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UNIONS OF ONIONS: PREPROCESSING IMPRECISE POINTS FOR FAST
ONION DECOMPOSITION∗

Maarten Löffler† and Wolfgang Mulzer‡

Abstract. Let D be a set of n pairwise disjoint unit disks in the plane. We describe how
to build a data structure for D so that for any point set P containing exactly one point
from each disk, we can quickly find the onion decomposition (convex layers) of P .

Our data structure can be built in O(n log n) time and has linear size. Given P , we
can find its onion decomposition in O(n log k) time, where k is the number of layers. We
also provide a matching lower bound.

Our solution is based on a recursive space decomposition, combined with a fast
algorithm to compute the union of two disjoint onion decompositions.

1 Introduction

Let P be a planar n-point set. Take the convex hull of P and remove it; repeat until P
becomes empty. This process is called onion peeling, and the resulting decomposition of
P into convex polygons is the onion decomposition, or onion for short, of P . It can be
computed in O(n log n) time [6]. Onions provide a natural, more robust, generalization of
the convex hull, and they have applications in pattern recognition, statistics, and planar
halfspace range searching [7, 15,23].

Recently, a new paradigm has emerged for modeling data imprecision. Suppose we
need to compute some interesting property of a planar point set. Suppose further that
we have some advance knowledge about the possible locations of the points, e.g., from an
imprecise sensor measurement. We would like to preprocess this information, so that once
the precise inputs are available, we can obtain our structure faster. We will study the
complexity of computing onions in this framework.

1.1 Related Work

The notion of onion decompositions first appears in the computational statistics litera-
ture [15], and several rather brute-force algorithms to compute it have been suggested
(see [9] and the references therein). In the computational geometry community, Overmars
and van Leeuwen [22] presented the first near-linear time algorithm, requiring O(n log2 n)
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Figure 1: (a) Two disjoint onions. (b) Their union.

time. Chazelle [6] improved this to an optimal O(n log n) time algorithm. Nielsen [21] gave
an output-sensitive algorithm to compute only the outermost k layers in O(n log hk) time,
where hk is the number of vertices participating on the outermost k layers. In R3, Chan [5]
described an O(n log6 n) expected time algorithm.

The framework for preprocessing regions that represent points was first introduced
by Held and Mitchell [12], who show how to store a set of disjoint unit disks in a data
structure such that any point set containing one point from each disk can be triangulated
in linear time. This result was later extended to arbitrary disjoint regions in the plane by
van Kreveld et al. [17]. Löffler and Snoeyink first showed that the Delaunay triangulation
(or its dual, the Voronoi diagram) can also be computed in linear time after preprocessing
a set of disjoint unit disks [18]. This result was later extended by Buchin et al. [4], and
Devillers gives a practical alternative [8]. Ezra and Mulzer [10] show how to preprocess a
set of lines in the plane such that the convex hull of a set of points with one point on each
line can be computed faster than n log n time.

These results also relate to the update complexity model. In this paradigm, the
input values or points come with some uncertainty, but it is assumed that during the
execution of the algorithm, the values or locations can be obtained exactly, or with increased
precision, at a certain cost. The goal is then to compute a certain combinatorial property
or structure of the precise set of points, while minimising the cost of the updates made by
the algorithm [3,11,13,24].

1.2 Results

We begin by showing that the union of two disjoint onions can be computed in O(n+k2 log n)
time, where k is the number of layers in the resulting onion.

We apply this algorithm to obtain an efficient solution to the onion preprocessing
problem mentioned in the introduction. Given n pairwise disjoint unit disks that model an
imprecise point set, we build a data structure of size O(n) such that the onion decomposition
of an instance can be retrieved in O(n log k) time, where k is the number of layers in the
resulting onion. We present several preprocessing algorithms. The first is very simple and
achieves O(n log n) expected time. The second and third algorithm make this guarantee
deterministic, at the cost of worse constants and/or a more involved algorithm.

