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Abstract

We study the problem of k-visibility in the memory-
constrained model. In this model, the input resides
in a randomly accessible read-only memory of O(n)
words with O(log n) bits each. An algorithm can read
and write O(s) additional words of workspace during
its execution, and it writes its output to write-only
memory. In a given polygon P , for a given point q ∈
P , we say a point p is inside the k-visibility region
of q iff the segment pq intersects the boundary of P
at most k times. Given a simple n-vertex polygon P
stored in a read-only array and a point q ∈ P , we
give a time-space trade-off algorithm which reports a
suitable representation of the k-visibility region of q in
O(n2/s+n log s) time usingO(s) words of workspace.

1 Introduction

Memory constraints on mobile and distributed devices
have led to an increasing concern among researchers
to design algorithms that use memory efficiently. One
common model to capture this notion is the memory-
constrained model [2]. In this model, the input re-
sides in a randomly accessible read-only array of O(n)
words with O(log n) bits each. There is an addi-
tional read/write memory consisting of O(s) words
of O(log n) bits each, called the workspace of the al-
gorithm. Here, s ∈ {1, . . . , s} is a parameter of the
model. The output is written to a write-only array.

For a given polygon P and a given point q ∈ P , the
point p ∈ P is k-visible from q iff the segment pq prop-
erly intersects the boundary of P at most k times (p
and q are not counted toward k). The set of k-visible
points of P from q is called the k-visibility region of q
within P , and is denoted Vk(P, q); see Figure 1. Vis-
ibility has a rich history in computational geometry
and other fields; see [6] for an overview. While the
0-visibility region is a connected component, the k-
visibility region may be disconnected. The k-visibility
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Figure 1: The gray region is V2(P, q). The vertices
v1, v2, v3 and v4 are critical for q. ∂P is partitioned
into chains v2v3, v3v1, v1v4 and v4v2.

region of a point inside the plane in presence of a poly-
gon can be computed in O(n2) time [3].

Using constant workspace, the 0-visibility region of
a point q ∈ P can be computed in O(nr̄) time, where
r̄ denotes the number of the reflex vertices of P in the
output [4]. When the workspace is increased to O(s),
the running time decreases to O(nr/2s + n log2 r) or
O(nr/2s + n log r) randomized expected time, where
s ∈ O(log r). Computing the 0-visibility region with-
out workspace limitations takes O(n) time [1].

We provide time-space trade-off algorithms for com-
puting the k-visibility region of a simple polygon P
from q ∈ P using a small workspace.

2 Preliminaries and definitions

We have a simple polygon P in a read-only array as a
list of n vertices in counterclockwise order along the
boundary and a query point q ∈ P . The aim is to re-
port a suitable representation of Vk(P, q), using O(s)
words of workspace. We assume that the vertices of P
are in weak general position, i.e., q does not lie on the
line determined by any two vertices of P . W.l.o.g.,
assume that k is even and that k < n. If k is odd,
we compute Vk−1(P, q) = Vk(P, q), and if k ≥ n, then
P is completely k-visible. The boundary of Vk(P, q)
consists of part of the boundary of P and some chords
that cross the interior of P to join two points on its
boundary. We denote the boundary of planar set U
by ∂U . Let θ ∈ [0, 2π), and let rθ be the ray from
q that forms an angle θ with the positive-horizontal
axis. The jth edge of P that intersects rθ, starting
from q, is denoted eθ(j). Only the first k + 1 inter-
sections of rθ ∩ ∂P are k-visible from q in direction θ.
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If rθ does not stab any vertices of P , then the edge
lists, i.e., the list of intersecting edges, of both rθ−ε
and rθ+ε, for a small enough ε > 0, are the same as
the edge list of rθ. However, if rθ stabs a vertex v of
P , then the edge lists of rθ−ε and of rθ+ε differ, for
any small ε > 0. The difference is caused by the edges
incident to v. If these edges lie on opposite sides of
rθ, then the edge list of rθ+ε can be obtained from the
edge list of rθ−ε by exchanging the name of the cor-
responding edge. However, if both incident edges of v
lie on the same side of rθ, then there are two edges in
the edge list of either rθ−ε or rθ+ε which are not in the
edge list of the other. In this case, we call v a critical
vertex; see Figure 1. The number of critical vertices
in P is denoted by c. The angle of a vertex v refers to
the angle between the ray qv and positive-horizontal
axis. A chain is defined as a maximal sequence of
edges of P which does not contain a critical vertex,
except at the beginning and at the end. Thus, ∂P is
partitioned into disjoint chains; see Figure 1.

