases, depending on where t lies relative to s.
First, if t is close, i.e., if t ∈ I(s), we focus on the near and far dominators. Sec-
ond, if t /∈ I(s) but there is a vertex v visible from s with t ∈ I(v), then we can
find a vertex on a shortest path from s to t. Third, if there is no visible vertex
v from s such that t ∈ I(v), we can apply our intuition from simple histograms:
go as fast as possible towards the base line.

Let s, t be two vertices with t ∈ I(s)\N(s). In contrast to simple histograms,
fd(s, t) now might not be a vertex. Furthermore, fd(s, t) and nd(s, t) might be on
different sides of the base line. In this case, Lemma 3.3 no longer holds. However,
the next lemma establishes a visibility relation between them.

Lemma 4.1. Let s, t ∈ V (P ) with t ∈ I(s) \ N(s). Then, nd(s, t) and fd(s, t)
are co-visible.

The proof of the next lemma uses Lemma 4.1 to find a shortest path vertex.

Lemma 4.2. One of nd(s, t) or fd(s, t) is on a shortest path from s to t. If
fd(s, t) is not a vertex, then nd(s, t) is on a shortest path from s to t.
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Next, we consider the case where fd(s, t) is a vertex but not on a shortest path
from s to t. Then, fd(s, t) cannot see t, and we define fd2(s, t) = fd(fd(s, t), t).
By Lemma 4.1, nd(s, t) and fd(s, t) are co-visible, so fd2(s, t) has to be in the
interval [nd(s, t), t], and therefore it is a vertex. The following lemma states that
fd2(s, t) is strictly closer to t than s.

Lemma 4.3. If fd(s, t) is a vertex but not on a shortest path from s to t, then
we have d(fd2(s, t), t) = d(s, t)− 1.

Let s, t be two vertices so that t /∈ I(s) but there is a vertex v ∈ N(s) with
t ∈ I(v). For clarity of presentation, we will always assume that s is below the
base line. The crux of this case is this: there might be many vertices visible from
s that have t in their interval. However, we can find a best vertex as follows: once
t is in the interval of a vertex, the goal is to shrink the interval as fast as possible.
Therefore, we must find a vertex v ∈ N(s) whose left or right interval boundary
is closest to t among all vertices in N(s). This leads to the following inductive
definition of two sequences ai(s) and bi(s) of vertices in N(s). For i = 0, we let
a0(s) = b0(s) = s. For i > 0, if the set Ai(s) = {v ∈ N(s) | `(v)x < `(ai−1(s))x}
is nonempty, we define ai(s) = argmin{vx | v ∈ Ai(s)}; and ai(s) = ai−1(s),
otherwise. If the set Bi(s) = {v ∈ N(s) | r(v)x > r(bi−1(s))x} is nonempty,
we define bi(s) = argmax{vx | v ∈ Bi(s)}; and bi(s) = bi−1(s), otherwise. We
force unambiguity by choosing the vertex closer to the base line. Let a∗(s) be
the vertex with a∗(s) = ai(s) = ai−1(s), for an i > 0, and b∗(s) the vertex with
b∗(s) = bi(s) = bi−1(s), for an i > 0. If the context is clear, we write ai instead
of ai(s) and bi instead of bi(s).

Let us try to understand this definition. For i ≥ 0, we write `i for `(ai);
and we write `∗ for `(a∗). Then, we have a0 = s and `0 = `(s). Now, if `(s)
is not a vertex, then a∗ = s, because there is no vertex whose left point is
strictly to the left of the left boundary of P . On the other hand, if `0 is a ver-
tex in P , we have a1 = `0 = `(s), and [`1, a1] is an interval between points
on the lower side of P . Then comes a (possibly empty) sequence of intervals
[`2, a2], [`3, a3], . . . , [`k, ak] between points on the upper side of P ; possibly fol-
lowed by the interval [`(r(s)), r(s)]. There are four possibilities for a∗: it could
be s, `(s), a vertex ai on the upper side of P , or r(s). If a∗ 6= s, then the intervals
[`1, a1] ⊂ [`2, a2] ⊂ · · · ⊂ [`∗, a∗] are strictly increasing: `i is strictly to the left
of `i−1 and ai is strictly to the right of ai−1; see Fig. 4. Symmetric observations
apply for the bi; we write ri for r(bi) and r∗ for r(b∗).

Lemma 4.4. For i ≥ 1, the vertices `i−1, ai as well as ri−1, bi are co-visible.

Finally, the next lemma tells us the following: if t ∈ [`∗, r∗] we find a vertex
v ∈ N(s) with t ∈ I(v). Its quite technical proof needs Lemma 4.4.