We also show that the dependence on k is necessary: in the worst case, any comparison-
based algorithm can be forced to take Ω(n log k) time on some instances.
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2 Preliminaries and De�nitions

Let P be a set of n points in R2. The onion decomposition, or onion, of P , is the sequence
(P ) of nested convex polygons with vertices from P , constructed recursively as follows:

if P 6= ∅, we set (P ) := {ch(P )} ∪ (P \ ch(P )), where ch(P ) is the convex hull of P ; if
P = ∅, then (P ) := ∅ [6]. An element of (P ) is called a layer of P . We represent the
layers of (P ) as dynamic balanced binary search trees, so that operations split and join
can be performed in O(log n) time.

Let D be a set of disjoint unit disks in R2. We say a point set P is a sample from D
if every disk in D contains exactly one point from P . We write log for the logarithm with
base 2.

3 Main Result

Our data structure and accompanying query algorithm require several pieces, to be described
in the following sections.

3.1 Unions of Onions

Suppose we have two point sets P and Q, together with their onions. We show how to find
(P ∪ Q) quickly, given that (P ) and (Q) are disjoint, given that ch(P ) and ch(Q) do

not overlap. Deleting points can only decrease the number of layers, so:

Observation 3.1. Let P,Q ⊆ R2. Then (P ) and (Q) cannot have more layers than
(P ∪Q). �

The following lemma constitutes the main ingredient of our onion-union algorithm.
A convex chain is any connected subset of a convex closed curve.

Lemma 3.2. Let A and B be two non-crossing convex polygonal chains. We can find
ch(A ∪B) in O(log n) time, where n is the total number of vertices in A and B.

Proof. Since A and B do not cross, the pieces of A and B that appear on ch(A ∪ B) are
both connected. If not, there would be on ch(A∪B) four points that alternate between A,
B, A, and B, in that order. However, the points on A must be connected inside ch(A ∪B)
by the polygonal chain; the same holds for the points on B. Thus, the chains A and B
would cross, which contradicts the assumption of the lemma.

Since A and B are convex chains, we can compute ch(A), ch(B) in O(log n) time.
Furthermore, since A and B are disjoint, we can also, in O(log n) time, make sure that
ch(A) ∩ ch(B) = ∅, by removing parts from A or B, if necessary. Now we can find the
bitangents of ch(A) and ch(B) in logarithmic time [16].

Lemma 3.3. Suppose (P ) has k layers. Let A be the outer layer of (P ), and p, q be two
vertices of A. Let A1 be the points on A between p and q, going counter-clockwise. We can
find (P \A1) in O(k log n) time.
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Figure 2: (a) A half-eaten onion; (b) the restored onion.

Proof. The points p and q partition A into two pieces, A1 and A2. Let B be the second
layer of (P ). The outer layer of (P \A1) is the convex hull of P \A1, i.e., the convex hull
of A2 and B. By Lemma 3.2, we can find it in O(log n) time. Let p′, q′ ∈ P be the points
on B where the outer layer of (P \ A1) connects. We remove the part between p′ and q′

from B, and use recursion to compute the remaining layers of (P \A1) in O((k− 1) log n)
time; see Figure 2.

We conclude with the main theorem of this section:

Theorem 3.4. Let P and Q be two planar point sets of total size n. Suppose that (P )
and (Q) are disjoint. We can find the onion (P ∪Q) in O(k2 log n) time, where k is the
resulting number of layers.

Proof. By Observation 3.1, (P ) and (Q) each have at most k layers. We use Lemma 3.2
to find ch(P ∪Q) in O(log n) time. By Lemma 3.3, the remainders of (P ) and (Q) can
be restored to proper onions in O(k log n) time. The result follows by induction.