Observation 1 Let C be a chain on P . Suppose we
are given an edge e of C, and a ray rθ. We can find
the edge eθ ∈ C which intersects rθ (if it exists) in
O(|C|) time using O(1) workspace.

When rotating the ray rθ around q, the structure
of the edge list of rθ (i.e., the chains and their order)
changes only when rθ stabs a critical vertex. We will
see that in this case a segment of rθ may belong to
∂Vk(P, q). A critical vertex v on rθ is counted as both
eθ(j) and eθ(j+1), if there are j−1 intersecting edges
with rθ between q and v. Obviously, v is k-visible if its
position on rθ is not after eθ(k+ 1). A critical vertex
v is called an end vertex if its edges lie on the right
side of qv, and it is called a start vertex otherwise.

Lemma 1 If rθ stabs a k-visible critical vertex v,
then the segment on rθ between eθ(k+2) and eθ(k+3)
(if they exist) is an edge of Vk(P, q).

Proof. If v is an end vertex, then for small enough
ε > 0, the edges eθ(k + 2) and eθ(k + 3) are re-
spectively eθ−ε(k + 2) and eθ−ε(k + 3), so they are
not k-visible in direction θ − ε. These edges are also
eθ+ε(k) and eθ+ε(k+1), so they are k-visible in direc-
tion θ+ε. Hence, the segment on rθ between eθ(k+2)
and eθ(k+3) belongs to ∂Vk(P, q), and Vk(P, q) lies on
the side of the segment which has direction θ+ ε; see
Figure 2. Similarly, if v is a start vertex, the same seg-
ment belongs to ∂Vk(P, q); in this case, Vk(P, q) lies
on the side of the segment with direction θ − ε. �

Lemma 1 leads to the following definition: for a ray
rθ that stabs a k-visible critical vertex v, the segment
between eθ(k+2) and eθ(k+3) (if they exist) is called
the window of rθ. The window is CCW if Vk(P, q) lies
to the left of rθ;(see Figures 2), and CW, otherwise.

wq v
rθ+ε

rθ−ε

rθ

Figure 2: For the ray rθ which stabs the end vertex
v, the segment w is a CCW window of V4(P, q).

Each window is identified by its two endpoints, and
each endpoint is represented by a triple (θ, j, type),
where j is the index of either eθ(k + 2) or eθ(k + 3)
in P (depending on the position of two endpoints of
a window on these edges) and type ∈ {CCW,CW}
specifies the type of the window. The set of endpoints
of windows of Vk(P, q) is denoted by Wk(P, q).

Observation 2 ∂Vk(P, q) has O(n) vertices.

Lemma 2 If there exists an algorithm A(P, q, k) in
the memory-constrained model for computing W =
Wk(P, q) in TA(n) time using SA(n) workspace, where
n is the number of vertices of P , then there exists
an algorithm A′(P, q,W ) in the memory-constrained
model that reports ∂Vk(P, q) in O(|W |TA(n)+n) time
using O(SA(n)) workspace.

Proof. The algorithm A′ works as follows: start from
a point w0 ∈ W and walk on ∂P in CCW direction
until the next element w1 ∈ W . If this walk is on
the k-visible side of w0 (which is specified by the type
of w0), report the visited edges of P ; otherwise, re-
port only the windows with endpoint(s) w0 and/or
w1. Repeat this procedure until the entire boundary
∂P has been traversed. Specifically, in step i of A′,
run algorithm A and find wi = (θi, ji, typei) which
minimizes ji, with ji > ji−1 for i 6= 0. If there is
more than one element which minimizes ji, choose
the one among them that minimizes |θi− θi−1| (mini-
mizes θi for i = 0). Since the output of A is write-only,
in each step i of A′ we have to run A again to find
wi, requiring O(|W |TA(n)) total time. Regarding the
workspace, in step i of A′ we store only wi−1 and wi;
however, for finding wi we need as much workspace as
A does. Thus, the workspace of A′ is O(SA(n)). �

Lemma 2 shows that given Wk(P, q) and P , we can
uniquely report ∂Vk(P, q). This motivates us to focus
on algorithms for computing Wk(P, q). We assume
that P has at least one critical vertex, if not, then
∂Vk(P, q) = ∂P . From now on, ei(j) denotes the jth

intersecting edge of the ray qvi, where vi is a critical
vertex of P . However, instead of ei(j), it suffices to
find an arbitrary edge of the chain containing ei(j)
and then apply Observation 1 to find ei(j). Therefore,
we refer to any edge of the chain containing ei(j) by
ei(j). The following algorithms, for any critical vertex
vi, examine its position relative to ei(k+1) on qvi and,
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Figure 3: vi−1 is an end vertex. ei(5) is the second
intersecting chain to the right of ei−1(5).

if it is k-visible, reports the segment on qvi which is
between ei(k + 2) and ei(k + 3) (if they exist).