Lemma 4.5. If t ∈ [`i, `i−1], for some i ≥ 1, then ai is on a shortest path from
s to t. If t ∈ [ri−1, ri], for some i ≥ 1, then bi is on a shortest path from s to t.

Finally, we consider the case that there is no vertex v ∈ N(s) with t ∈ I(v),
i.e., t /∈ [`∗, r∗]. The intuition now is as follows: to widen the interval, we should
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s

a1, b3`1

a2
a3

a4

`2

`3

`4

b1

b2

r1

r2

r3

Fig. 4. The vertices ai and bi are illustrated. Observe that `(s) = a1 = b3 and r(s) = b1.

go to a vertex that is visible from s, but closest to the base line. In simple
histograms, there was only one such vertex, but in double histograms there
might be a second one on the other side. These two vertices are the dominators
of s. These two dominators might have their own dominators, and so on. This
leads to the following inductive definition.

For k ≥ 0, we define the k-th bottom dominator bdk(s), the k-th top domina-
tor tdk(s), and the k-th interval Ik(s) of s. For any set Q ⊂ V (P ), we write Q−

(resp. Q+) for all points in Q below (resp. above) the base line. We set bd0(s) =
td0(s) = s and I0(s) = {s}. For k > 0, we set Ik(s) = I(bdk−1(s))∪I(tdk−1(s)).
If Ik(s)− is nonempty, we let bdk(s) be the leftmost vertex inside Ik(s)− that
minimizes the distance to the base line. If Ik(s)+ is nonempty, we let tdk(v) be
the leftmost vertex inside Ik(s)+ that minimizes the distance to the base line. If
one of the two sets is empty, the other one has to be nonempty, since s ∈ Ik(s).
In this case, we let tdk(s) = bdk(s). We write bd(s) for bd1(s) and td(s) for
td1(s). Observe, that I1(s) = I(s) and I2(s) = [`∗, r∗]. If I(bdk−1(s)) = V (P ),
we have bdk(s) = bdk−1(s). The same holds for the top dominator. We pro-
vide a few technical properties concerning the k-th interval as well as the k-th
dominators.

Lemma 4.6. For any s ∈ V (P ) and k ≥ 0, we have Ik(s) ⊆ I(bdk(s)) ∩
I(tdk(s)) and bdk(s), tdk(s) are co-visible.

The following lemma seems rather specific, but will be needed later to deal
with short paths.

Lemma 4.7. For any s ∈ V (P ), we have I3(s) = I2
(
bd(s)

)
∪ I2

(
td(s)

)
.

Intuitively, the meaning of Ik(s) is as follows: let ` be the leftmost and r be
the rightmost vertex with hop distance exactly k from s, then, Ik(s) = [`, r]. We
do not really need this property, so we leave it as an exercise for the reader to
find a proof for this. Instead, we prove the following weaker statement. For this,
recall that due to its definition, bdk(s) might not be on the lower side of the
histogram (and tdk(s) might not be on the upper side).
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Lemma 4.8. Let k ≥ 0 and let s, t ∈ V (P ) with d(s, t) ≤ k. Then, t ∈ Ik(s).

Let k ≥ 0 and s ∈ V (P ). For i = 1, . . . , k, by Lemma 4.6, bdi−1(s), tdi−1(s) ∈
I(bdi(s)) ∩ I(tdi(s)). Moreover, by definition, bdi(s), tdi(s) ∈ I(bdi−1(s)) ∪
I(tdi−1(s)). As we show in the appendix (Observation C.1), now both bdi(s)
and tdi(s) can see at least one of bdi−1(s) or tdi−1(s). Therefore, there is a
path πb(s, k) : 〈s = p0, . . . , pk = bdk(s)〉 from s to bdk(s) and a path πt(s, k) :
〈s = q0, . . . , qk = tdk(s)〉 from s to tdk(s) with pi, qi ∈ {bdi(s), tdi(s)}, for
i = 0, . . . , k. We call πb(s, k) and πt(s, k) the canonical path from s to bdk(s)
and from s to tdk(s), respectively. The following two lemmas show that for every
t /∈ Ik+1(s) one of the canonical paths is the prefix of a shortest path from s to
t. To show Lemma 4.10 we need Lemmas 4.8 and 4.9.

Lemma 4.9. Let k ≥ 1 and s ∈ V (P ). If I(bdk−1(s)) 6= V (P ), we have that
d(s,bdk(s)) = k. If I(tdk−1(s)) 6= V (P ) we have d(s, tdk(s)) = k.

Lemma 4.10. Let s and t be vertices and k ≥ 1 an integer such that t /∈ Ik+1(s).
Then bdk(s) or tdk(s) is on a shortest path from s to t.