3.2 Space Decomposition Trees

We now describe how to preprocess the disks in D for fast divide-and-conquer. A space
decomposition tree (SDT) T is a rooted binary tree where each node v is associated with
a planar region Rv. The root corresponds to all of R2; for each leaf v of T , the region Rv
intersects only a constant number of disks in D. Furthermore, each inner node v in T is
associated with a directed line `v, so that if u is the left child and w the right child of v,
then Ru := Rv ∩ `+v and Rw := Rv ∩ `−v . Here, `+v is the halfplane to the left of `v and `−v
the halfplane to the right of `v; see Figure 3.

Let α, β ∈ (0, 1), and let T be an SDT. For a node v of T , let dv denote the number
of disks in D that intersect Rv. We call T an (α, β)-SDT for D if for every inner node v we

have that (i) the line `v intersects at most dβv disks that intersect Rv; and (ii) du, dw ≤ αdv,
where u and w are the children of v.

Lemma 3.5. Let T be an (α, β)-SDT. The tree T has height O(log n) and O(n) nodes.
Furthermore,

∑
v∈T dv = O(n log n).
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Figure 3: A space decomposition tree for 21 unit disks.

Proof. The fact that T has height O(log n) is immediate from property (ii) of an (α, β)-
SDT. For i = 0, . . . , log n, let Vi := {v ∈ T | dv ∈ [2i, 2i+1)}, the set of nodes whose regions
intersect between 2i and 2i+1 disks. Note that the sets Vi constitute a partition of the nodes.
Let Ṽi ⊆ Vi be the nodes in Vi whose parent is not in Vi. By property (ii) again, the dv
along any root-leaf path in T are monotonically decreasing, so the nodes in Ṽi are unrelated
(i.e., no node in Ṽi is an ancestor or descendant of another node in Ṽi). Furthermore, the
nodes in Vi induce in T a forest Fi such that each tree in Fi has a root from Ṽi and constant
height (depending on α).

Let Di :=
∑

v∈Ṽi dv. We claim that for i = 0, . . . , log n, we have

Di ≤ n
logn∏
j=i

(
1 + c2j(β−1)

)
, (1)

for some large enough constant c. Indeed, consider a node v ∈ Ṽj . As noted above, v
is the root of a tree Fv of constant height in the forest induced by Vj . By property (i),

any node u in this subtree adds at most dβu < 2(j+1)β additional disk intersections (i.e.,
da + db ≤ du + 2(j+1)β, where a, b are the children of u). Since Fv has constant size, the
total increase in disk intersections in Fv is thus at most c′2(j+1)β, for some constant c′.
Since dv ≥ 2j , it follows that the number of disk intersections increases multiplicatively
by a factor of at most 1 + c′2(j+1)β/2j ≤ 1 + c2j(β−1), for some constant c. The trees Fv
partition T and the root intersects n disks, so for the nodes in Ṽi, the total number of
disk intersections has increased by a factor of at most

∏logn
j=i

(
1 + c2j(β−1)

)
, giving (1). The

product in (1) is easily estimated:

Di ≤ n
logn∏
j=i

(1 + c2j(β−1)) ≤ ne
∑logn
j=i c2j(β−1)

= neO(1) = O(n),

since β < 1. Hence, each set Ṽi has at most O(n/2i) nodes for i = 1, . . . , log n. The total
size of all Ṽi is O(n). Since each v ∈ Vi lies in a constant size subtree rooted at a w ∈ Ṽi, it
follows that T has O(n) nodes. For the same reason, we get that

∑
v∈T dv = O(n log n).
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Now there are several ways to obtain an (α, β)-SDT for D. A very simple construc-
tion is based on the following lemma, which is an algorithmic version of a result by Alon et
al. [2, Theorem 1.2]. See Section 4 for alternative approaches.

Lemma 3.6. There exists a constant c ≥ 0, so that for any set D of m congruent nonover-
lapping disks in the plane, there is a line ` with at least m/2− c

√
m logm disks completely

to each side of it. We can find ` in O(m) expected time.