3 A constant-memory algorithm

In this section, we assume that only O(1) workspace is
available. Suppose that v0 is the critical vertex with
smallest angle. The algorithm starts from qv0 and
finds e0(k + 1) in O(kn) time using O(1) workspace.
Basically, the algorithm passes over the input k + 1
times, and in each pass, it finds the next intersecting
edge of qv0 until the (k + 1)th one, e0(k + 1). If v0
does not lie after e0(k+1) on qv0, in other words, if v0
is k-visible, it reports the window of qv0. Finding the
window can be done in two passes by determining the
first and the second intersecting edge after e0(k + 1)
on qv0. Then, the algorithm finds the next critical
vertex with smallest angle after v0; we call it v1. The
algorithm determines e1(k + 1), and if v1 is k-visible,
it reports the window of qv1 (if it exists). However,
for 1 ≤ i, we find ei(k + 1) in O(n) time by using
ei−1(k + 1). More precisely, if vi−1 is an end vertex,
then the incident edges to vi−1 do not intersect qvi;
see Figure 3. If vi is a start vertex, then the incident
edges to vi do not intersect qvi−1. Except for these
edges, all the other intersecting edges of qvi−1 inter-
sect qvi in the same order, and vice versa. Hence, if
ei(k + 1) intersects qvi−1, then there is at most one
other edge between ei−1(k+ 1) and ei(k+ 1) that in-
tersects qvi−1. Thus, ei(k+1) can be found in at most
two passes over the input. More accurately, we have
found only an edge of the chain of ei(k+ 1); applying
Observation 1, the edge ei(k + 1) can be obtained.
The algorithm repeats the above procedure until all
critical vertices have been processed. Since the num-
ber of critical vertices is c, and since processing each
critical vertex takes O(n) time, except for v0, which
takes O(kn) time, the running time of the algorithm
is O(kn + cn), using O(1) workspace. This leads to
the following theorem:

Theorem 3 Given a simple polygon P with n ver-
tices in a read-only array, a point q ∈ P , and a
constant k ∈ N, there is an algorithm which reports
Wk(P, q) in O(kn+ cn) time using O(1) workspace.

4 Memory-constrained algorithms

In this section, we assume O(s) workspace is available,
and we show how to exploit this for a faster algorithm.
The following lemma is implicitly mentioned in [5]
(the second paragraph in the proof of Theorem 2.1)

Lemma 4 Given a read-only array A of size n, O(s)
additional workspace and a specific element x ∈ A,
there is an algorithm that finds the s smallest ele-
ments in A that are larger than x in O(n) time.

Proof. In the first step, insert the first 2s elements
of A that are larger than x into workspace memory
(without sorting them). Select the median of the 2s
elements in memory in O(s) time, and remove the
elements which are larger than the median. In the
next step, insert the next batch of s elements of A
that are larger than x into memory and again find
their median. Remove the elements larger than the
median. Repeat the latter step until all elements of
A are processed. Clearly, at the end of each step, the
s smallest elements among those processed so far are
in memory. Since the number of batches is O(n/s),
the running time is O(n) using O(s) workspace. �

Lemma 5 Given a read-only array A of size n and
O(s) additional workspace, there is an algorithm that
finds the kth smallest element in A in O(dk/sen) time.

Proof. In the first step, apply Lemma 4 to find the
first batch of s smallest elements in A and to insert
them into memory in O(n) time. If k < s, select the
kth smallest element in memory in O(s) time; other-
wise, find the largest element in memory. In step i,
apply Lemma 4 to find the ith batch of s smallest ele-
ments of A and insert them into memory. If k < i · s,
select the (k− (i−1)s)th smallest element in memory
in O(s) time; otherwise, find the largest element in
memory and repeat. The element being sought is in
the dk/seth batch of s smallest elements; therefore,the
running time is O(dk/sen) using O(s) workspace. �

There is an O(n log logs n) expected time random-
ized algorithm for the selection problem using O(s)
workspace in the read-only model [7]. Depending on
k, s, and n, we choose the latter algorithm or the one
in Lemma 5. In each iteration of the following algo-
rithm, we find the next batch of s critical vertices with
smallest angles and sort them in memory. Then, we
construct a data structure T that contains the possi-
ble candidates for the (k + 1)th intersecting edges of
the rays from q to the critical vertices of the batch.
In each step, when we process a critical vertex of the
batch, we use T to find the window of the critical ver-
tex, and we update T . For updating T efficiently, we
use another data structure Tθ; see below. We repeat
this procedure for the next batch of s critical vertices.
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As in the constant-memory algorithm, we find the
critical vertex v0 with smallest angle. We apply
Lemma 4 to find the batch of s critical vertices with
smallest angles after v0, and we sort them in mem-
ory. For qv0, we apply Lemma 5 to find e0(k + 1),
and if v0 is k-visible, we report the window (if it ex-
ists). Then, we apply Lemma 4 to find the two batches
of 2s adjacent intersecting edges to the right and to
the left of e0(k + 1) on qv0, we insert them in a bal-
anced search tree T . Hence, T stores all e0(j), for
k+ 1− 2s ≤ j ≤ k+ 1 + 2s, in sorted order according
to their intersection with qv0. These edges are can-
didates for the (k + 1)th intersecting edge of the next
s rays in angular order or ei(k + 1), for 1 ≤ i ≤ s.
This is because, as we explained before, if ei(k + 1)
intersects qvi−1, then there is at most one other edge
between ei−1(k+1) and ei(k+1) that intersects qvi−1.
Therefore, ei(k + 1) is either an intersecting edge of
qv0, and in this case there are at most 2i − 1 edges
between e0(k+1) and ei(k+1), or ei(k+1) is an edge
which is inserted in T later. Then for each edge in T
we determine the larger angle of its endpoints. This
angle shows the position of the endpoint between the
rays from q to the critical vertices. Specifically, if the
edge is incident to a non-critical vertex, this angle de-
termines the step in which the name of the edge in T
should be updated to the other incident edge to the
vertex. By traversing ∂P we determine these angles
for the edges in T , and we insert them in a balanced
search tree Tθ, whose entries are connected through
cross-pointers to their corresponding edges in T . We
construct Tθ in O(n+ s log s) time.

After creating T and Tθ, we start from the next
critical vertex with smallest angle after v0, called v1,
and we update T so that it contains the edge list of
qv1: If there is any angle in Tθ which is smaller than
the angle of v1, we change the corresponding edge of
the angle in T with its previous or next edge in P .
In other words, we have found a non-critical vertex
between qv0 and qv1 and so we change its incident
edge, which has been already in T , with its other in-
cident edge. Then we find the angle of the new edge
and insert it into Tθ. These two steps take O(1) and
O(log s) time for each angle that meets the condition.
By doing these steps, changes in the edge list which
are caused by non-critical vertices between qv0 and
qv1 are handled. Then we update T and consequently
Tθ according to the type of v1: if v1 is an end (start)
critical vertex, we remove (insert) the two edges which
are incident to v1. In both cases, we update T only if
the incident edges to v1 are in the interval of the 2s
intersecting edges of qv0 in T , this takes O(log s) time.
Now T contains 2s intersecting edges of qv1, and we
can find e1(k + 1) using the position of e0(k + 1) and
its neighbours in T in O(1) time. We repeat this pro-
cedure for 1 ≤ i ≤ s, and we determine ei(k + 1) and
the window of qvi by using T and ei−1(k + 1).

After processing the first batch, we apply Lemma 4
to find the next batch of s critical vertices with small-
est angle, and we sort them in memory. The last
updated T is not usable anymore, because it does
not necessarily contain any right or left neighbours of
es(k + 1). Applying Lemma 4 as before, we find the
two batches of 2s adjacent intersecting edges to the
right and to the left of es(k+ 1) on qvs and we insert
them into T . We also update Tθ. Then similarly for
each s < i ≤ 2s, we find ei(k+ 1) and its correspond-
ing window, and we update T and Tθ. In summary,
updating T considering the changes that are caused
by critical and non-critical vertices of the batch takes
respectively O(s log s) and O(n′ log s) time, where n′

is the number of non-critical vertices that lie on the
interval of the batch. In the next iteration, we re-
peat the same procedure for the next batch of critical
vertices. We stop when all critical vertices are pro-
cessed. Since the batches do not have any intersec-
tions, each non-critical vertex lies only on one batch.
Thus, updating T in all batches takes O(n log s) time.
All together, finding the batches of s critical vertices,
constructing and updating the data structures and re-
porting the windows take O(cn/s+n log s) time for all
the critical vertices, in addition to the running time
of k-selection in the first batch.

Theorem 6 Given a simple polygon P with n ver-
tices in a read-only array, a point q ∈ P , and a
constant k ∈ N, there is an algorithm which reports
Wk(P, q) in O(cn/s+n log s+min{kn/s, n log logs n})
time using O(s) workspace.
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