Routing Scheme. Let v be a vertex. The label of v consists of its x- and y-
coordinate as well as the bounding x-coordinates of I(v). We do not need vid
since (vx, vy) identifies the vertex in the network. Thus, Lab(n) = 4·dlog ne since
we can assume that vx, vy ∈ {0, . . . , n − 1}. In the routing table of v, we store
the bounding x-coordinates of I2(bd(v)) as well as the bounding x-coordinates
of I2(td(v)). Furthermore, we store (bd2(v)x,bd2(v)y, bit) where bit indicates
whether td(v) or bd(v) is on the path πb(v, 2). Thus, Tab(n) = 6 · dlog ne+ 1.

We are given a current vertex s together with its routing table and link
table, the label of a target vertex t, and a header. If t ∈ N(s), then lab(t) is in
the link table of s, and we send the data packet directly to t. If the header is
non-empty, it will contain the coordinates of exactly one vertex visible from s.
We clear the header and go to this respective vertex. The remaining discussion
assumes that the header is empty and that t 6∈ N(s). The routing function now
distinguishes four cases depending on whether t ∈ I(s), t ∈ I2(s) or t ∈ I3(s).
We can check the first and the second condition locally, using the link table of s
as well as the label of t (note that from the link table of s, we can deduce a∗(s)
and b∗(s), and their interval boundaries). To check the third condition locally,
we use Lemma 4.7 which shows that I3(s) = I2(bd(s)) ∪ I2(td(s)). Since we
stored the bounding x-coordinates of these two intervals in the routing table of
s, we can check t ∈ I3(s) easily.

Case 1 (t ∈ I(s) \ N(s)): if fd(s, t) is a vertex, we can determine it by
using the link table and the label of t. The packet is sent to fd(s, t). If fd(s, t)
is not a vertex, we determine nd(s, t) and send the packet there. The header
remains empty.

Case 2 (t ∈ I2(s)\I(s)): there is an i ≥ 1 with t ∈ [`i, `i−1] or t ∈ [ri−1, ri].
We find i using the link table and lab(t). The packet is sent to ai or bi. The header
remains empty.
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Case 3 (t ∈ I3(s) \ I2(s)): if t ∈ I2(bd(s)), we send the packet to bd(s).
Otherwise, t ∈ I2(td(s)), and we send the packet to td(s). In both cases, the
header remains empty.

Case 4 (t /∈ I3(s)): the routing table has the entry (bd2(s)x,bd2(s)y, b).
We store (bd2(s)x,bd2(s)y) in the header and send the packet to bd(s) or td(s),
as indicated by b.

Obviously, H(n) = 2 · dlog ne. It remains to analyze the stretch factor. For
this, we use the following lemma:

Lemma 4.11. Let s, t ∈ V (P ). After at most two steps of the routing scheme
from s with target label lab(t), we reach a vertex v with d(v, t) ≤ d(s, t)− 1.

This immediately gives a stretch factor of 2 and our main theorem.

Theorem 4.12. Let P be a double histogram with n vertices. There is a routing
scheme for G(P ) with routing table, label and header size O(log n), such that we
can route between any two vertices with stretch at most 2.
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B Additional Material for Section 3

B.1 Visibility in Simple Histograms

We begin with some observations on the visibility in P . As P is a simple his-
togram, for all v ∈ V (P ), the points `(v) and r(v) are vertices of P . Hence, the
far dominators also must be vertices. The next observations are now immediate.

Observation B.1. Let v ∈ V (P ) be r-reflex or the left base vertex, and let
u ∈ [v, r(v)] be a vertex distinct from v and r(v). Then, I(u) ⊆ [v, r(v)].

Proof. Assume that `(u) or r(u) is outside of [v, r(v)]. Then, u must have a
larger y-coordinate than v. It follows that v cannot see r(v). This contradicts
the definition of r(v). ut

Observation B.2. Let v ∈ V (P ) be a left (right) vertex distinct from the base
vertex. Then, v can see exactly two vertices to its right (left), namely cv(v) and
r(v) (`(v)).