Proof. Our proof closely follows Alon et al. [2, Section 2]. Set r := b
√
m/ logmc, and pick

a random integer z between 1 and r/2. Find a line ` whose angle with the x-axis is (z/r)π
and that has bm/2c disk centers on each side. Given z, we can find ` in O(m) time by a
median computation. The proof by Alon et al. implies that with probability at least 1/2
over the choice of z, the line ` intersects at most c

√
m logm disks in D, for some constant

c ≥ 0. Thus, we need two tries in expectation to find a good line `. The expected running
time is O(m).

To obtain a (1/2 + ε, 1/2 + ε)-SDT T for D, we apply Lemma 3.6 recursively until
the region for each node intersects only a constant number of disks. Since the expected
running time per node is linear in the number of intersected disks, Lemma 3.5 shows that
the total expected running time is O(n log n).

By Lemma 3.5, the leaves of T induce a planar subdivision GT with O(n) faces. We
add a large enough bounding box to GT and triangulate the resulting graph. Since GT is
planar, the triangulation has complexity O(n) and can be computed in the same time (no
need for heavy machinery—all faces of GT are convex). With each disk in D, we store the
list of triangles that intersect it (recall that each triangle intersects a constant number of
disks). This again takes O(n) time and space. We conclude with the main theorem of this
section:

Theorem 3.7. Let D be a set of n disjoint unit disks in R2. In O(n log n) expected time,
we can construct an (1/2 + ε, 1/2 + ε) space decompositon tree T for D. Furthermore, for
each disk D ∈ D, we have a list of triangles TD that cover the leaf regions of T that intersect
D.

3.3 Processing a Precise Input

Suppose we have an (α, β)-SDT together with a point location structure as in Theorem 3.7.
Let P be a sample from D. Suppose first that we know k, the number of layers in (P ).
For each input point pi, let Di ∈ D be the corresponding disk. We check all triangles in
TDi , until we find the one that contains pi. Since there are O(n) triangles, and each one
intersects O(1) disks, this takes O(n) total time for all points in P . Afterwards, we know
for each point in P the leaf of T that contains it.

For each node v of T , let nv be the number of points in the subtree rooted at v.
We can compute the nv’s in total time O(n) by a postorder traversal of T . The upper
tree Tu of T consists of all nodes v with nv ≥ k2. Each leaf of Tu corresponds to a subset
of P with O(k2) points. For each such subset, we use Chazelle’s algorithm [6] to find its
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onion decomposition in O(k2 log k) time. Since the subsets are disjoint, this takes O(n log k)
total time. Now, in order to obtain (P ), we perform a postorder traversal of Tu, using
Theorem 3.4 in each node to unite the onions of its children. This gives (P ) at the root.

The time for the onion union at a node v is O(k2 log nv). We claim that for i =
2 log k, . . . , log n, the upper tree Tu contains at most O(n/2i) nodes v with nv ∈ [2i, 2i+1).
Given the claim, the total work is proportional to

∑
v∈Tu

k2 log nv ≤
logn∑

i=2 log k

n

2i
k2(i+ 1) = nk2

logn∑
i=2 log k

i+ 1

2i
= O(n log k),

since the series
∑logn

i=2 log k(i+ 1)/2i is dominated by the first term (log k)/k2. It remains to

prove the claim. Fix i ∈ {2 log k, . . . , log n} and let Vi be the nodes in Tu with nv ∈ [2i, 2
i+1),

whose parents have nv ≥ 2i+1. Since the nodes in Vi represent disjoint subsets of P , we
have |Vi| ≤ n/2i. Furthermore, by property (i) of an (α, β)-SDT , both children w1, w2 for
every node v ∈ Tu have nw1 , nw2 ≤ αnv, so that after O(1) levels, all descendants w of
v ∈ V have nw < 2i. The claim follows.

