LiveCG: an Interactive Visualization Environment for
Computational Geometry

Sebastian Kirten
Institut fr Informatik, FU Berlin
sebastian.kuerten@fu-berlin.de

ABSTRACT

We describe LiveCG, an interactive visualization environ-
ment for algorithms and data structures from Computa-
tional Geometry. LiveCG offers many primitives that make
it easy to create interactive algorithm animations and illus-
trations for education and research. It can be seen as an
attempt to develop a modern version of technologically ob-
solete systems such as XYZ Geobench or the Workbench for
Computational Geometry.

1. INTRODUCTION

Algorithm animation has been very popular in the past,
particularly in computational geometry. Nowadays, how-
ever, visualizations have become increasingly rare [10], and
many old animations have disappeared along with the soft-
ware used to create them. Historically, there were many
visualization systems for computational geometry, such as
GeoLab [4], XYZ GeoBench (9], Workbench for Computa-
tional Geometry [5], and GASP [11]. None of these are
readily available today.

We regret this development, and we see the need for a new
visualization platform using modern technology. To ease the
task for developers, and to make the results widely accessible
for users, we have developed the LiveCG framework.

2. DESIGN GOALS

The main design goals of LiveCG are usability, flexibility,
modularity, and extendability. For developers, the frame-
work provides a programming library for the creation of vi-
sualizations. It includes abstract data types for geometric
objects, frequently used data structures, and implementa-
tions of basic geometric predicates and operations.

For users of the visualizations, there is an editor to create
inputs for the different algorithms in a consistent fashion.
This also relieves programmers from the burden of develop-
ing such a component for every new visualization.

The resulting visualizations are useful in many different
settings. Once a valuable visualization has been created, it
Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

SoCG’14, June 8-11, 2014, Kyoto, Japan.
Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-2594-3/14/06 ...$15.00.

Wolfgang Mulzer
Institut fir Informatik, FU Berlin
mulzer@inf.fu-berlin.de

=) Live €6 4 =X
File Tools Edit Presets Visualizations View Window Help
OB® © & ./ WidE (e -

Figure 1: The Geometry Editor.

can not only be used to assist experimentation and teaching,
but also to create figures for publications or presentations.

3. THE FRAMEWORK

The framework is implemented in Java to support all ma-
jor desktop platforms out of the box and to make it easy to
port existing visualizations and applets. The programming
library has abstract data types for points, polygonal chains,
and polygons. The Geometry Editor lets users create these
objects; see Fig. 1. It also allows for experimentation with
the algorithms. Geometric objects can be created, modi-
fied, saved, and loaded, and animations can be launched
from here. The framework already includes a database of
example geometries for the implemented algorithms. It can
be accessed through the editor’s main menu.

The programming library also includes implementations
for rectangles, line segments, the DCEL, and triangulations,
among others. There are also bidirectional bindings to the
JTS Topology Suite' and the geometry packages from AWT.
This provides access to various geometric operations, such
as spatial predicates, Boolean operations with polygonal ob-
jects, buffering, area and length measurements, geometry
simplification, and spatial indexing.

We designed an abstraction layer for the implementation
of graphical visualizations to support their applicability for

http://tsusiatsoftware.net/jts/main.html

different purposes. This is essentially a drawing interface
against which the visualizations are programmed. We pro-
vide several back ends for this layer. Currently, the frame-
work supports the creation of different types of raster images
(PNG, JPEG, etc.), SVG images, TikZ figures and Ipe files.

In addition to the GUI, the framework comes with a com-
mand line interface (CLI) that can be used to create snap-
shots of algorithm animations in the aforementioned file for-
mats. Even though this export functionality is also avail-
able through the graphical menu, the CLI provides some
extra comfort. In particular, it can be used for scripting,
e.g., when generating a website or when creating figures for
a publication or presentation.

For educational purposes, visualizations can implement an
explanation interface. This allows the framework to display
explanatory information about the actions of an algorithm
along with its graphical depiction.

4. EXISTING VISUALIZATIONS

The framework already provides a number of visualiza-
tions for algorithms and data structures. The current list
includes the following:

DCEL. This visualization can be used in a standalone fash-
ion to examine the DCEL of an arrangement. It can also be
a building block for more advanced visualizations.
Polygon Triangulation. A static visualization of the al-
gorithm by Garey et al. [7] that partitions a polygon into
monotone pieces and then triangulates each piece to obtain
a triangulation of the polygon.