Proof. Suppose that v is a left vertex; the other case is symmetric. Any vertex
visible from v to the right of v lies in in [cv(v), r(v)]. If cv(v) is convex, the
observation is immediate, since then [cv(v), r(v)] = {cv(v), r(v)}. Otherwise,
cv(v) is r-reflex and r(v) = r(cv(v)). By Observation B.1, we get that for all
u ∈ [cv(v), r(v)] \ {cv(v), r(v)}, we have I(u) ⊆ [cv(v), r(v)]. Thus, v /∈ I(u) for
any such u, and since N(u) ⊆ I(u), v cannot see u. ut

B.2 Missing Proofs

Proof (of Lemma 3.1). Let I = [v, w]. Since t /∈ I, not both v, w are base vertices.
Thus, suppose without loss of generality that vy < wy. Then, cv(v) is a left vertex
and can see w. Hence, Observation B.2 implies that r(v) = r(cv(v)) = w. By
Observation B.1, we get N(u) ⊆ I(u) ⊆ I, for any u ∈ I \{v, w}. Thus, any path
between s and t must include v or w. ut

Proof (of Lemma 3.2). Assume `(s)y > r(s)y, the other case is symmetric. Let
π : 〈s = p0, . . . , pk = t〉 be a shortest path from s to t. If π contains `(s), we
are done. Otherwise, by Lemma 3.1, there is a 0 < j < k with pj = r(s) and
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pi 6= r(s), for i > j. Thus, pj+1 /∈ I(s). Since we assumed `(s)y > r(s)y, it follows
that `(pj) = `(r(s)) = `(s), so pj+1 must be to the right of pj . Therefore, by
Observation B.2, we can conclude that pj+1 ∈ {cv(pj), r(pj)}. Now, since `(s) is
higher than r(s), it can also see cv(pj) and r(pj), in particular, it can see pj+1.
Hence, 〈s, `(s), pj+1, . . . , pk〉 is a valid path of length at most |π|, so there exists
a shortest path from s to t through `(s). ut

Proof (of Lemma 3.3). Without loss of generality, t lies strictly to the right of s.
First, assume that nd(s, t) is `-convex. Since s can see nd(s, t) and since nd(s, t)
is to the right of s, it follows that s and nd(s, t) share the same vertical edge.
Then, cv(nd(s, t)) is also visible from s and its horizontal distance to t is smaller.
This contradicts the definition of nd(s, t).

Next, assume that nd(s, t) is r-convex. Let v be the reflex vertex sharing a
vertical edge with nd(s, t). Then, N(nd(s, t)) ⊆ N(v) and v ∈ N(s). Further-
more, since t is strictly to the right of v but still inside I(s), the vertices v
and r(s) must be distinct. Thus, vy < sy, so that cv(v) is also visible from s.
Moreover, the horizontal distance of cv(v) and t is smaller than the horizontal
distance of nd(s, t) and t. This again contradicts the definition of nd(s, t). The
first part of the lemma follows.

It remains to show that fd(s, t) = r(nd(s, t)). First of all, fd(s, t) is higher
than nd(s, t), since otherwise fd(s, t) would not be visible from s. Moreover, if
nd(s, t) and fd(s, t) are not co-visible, there must be a vertex v strictly between
nd(s, t) and fd(s, t) that is visible from s and higher than nd(s, t). Now, either t ∈
[nd(s, t), v] or t ∈ [v, fd(s, t)]. In the first case, the horizontal distance between v
and t is smaller than between t and fd(s, t), and in the second case, the horizontal
distance between v and t is smaller than between t and nd(s, t). Either case
leads to a contradiction. Therefore, fd(s, t) is higher than nd(s, t), strictly to the
right of nd(s, t) and visible from nd(s, t). Thus, Observation B.2 gives fd(s, t) =
r(nd(s, t)). ut

C Additional Material for Section 4

C.1 Visibility in Double Histograms

The structure of the shortest paths in double histograms can be much more
involved than in simple histograms; in particular, Lemma 3.1 does not hold
anymore. However, the following observations provide some structural insight
that can be used for an efficient routing scheme.

Observation C.1. Two vertices v, w are co-visible if and only if v ∈ I(w) and
w ∈ I(v).

Proof. The forward direction is immediate, as co-visibility implies v ∈ N(w) ⊆
I(w) and w ∈ N(v) ⊆ I(v). For the backward direction, let Q be the rectangle
spanned by v and w. Since v ∈ I(w) and w ∈ I(v), the upper and lower boundary
of Q do not contain a point outside P . As P is a double histogram, this implies
that the left and right boundary of Q also do not contain any point outside P .
The claim follows since P has no holes. ut



Routing in Histograms 15

Observation C.2. Let a, b, c, and d be vertices in P with ax ≤ bx ≤ cx ≤ dx.
If a ∈ I(c) and d ∈ I(b), then b and c are co-visible.

Proof. This follows immediately from Observation C.1. ut

Observation C.3. The intervals on one side of P form a laminar family, i.e.,
for any two vertices v and w on the same side of the base line, we have (i)
I(v) ∩ I(w) = ∅, (ii) I(v) ⊆ I(w), or (iii) I(w) ⊆ I(v).