So far, we have assumed that k is given. Using standard exponential search, this
requirement can be removed. More precisely, for i = 1, . . . , log log n, set ki = 22i . Run the
above algorithm for k = k0, k1, . . . . If the algorithm succeeds, report the result. If not,
abort as soon as it turns out that an intermediate onion has more than ki layers and try
ki+1. The total time is

log log k∑
i=0

O(n2i) = O(n log k),

as desired. This finally proves our main result.

Theorem 3.8. Let D be a set of n disjoint unit disks in R2. We can build a data structure
that stores D, of size O(n), in O(n log n) expected time, such that given a sample P of D,
we can compute (P ) in O(n log k) time, where k is the number of layers in (P ). �

Remark. Using the same approach, without the exponential search, we can also compute
the outermost k layers of an onion with arbitrarily many layers in O(n log k) time, for any
k. In order to achieve this, we simply abort the union algorithm whenever k layers have
been found, and note that by Observation 3.1, the points in P not on the outermost k layers
of (P ) will never be part of the outermost k layers of (Q) for any Q ⊃ P .

4 Deterministic Preprocessing

We now present alternatives to Lemma 3.6. First, we describe a very simple construction
that gives a deterministic way to build an (9/10 + ε, 1/2 + ε)-SDT in O(n log n) time.

Lemma 4.1. Let D be a set of m non-overlapping unit disks. Suppose that the centers of
D have been sorted in horizontal and vertical direction. Then we can find in O(m) time a
(vertical or horizontal) line `, such that ` intersects O(

√
m) disks and such that ` has at

least m/10 disks from D completely to each side.
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Proof. Let Dl, Dr, Dt, Db be the m/10 left-, right-, top-, and bottommost disks in D,
respectively. We can find these disks in O(m) time, since we know the horizontal and
vertical order of their centers. We call Do := Dl ∪ Dr ∪ Dt ∪ Db the outer disks, and
Di := D \ Do the inner disks.

Let R be the smallest axis-aligned rectangle that contains all inner disks. Again, R
can be found in linear time. There are Ω(m) inner disks, and all disks are disjoint, so the
area of R must be Ω(m). Thus, R has width or height Ω(

√
m); assume wlog that it has

width Ω(
√
m). Let R′ ⊆ R be the rectangle obtained by moving the left boundary of R to

the right by two units, and the right boundary of R to the left by two units. The rectangle
R′ still has width Ω(

√
m), and it intersects no disks from Dl∪Dr. There are Ω(

√
m) vertical

lines that intersect R′ and that are spaced at least one unit apart. Each such line has at
least m/10 disks completely to each side, and each disk is intersected by at most one line.
Hence, there must be a line that intersects O(

√
m) disks, as claimed. We can find such a

line in O(m) time by sweeping the disks from left to right.

The next lemma improves the constants of the previous construction. It allows us
to compute an (1/2 + ε, 5/6 + ε)-SDT tree in deterministic time O(n log2 n), but it requires
comparatively heavy machinery.

Lemma 4.2. Let D be a set of m congruent non-overlapping disks. In deterministic time
O(m logm), we can find a line ` such that there are at least m/2−Θ(m5/6) disks completely
to each side of `.

Proof. Let X be a planar n-point set, and let 1 ≤ r ≤ n be a parameter. A simplicial
r-partition of X is a sequence ∆1, . . . ,∆a of a = Θ(r) triangles and a partition X =
X1∪̇ · · · ∪̇Xa of X into a pieces such that (i) for i = 1, . . . , a, we have Xi ⊆ ∆i and |Xi| ∈
{n/r, . . . , 2n/r}; and (ii) every line ` intersects O(

√
r) triangles ∆i. Matoušek showed that

a simplicial r-partition exists for every planar n-point set and for every r. Furthermore,
this partition can be found in O(n log r) time (provided that r ≤ n1−δ, for some δ > 0) [19,
Theorem 4.7].