Shortest Paths in Polygons. An interactive animation
of the algorithm by Lee and Preparata [8] that computes
the shortest path between two nodes inside a polygon. The
diagonal-wise progress of the algorithm can be examined as
well as the manipulation of the funnel at each encountered
diagonal.

Fortune’s Sweep. An animation for Fortune’s sweep-line
algorithm [6] for computing Voronoi diagrams was ported
to the framework based on an implementation developed
at the University of Copenhagen.? It shows the emerging
Voronoi diagram for arbitrary sweepline positions, the wave-
front, site- and circle-events, and optionally the correspond-
ing Delaunay triangulation. The DCEL-visualization has
been integrated to elucidate the details of the construction
of the DCEL representation of the Voronoi cells.

Chan’s Algorithm. The visualization provides an ani-
mation of the gift-wrapping step of Chan’s optimal convex
hull algorithm [3]. It takes as input a set of convex hulls
and computes the global convex hull by walking around the
small convex hulls in parallel. The animation presents for
each vertex of the resulting convex hull how the algorithm
determines the tangent to one of the small hulls that maxi-
mizes the emerging hull’s interior angle.

Free Space Diagram. The free space diagram, relevant
for the classic algorithm for computing the Fréchet distance
by Alt and Godau [1], can be examined for two polygo-
nal chains. The visualization can also display the reachable
space and its intersection with the diagram’s cell boundaries.
Distance Terrain. This diagram occurs in the algorithm
by Buchin et al. [2] for computing the Fréchet distance by
determining an optimal path through the terrain. Similar to
the free space diagram, it can be visualized for two polygonal

2http://www.diku.dk/hjemmesider/studerende/duff/Fortune/

chains. The three dimensional terrain is displayed as a two-
dimensional heat-map by mapping each height to a distinct
color.

S. FUTURE WORK

We hope that more visualizations will be implemented in
the future to cover more basic algorithms and data struc-
tures of the field. The goal would be to have a catalogue
that includes most of the topics taught in an introductory
course on computational geometry, so that the framework
can be used as a thorough instructional aid.

Care has already been taken to make it possible to cre-
ate a browser-based back end by utilizing the Google Web
Toolkit (GWT). A future goal is to implement such a back
end to enable the creation of interactive web-based learning
resources for computational geometry.

6. REFERENCES

[1] H. Alt and M. Godau. Computing the Fréchet
distance between two polygonal curves. Internat. J.
Comput. Geom. Appl., 5(01-02):75-91, 1995.

[2] K. Buchin, M. Buchin, R. van Leusden,

W. Meulemans, and W. Mulzer. Computing the
Fréchet distance with a retractable leash. In Proc.
21st Annu. European Sympos. Algorithms (ESA),
pages 241-252, 2013.

[3] T. M. Chan. Optimal output-sensitive convex hull
algorithms in two and three dimensions. Discrete
Comput. Geom., 16(4):361-368, 1996.

[4] P. de Rezende and W. Jacometti. Animation of
geometric algorithms using GeolLab. In Proc. 9th
Annu. ACM Sympos. Comput. Geom. (SoCG), pages
401-402, 1993.

[5] P. Epstein, J. Kavanagh, A. Knight, J. May,

T. Nguyen, and J.-R. Sack. A workbench for
computational geometry. Algorithmica, 11(4):404-428,
1994.

[6] S. Fortune. A sweepline algorithm for Voronoi
diagrams. Algorithmica, 2(1-4):153-174, 1987.

[7] M. R. Garey, D. S. Johnson, F. P. Preparata, and
R. E. Tarjan. Triangulating a simple polygon. Inform.
Process. Lett., 7(4):175-179, 1978.

[8] D. T. Lee and F. P. Preparata. Euclidean shortest
paths in the presence of rectilinear barriers. Networks,
14(3):393-410, 1984.

[9] P. Schorn. An object-oriented workbench for
experimental geometric computation. In Proc. 2nd
Canad. Conf. Comput. Geom. (CCCG), pages
172-175, 1990.

[10] C. A. Shaffer, M. L. Cooper, A. J. D. Alon, M. Akbar,
M. Stewart, S. Ponce, and S. H. Edwards. Algorithm
visualization: The state of the field. ACM
Transactions on Computing Fducation, 10:1-22, 2010.

[11] A. Tal and D. Dobkin. Visualization of geometric
algorithms. IFEE Transactions on Visualization and
Computer Graphics, 1(2):194-204, 1995.