Proof. Suppose there are two vertices v and w on the same side of P with
`(v)x < `(w)x ≤ r(v)x < r(w)x. By Observation C.2, `(w) and r(v) are co-
visible. Since `(w) and r(v) are on the same side of P , either r(v) cannot see
any vertex to the left of `(w) or `(w) cannot see any vertex to the right of r(v).
This contradicts the fact that the `(v) and r(v) as well as `(w) and r(w) must
be co-visible. ut

C.2 Missing Proofs

s

t1

nd(s, t1)

fd(s, t1)

t2

nd(s, t2)

fd(s, t2)

fd(s, t3)

t3

nd(s, t3)

Fig. 5. The far and the near dominator can see each other.

Proof (of Lemma 4.1). Without loss of generality, t is strictly to the right of s,
see Fig. 5. Suppose for a contradiction that r(nd(s, t)) is strictly left of fd(s, t).
Then, we get r(nd(s, t)) ∈ I(s). Also, s ∈ I(nd(s, t)) ⊆ I(r(nd(s, t))). Hence, by
Observation C.1, s can see r(nd(s, t)). But then r(nd(s, t)) is a vertex strictly
between the near and far dominator visible from s, contradicting the choice of the
dominators. Thus, sx ≤ nd(s, t)x ≤ fd(s, t)x ≤ r(nd(s, t))x, and Observation C.2
gives the result. ut

Proof (of Lemma 4.2). Without loss of generality, t is to the right of s. Let
π : 〈s = p0, . . . , pk = t〉 be a shortest path from s to t, and let pj be the last
vertex outside of I(s, t). If j = 0, then pj+1 must be one of the dominators, since
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by definition they are the only vertices in I(s, t) visible from s. Now, assume
j ≥ 1. If pj is to the left of nd(s, t), we apply Lemmas 4.1 and C.2 on the
four points pj , nd(s, t), pj+1, and fd(s, t) to conclude that nd(s, t) can see pj+1.
Symmetrically, if pj is to the right of fd(s, t), the same argument shows that
the far dominator can see pj+1. Thus, depending on the position of pj we can
exchange the subpath p1, . . . , pj in π by nd(s, t) or fd(s, t) and get a valid path
of length k− j+ 1 ≤ k. The second part of the lemma follows because pj cannot
be to the right of fd(s, t), if fd(s, t) is not a vertex but a point on the right
boundary. ut

Proof (of Lemma 4.3). Without loss of generality, t is to the right of s; see Fig. 6.
By Lemma 4.2, nd(s, t) lies on a shortest path from s to t. Let 〈s = p0,nd(s, t) =
p1, p2, . . . , pk = t〉 be such a shortest path. We claim that fd2(s, t) can see p2.
Then, 〈fd2(s, t), p2, . . . , pk = t〉 is a valid path of length k − 1 = d(s, t) − 1.
To prove that fd2(s, t) can indeed see p2, we show that p2 ∈ I

(
fd2(s, t)

)
and

fd2(s, t) ∈ I(p2) and then apply Observation C.1.

s

t

nd(s, t)

fd(s, t)

nd(fd(s, t), t)

fd2(s, t)

Fig. 6. fd2(s, t) lies between nd(s, t) and fd(s, t) and is closer to t than s. The darker
region is I(fd(s, t), t) and a subset of I(s, t), the brighter region.

First, we show p2 ∈ I(fd(s, t), t) by contradiction. Thus, suppose that p2 /∈
I(fd(s, t), t). Since t ∈ I(fd(s, t), t), there is a j ≥ 2 with pj+1 ∈ I(fd(s, t), t) and
pj /∈ I(fd(s, t), t). First, if pj,x < fd2(s, t)x, then pj,x < fd2(s, t)x ≤ pj+1,x ≤
nd(fd(s, t), t)x. By Lemma 4.1, fd2(s, t) and nd

(
fd(s, t), t

)
are co-visible, so Ob-

servation C.2 implies that fd2(s, t) and pj+1 are co-visible. Then it follows that
〈s, fd(s, t), fd2(s, t), pj+1, . . . , pk = t〉 is a valid path of length k−j+2 ≤ k, contra-
dicting the assumption that fd(s, t) is not on a shortest path. If nd(fd(s, t), t)x <
pj,x, it follows with the same reasoning that nd(fd(s, t), t) and pj+1 are co-visible
then fd(s, t) is on 〈s, fd(s, t),nd(fd(s, t), t), pj+1, . . . , pk = t〉 which is a valid path
of length k − j + 2 ≤ k. This again contradicts the assumption. Now, since
I(fd(s, t), t) =

[
fd2(s, t),nd(fd(s, t), t)

]
⊆ I(fd2(s, t)), we get p2 ∈ I(fd2(s, t)).