Let γ, δ ∈ (0, 1) be two constants to be determined later. Set r := mγ . Let Q be the
set of centers of the disks in D. We compute a simplicial r-partition for Q in O(m logm)
time. Let ∆1, . . . ,∆a be the resulting triangles and Q = Q1∪̇ · · · ∪̇Qa the partition of Q.
Set s := mδ, and for i = 1, . . . , s, let `′i be the line through the origin that forms an angle
(i/2s)π with the positive x-axis. Let Yi be the projection of the triangles ∆1, . . . ,∆a onto
`′i. We interpret Yi as a set of weighted intervals, where the weight of an interval is the
size |Qj | of the associated point set for the corresponding triangle. By the properties of the
simplicial partition, the interval set Yi has depth O(

√
r), i.e., every point on `′i is covered

by at most O(
√
r) intervals of Yi.

Note that the sets Yi can be determined in O(sr log r) = O(mγ+δ logm) = O(m)
total time, for γ, δ small enough. Now, for each Yi, we find a point ci on `′i that has intervals
of total weight m/2−O(

√
r(m/r)) = m/2−O(m1−γ/2) completely to each side. Since the

depth of Yi is O(
√
r), we can find such a point in time O(log r) with binary search, for a

total of O(s log r) = O(m) time (it would even be permissible to spend time O(r) on each
Yi). Let `i be the line perpendicular to `′i through ci.
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`+5`−5

Figure 4: The lower bound construction consists of n/3 unit disks centered on a horizontal line (5 in the
figure), and two groups of n/3 points sufficiently far to the left and to the right of the disks. Distances
not to scale.

The analysis of Alon et al. shows that for each `i, there are at most O(s log s) disks
that intersect `i and at least one other line `j [2, Section 2]. Thus, it suffices to focus on
the disks in D that intersect at most one line `i. By simple counting, there is a line `i that
exclusively intersects at most m/s = m1−δ disks. It remains to find such a line in O(m) time.
For this, we compute the arrangement A of the strips with width 2 centered around each `i,
together with an efficient point location structure. For each cell in the arrangement, we store
whether it is covered by 0, 1, or more strips. Using standard techniques, the construction
takes O(s2) = O(m2δ) time. We locate for each triangle ∆i the cells of A that contain the
vertices of ∆i. This needs O(r log s) = O(mγ logm) steps. Since every line intersects at
most O(

√
r) = O(mγ/2) triangles, we know that there are at most O(smγ/2) = O(mδ+γ/2)

triangles that intersect a cell boundary of A. We call these triangles the bad triangles.

For all other triangles ∆i, we know that the associated point set Qi lies completely
in one cell of A. Let Di be the set of corresponding disks. By using the information stored
with the cells, we can now determine for each disk D ∈ Di in O(1) time whether D intersects
exactly one line `i. Thus, we can determine in total time O(m) for each line `i the total
number of disks that intersect only `i and whose center is not associated with a bad triangle.
Let ` be the line for which this number is minimum.

In total, it has taken us O(m logm) steps to find `. Let us bound the number of disks
that intersect `. First, we know that there are at most O(mδ+γ/2 ·m1−γ) = O(m1+δ−γ/2)
disks whose centers lie in bad triangles. Then, there are at most O(mδ logm) disks that
intersect ` and at least one other line. Finally, there are at most m1−δ disks with a center
in a good triangle that intersect only `. Thus, if we choose, say, δ = 1/6 and γ = 2/3,
then ` crosses at most O(m5/6) disks in D. Furthermore, by construction, ` has at least
m/2−O(m2/3) disk centers on each side. The result follows.