Since p2 sees nd(s, t) which is to the left of fd2(s, t) and since p2 is in I(fd(s, t), t),
and thus to the right of fd2(s, t), it follows that fd2(s, t) ∈ I(p2). ut
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Proof (of Lemma 4.4). We focus on `i−1 and ai. We show that `i−1 ∈ I(ai) and
ai ∈ I(`i−1); the lemma follows from Observation C.1. The claim `i−1 ∈ I(ai) is
due to the facts that [`i, ai] ⊆ I(ai) and `i−1 ∈ [`i, ai] (this holds also for i = 1,
as then `i−1 = ai). Next, since ai−1 ∈ I(`i−1), the vertex ai−1 is to the left of
r(`i−1); and since `i−1 ∈ I(r(`i−1)), the point `(r(`i−1)) is to the left of `i−1.
Thus, if r(`i−1) is visible from s, we have ai = r(`i−1), by the definition of ai. On
the other hand, if r(`i−1) is not visible from s, the visibility must be blocked by
r(s), and then ai = r(s). In either case, we have ai ∈ [ai−1, r(`i−1)] ⊆ I(`i−1),
as desired. ut

ai

s

`(s)

b

ai−1

`i−1

`i

Fig. 7. The vertex ai is on a shortest path. The vertex pj can lie in the red regions,
the vertex pj+1 can lie in the orange region, and the blue region cannot contain any
point outside of P .

Proof (of Lemma 4.5). We focus on the first statement; see Fig. 7. Let π : 〈s =
p0, . . . , pk = t〉 be a shortest path from s to t, and let pj be the last vertex on
π outside of [`i, `i−1]. If j = 0, then pj+1 must be `0 = `(s), because this is the
only vertex `i−1 visible from s. Then, i = 1 and ai = `(s) is on π. From now on,
we assume that j ≥ 1.

First, suppose that pj+1 and ai are co-visible. Then 〈s, ai, pj+1, . . . , pk〉 is a
path from s to t that uses ai and has length k − j + 1 ≤ k. Second, suppose
that pj+1 and ai are not co-visible. Then, the contrapositive of Observation C.2
applied to the four points `i, pj+1, ai, and pj shows that pj is strictly to the left
of ai. There are two subcases, depending on whether pj is strictly to the left of
`i or strictly to the right of `i−1.

If pj is strictly to the left of `i, then j ≥ 2, since `i is to the left of `0 = `(s)
and we need at least two hops to reach a point strictly to the left of `(s) from s.
We apply Observation C.2 on the four points pj , `

i, pj+1, and ai, and get that `i

and pj+1 are co-visible. Hence, 〈s, ai, `i, pj+1, . . . , pk〉 is a path that uses ai and
has length k − j + 2 ≤ k.

Finally, assume that pj is strictly to the right of `i−1. By Lemma 4.4, ai can
see `i−1. Thus, pj+1 6= `i−1 and there is no vertex strictly between `i−1 and ai
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on the same side as `i−1 that can see a vertex strictly to the left of `i−1. Thus,
pj and ai−1 are on different sides of the base line. Let b be the rightmost vertex
that (i) lies on the same side of P as pj ; (ii) is strictly between `i−1 and ai; (iii)
is closest to the base line. The vertex b exists (since pj is a candidate), is not
visible from s (because b is strictly left of ai and can see strictly left of `i−1);
and thus strictly left of `(s). The vertex pj cannot be strictly to the right of b,
as otherwise b would obstruct visiblity between pj and pj+1. We conclude that
j ≥ 2, since we need at least two hops to reach a point strictly to the left of
`(s) from s. If pj ∈ {b, cv(b)}, ai can see pj and thus, 〈s, ai, pj , pj+1, . . . , pk〉 is a
path of length k − j + 2 ≤ k using ai. If pj 6∈ {b, cv(b)}, then b is strictly closer
to the base line than pj . Then, we have j ≥ 3, because we need two hops to
cross the vertical line through `(s) and one more hop to cross the horizontal line
through b. We apply Observation C.2 on the four points pj+1, `i−1, pj , and b
to conclude that `i−1 can see pj . Hence, 〈s, ai, `i−1, pj , pj+1, . . . , pk〉 is a path of
length k − j + 3 ≤ k using ai. ut

Proof (of Lemma 4.6). We have Ik(s) ⊆ I(bdk(s)), since by definition, interval
Ik(s) contains no vertex that is on the same side as bdk(s) and strictly closer to
the base line, so no vertex can obstruct horizontal visibility of bdk(s) in Ik(s).
Analogously, Ik(s) ⊆ I(tdk(s)), as desired.

By definition and the first part, tdk(s) ∈ Ik(s) ⊆ I(bdk(s)) and bdk(s) ∈
Ik(s) ⊆ I(tdk(s)). The claim now follows from Observation C.1. ut

Proof (of Lemma 4.7). We begin by showing that

I
(
bd2(s)

)
= I

(
bd(td(s))

)
∪ I

(
bd(bd(s))

)
. (1)

If bd(s) is above the base line, then bd(s) = td(s) and I2(s) = I(bd(s)) ∪
I(td(s)) = I(td(s)). The definition of bd2(s) then gives bd2(s) = bd(td(s)), and
(1) follows.

If bd(s) is below the base line, the vertex b1 = bd(bd(s)) is below the base
line. Let b2 = bd(td(s)). By Lemma 4.6, bd(s) and td(s) are co-visible, so bd(s) ∈
I(td(s))−. Therefore, b2 is below the base line. Since I(b1) and I(b2) are not
disjoint (both contain s) and since b1 and b2 are on the same side of the base
line, Observation C.3 gives I(b1) ⊆ I(b2) or I(b2) ⊆ I(b1). Because bd2(s) is the

highest vertex in
(
I(bd(s)) ∪ I(td(s))

)−
, we get that bd2(s) is b1 or b2, and (1)

follows also in this case. Symmetrically, we have

I(td2(s)) = I(td(td(s))) ∪ I(td(bd(s))). (2)

We use the definitions and (1,2) to get

I3(s) = I
(
bd2(s)

)
∪ I

(
td2(s)

)
= I

(
bd(td(s))

)
∪ I

(
bd(bd(s))

)
∪ I

(
td(td(s))

)
∪ I

(
td(bd(s))

)
= I2

(
bd(s)

)
∪ I2

(
td(s)

)
,

as desired. ut
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Proof (of Lemma 4.8). We show that for any j ≥ 0 and any vertex v ∈ Ij(s), we
have N(v) ⊆ Ij+1(s). The lemma then follows by induction. If v ∈ Ij(s)−, then
bdj(s) is on the lower side, and by definition, I(v) ⊆ I(bdj(s)). If v ∈ Ij(s)+,
by a similar argument I(v) ⊆ I(tdj(s)). Thus, N(v) ⊆ I(v) ⊆ I(bdj(s)) ∪
I(tdj(s)) = Ij+1(s), as desired. ut

Proof (of Lemma 4.9). On the one hand, d(s,bdk(s)) ≤ |πb(s, k)| = k and
d(s, tdk(s)) ≤ |πt(s, k)| = k. On the other hand, we show that bdk(s) /∈ Ik−1(s)
and tdk(s) /∈ Ik−1(s). The claim then follows by the contrapositive of Lemma 4.8.

Case 1: First, assume that bdk−1(s) ∈ Ik−1(s)−. Since I(bdk−1(s)) 6= P ,
at least one of its bounding points is a vertex v contained in Ik(s). Then, v
is strictly closer to the base line than bdk−1(s), and since v is a candidate for
bdk(s), the same applies to bdk(s). It follows that bdk(s) 6∈ Ik−1(s). Similarly,
we get that if tdk−1(s) ∈ Ik−1(s)+, the vertex tdk(s) is not in Ik−1(s).

Case 2: Second, assume that bdk−1(s) ∈ Ik−1(s)+. Then, we have that
bdk(s) /∈ Ik−1(s)−, since this set is empty. Thus, suppose for a contradiction
that bdk(s) ∈ Ik−1(s)+. This can only be the case if bdk−1(s) = tdk−1(s)
and bdk(s) = tdk(s). However, in Case 1 we showed that tdk(s) 6∈ Ik−1(s)+ if
tdk−1(s) ∈ Ik−1(s)+. Hence, bdk(s) /∈ Ik−1(s)+, as desired. ut

bdk(s)

tdk(s)

b

Ik+1(s)

Ik(s)

Fig. 8. bdk(s) or tdk(s) is on a shortest path. The vertex pj lies in one of the red
regions, pj+1 lies in one of the orange regions, and the blue region cannot contain any
point outside of P .

Proof (of Lemma 4.10). First, observe that Ik+1(s) = I(bdk(s))∪I(tdk(s)) 6= P ,
as t /∈ Ik+1(s). Let π : 〈s = p0, . . . , pm = t〉 be a shortest path from s to t, and
pj the last vertex in Ik+1(s). Without loss of generality, pj+1 is strictly to the
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right of s. By Lemma 4.8, we get that pj is not in Ik(s) and thus, again by
Lemma 4.8, we have j ≥ d(s, pj) ≥ k + 1.