Remark. Actually, we can use the approach from Lemma 4.2 to compute an (1/2 +
ε, 5/6 + ε)-SDT in total deterministic time O(m logm). The bottleneck lies in finding
the simplicial partition for Q. All other steps take O(m) time. However, when applying
Lemma 4.2 recursively, we do not need to compute a simplicial partition from scratch.
Instead, as in Matoušek’s paper, we can recursively refine the existing partitions in linear
time [19, Corollary 3.5] (while duplicating the triangles for the disks that are intersected by
`). Thus, after spending O(m logm) time on the simplicial partition for the root, we need
only linear time per node to find the dividing lines, for a total of O(m logm), by Lemma 3.5.
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Figure 5: n/k copies of the construction on a regular n/k-gon.

5 Lower Bounds

We now show that our algorithm is optimal in the decision tree model. The precise nature
of the decisions does not matter, as long as each decision extracts only a constant number of
bits of information from the input. We begin with a lower bound of Ω(n log n) for k = Ω(n).
Let n be a multiple of 3, and consider the lines

`−n : y = −1/2− 6/n− x/n2; `+n : y = −1/2− 6/n+ x/n2.

Let Dn consist of n/3 disks centered on the x-axis at x-coordinates between −n/6 and
n/6; a group of n/3 disks centered on `−n at x-coordinates between n2 and n2 + n/3; and
a symmetric group of n/3 disks centered on `+n at x-coordinates between −n2 − n/3 and
−n2. Figure 4 shows D15.

Lemma 5.1. Let π be a permutation on n/3 elements. There is a sample P of Dn such
that pi (the point for the ith disk from the left in the main group) lies on layer π(i) of (P ).

Proof. Take P as the n/3 centers of the disks in D on `−n , the n/3 centers of the disks in
D on `+n , and for each disk Di ∈ D on the x-axis the point pi = (i− n/6, π(i) · 3/n− 1/2).
By construction, the outermost layer of (P ) contains at least the leftmost point on `+n ,
the rightmost point on `−n , and the highest point (with y-coordinate 1/2). However, it does
not contain any more points: the line segments connecting these three points have slope at
most 2/n2. The second highest point lies 3/n lower, and at most n/3 further to the left or
the right. The lemma follows by induction.

There are (n/3)! = 2Θ(n logn) permutations π; so any corresponding decision tree has
height Ω(n log n). We can strengthen the lower bound to Ω(n log k) by taking n/k copies of
Dk and placing them on the sides of a regular (n/k)-gon, see Figure 5. By Lemma 5.1, we
can choose independently for each side of the (n/k)-gon one of (k/3)! permutations. The
onion depth will be k/3, and the number of permutations is ((k/3)!)n/k = 2Θ(n log k).
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Theorem 5.2. Let k ∈ N and n ≥ k. There is a set D of n disjoint unit disks in R2,
such that any decision-based algorithm to compute (P ) for a sample P of D, based only
on prior knowledge of D, takes Ω(n log k) time in the worst case.

The lower bound still applies if the input points come from an appropriate proba-
bility distribution (e.g., [1, Claim 2.2]). Thus, Yao’s minimax principle [20, Chapter 2.2]
yields a corresponding lower bound for any randomized algorithm.

6 Conclusion and Further Work

Recently, Hoffmann et al. [14] showed how to compute in linear deterministic time a line
that stabs O(

√
m/(1− 2α)) disks in a set of m disjoint unit disks and has αm centers

on each side, for any α < 1/2. They can also find a line that stabs O(m5/6+ε) disks and
has exactly m/2 centers on each side. Using this, one can improve the running times of
Lemma 3.6 and Lemma 4.2 to linear deterministic time. Note that this does not impact
the final running time for our original problem.

It would be interesting to understand how much the parameter k can vary for a set
of imprecise bounds and how to estimate k efficiently. Further work includes considering
more general regions, such as overlapping disks, disks of different sizes, or fat regions. It
would also be interesting to consider the problem in 3D. Three-dimensional onions are not
well understood. The best general algorithm is due to Chan and needs O(n log6 n) expected
time [5], giving more room for improvement.
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