First, suppose that pj and bdk(s) (resp. tdk(s)) are co-visible. Then, πb(s, k)◦
〈pj , . . . , t〉 (resp. πt(s, k) ◦ 〈pj , . . . , t〉) is a valid path of length k+ 1 + (m− j) ≤
m. Here, ◦ concatenates two paths. Second, suppose pj be visible from neither

bdk(s) nor tdk(s). First, we claim that pj is strictly to the right of bdk(s)

and tdk(s). Otherwise, since pj+1 is strictly to the right of both dominators,

we would get bdk(s), tdk(s) ∈ I(pj). Moreover, pj ∈ Ik+1(s) = I(bdk(s)) ∪
I(tdk(s)). Observation C.1 now would imply that pj can see bdk(s) or tdk(s)—

a contradiction. The claim follows. Next, we claim bdk(s) 6= tdk(s). If not,
pj ∈ I(bdk(s)) = Ik+1(s), and since pj can see a point outside of Ik+1(s), we

would get pj ∈ {`(bdk(s)), r(bdk(s))}, which again contradicts our assumption

that pj cannot see bdk(s). The claim follows. There are two cases, depending on
which dominator sees further to the right.

Case 1: r(bdk(s))x < r(tdk(s))x; see Fig. 8. Let b be the leftmost vertex in
[r(bdk(s)), r(tdk(s))]− closest to the base line. Observe that b is strictly to the
right of Ik(s), because r(bdk(s)) is strictly to the right of Ik(s). Since pj is not

visible from tdk(s), it has to be strictly to the right of and strictly below b. Next,
we claim that no vertex v ∈ Ik(s) can see pj . If one could, by Observation C.1,
we would have v ∈ I(pj). But since pj is strictly to the right of and strictly
below b, then v would be to the right of b, which is impossible. This shows the
claim. Thus, by Lemma 4.8, j ≥ d(s, pj) ≥ k + 2. We apply Observation C.2

to tdk(s), pj , r(td
k(s)) and pj+1 and get that r(tdk(s)) can see pj . Therefore,

πt(s, k) ◦ 〈r(tdk(s)), pj , . . . , t〉 is a valid path of length k + 1 + (1 +m− j) ≤ m.

Case 2: r(tdk(s))x < r(bdk(s))x. Let b be the leftmost vertex in the interval
[r(tdk(s)), r(bdk(s))]+ closest to the base line. Observe that b is strictly to the
right of Ik(s), because r(tdk(s)) is strictly to the right of Ik(s). Since pj is not

visible from bdk(s), it has to be strictly to the right of and strictly above b. Next,
we claim that no vertex v ∈ Ik(s) can see pj . If one could, by Observation C.1,
we would have v ∈ I(pj). But since pj is strictly to the right of and strictly
above b, then v would be to the right of b, which is impossible. This shows the
claim. Thus, by Lemma 4.8, j ≥ d(s, pj) ≥ k + 2. We apply Observation C.2

to bdk(s), pj , r(bdk(s)) and pj+1 and get that r(bdk(s)) can see pj . Therefore,

πb(s, k) ◦ 〈r(bdk(s)), pj , . . . , t〉 is a valid path of length k+ 1 + (1 +m− j) ≤ m,
as desired. ut

Proof (of Lemma 4.11). First, if t ∈ N(s), then we take one hop and decrease the
distance to 0. Second, suppose that t ∈ I(s)\N(s). If fd(s, t) is not a vertex, the
next vertex is nd(s, t), which is on a shortest path from s to t due to Lemma 4.2.
Otherwise, fd(s, t) is the next vertex. If fd(s, t) is on a shortest path from s to
t, we are done. Otherwise, t is not visible from fd(s, t), so fd2(s, t) has to be
the second vertex on the routed path. By Lemma 4.3, we have d(fd2(s, t), t) =
d(s, t)− 1. Third, if t ∈ I2(s) \ I(s), there is an i ≥ 1 such that the next vertex
is either ai or bi. By Lemma 4.5, this vertex is on a shortest path. Fourth,
assume t ∈ I3(s) \ I2(s). Let v1 and v2 be the next two vertices on the routing
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path. We use Lemma 4.6 and Lemma 4.10 to conclude d(v1, t) ≤ d(s, t), as v1 is
either td(s) or bd(s). Due to the construction of the routing function, we have
t ∈ I2(v1) \ I(v1). Thus, there is an i ≥ 1, such that v2 = ai(v1) or v2 = bi(v1).
By Lemma 4.5, the vertex v2 is on a shortest path from v1 to t and we can
conclude d(v2, t) = d(v1, t) − 1 ≤ d(s, t) − 1. Last, assume t /∈ I3(s). Then, the
packet is routed to a vertex p ∈ {bd(s), td(s)}, whichever is on a shortest path
to bd2(s), and then bd2(s). Lemmas 4.6 and 4.10 give d(bd2(s), t) ≤ d(s, t)− 1,
as claimed. ut


