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Reachability Oracles for Disk Transmission Graphs

Haim Kaplan® Wolfgang Mulzer f

Abstract

Let P C R? be a set of n points, each with an associ-
ated radius r, > 0. This induces a directed graph on
P with an edge from p to ¢ if and only if ¢ lies in the
ball with radius r, around p.

We show that for d = 1 there is a data structure
that answers reachability queries (given two vertices,
is there a directed path between them?) in time O(1)
using O(n) space and O(nlogn) preprocessing time.
With different techniques we can get a similar result
for d = 2 as long as the radii are between 1 and /3.

1 Introduction

Let G = (V, E) be a directed graph. A reachability or-
acle for GG is a data structure for reachability queries:
given u,v € V is there a directed path u ~~ v from
u to v? The quality of the reachability oracle is mea-
sured by the preprocessing time P(n), the space re-
quirement S(n), and the query time )(n). For planar
digraphs Thorup showed the existence of efficient or-
acles [4]:

Theorem 1 Let GG be a planar digraph on n nodes.
We can construct in time O(nlogn) a reachability
oracle for G with S(n) = O(nlogn) and Q(n) = O(1).

We consider the problem for transmission graphs:
let P C R? be a set of n points. Each point p € P
has an associated radius r, > 0. We define a directed
graph G with vertex set P. There is an edge from p
to ¢ if and only if ¢ € B(p,r,), where B(p,r,) is the
closed ball around p with radius r,. For notational
convenience we define B(p) := B(p,r,) and denote
by C(p.r,) its boundary.

For d = 1 these graphs admit a rich structure that
can be exploited to construct S(n) = O(n) reachabil-
ity oracles with )(n) = 1 in time O(nlogn). Unfortu-
nately, for d = 2 this structure vanishes. However, if
the ratio between the radii is small (i.e., less than /3)
we can planarize the transmission graphs without in-
creasing their size significantly. Thus, using Thorup’s
Theorem, we get a similar result for the restricted
d = 2 case (although with a slight increase in S(n)).
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2 The One-Dimensional Case

First, we consider the case d = 1. For this, we decom-
pose G into a set C of strongly connected components
(SCCs). A component C' € C can reach a component
D € C if there is a point in C' that can reach a point
in D. Then, by strong connectivity, every point in C
can reach every point in D. Fix C' € C. We define
three points related to C: the leftmost point 1(C') of
C'; the left reachpoint 1r(C), that is, the leftmost point
in R that C' can reach; and the direct left reachpoint
dI(C) := min,ec p — 7, the leftmost point C' reaches
directly. The right versions r(C'), rr(C), and dr(C)
are defined analogously. We call I = [1(C),r(C')] the
interval of C'.

Observation 1 Let p,q € P and let C' be the SCC
of p. Then p reaches q if and only if g € [Ir(C'), rr(C)].

Proof. W.lo.g let ¢ be to the left of p. If p reaches ¢

we have ¢ € [Ir(C),rr(C)] by the definition of Ir(C').
Conversely, let ¢ € [Ir(C),rr(C)]. Let p’ € P such

that Ir(C) = p" — rp. A path from p to p’ is a se-

quence of points pi,ps2,...,pr With p1 = p, pp = o’
and d(p;,piy1) < rp,, fori=1,....k — 1. Thus, the
balls B(p;,r,,) cover [Ir(C), p|, so p reaches g. O

Obs. 1 suggests the following O(n) space oracle: for
each C' € C, store the left- and right reachpoint of
C. Then, for two given query points p, ¢, let C be the
SCC of p. We say YES if and only if ¢ € [Ir(C), rr(C)].
Thus, a query can be answered in O(1) time.

2.1 The Structure of the Components

To compute the reachpoints efficiently, we investigate
the structure of the SCCs.

Observation 2 The intervals I~ for C' € C form a
laminar family, i.e., for any two distinct C, D € C, we
have either I(,' N ]D = @, I(j - ]D; or ID - IC-

Proof. Since C is strongly connected, for every = €
I, there exists a point p € C' with d(p, z) < r,. The
same holds for D. Suppose Ic N Ip # (. If neither
I € Ip nor Ip C I, then one endpoint of /-~ must
liein 7 and vice versa. Since the endpoints of /- and
Ip lie in P, strong connectivity implies that C' can
reach D and that D can reach C. But then, C' = D,
although we assumed them to be distinct. 0



30th European Workshop on Computational Geometry, 2014

By Obs. 2, the components in C induce a forest. We
add a root node to obtain a tree 7.

Lemma 2 For all C' € C the left reachpoint equals
either d1(C') or dI(D), with D being a sibling of C'in T'.
The situation for the right reachpoints is analogous.

Proof. We argue for Ir(C'). Let C' be the parent of
C'in T. Since I C Iz, the parent C' can reach C.
Thus, C' cannot reach ', as C' and C are distinct.
Furthermore, since the endpoints of /= lie in C', this
implies that C' cannot reach any component outside
I, since by Obs. 1, C' would then also reach C'.

By the definition of (direct) left reachpoint, there is
a D e C with Ir(C') = dI(D). Note that it may be that
D = C. The argument above gives Ip C I, so D is
a descendant of C'. Assume that D neither equals C
nor is its sibling. Then, by Obs. 2, there is a sibling
D' of C,st. Ip C Ipr. Since Ir(C) = dI(D), C can
reach D and, by Obs. 1, D’ as well. But now Obs. 2
implies Ir(D") < 1(D") < dl(D). A contradiction. [J

2.2 Computing Reachability Between Siblings

By Lem. 2 it suffices to search for Ir(C) and rr(C)
among the siblings of C'in 7. Let C, ..., C} be chil-
dren of a node in 7', sorted from left to right according
to their intervals. To compute the left reachpoints, we
initially set 1r(C;) < dl(C;). Furthermore, we initial-
ize a stack S with C; and do the following:
for 1 =2 — k do
while S # () and Ir(C;) < r(top(S)) do
D « pop(S); Ir(C;) = min{Ir(C;),1r(D)}
end while
push C; onto S
end for

Computing the right reachpoints is done analogously.

Lemma 3 We can compute the reachability between
all siblings of nodes in T" in O(nlogn) time.

Proof. Sorting the intervals requires O(n logn) time.
Computing d1(C;) is linear in the size of C;, so O(n)
time in total. While processing the components, each
is pushed/popped at most once onto/from S, taking
again O(n) time.

For correctness, consider the sorted siblings
C1,...,C. We maintain the following invariant: all
components C; with j < ¢ have the correct left reach-
point and S’ contains precisely those components C;
that cannot be reached by any component C; with
Jj <l < i. This is true for Cy: if dI(Cy) # Ir(CY),
then there would be another component C’ with
dl(C") = 1r(Cy). The component C’ cannot be to the
left of C', as (' is the leftmost sibling, and it cannot
be to the right of C, since then I, C [Ir(C”), rr(C")]
and both would collapse to one SCC by Obs. 1. Thus
(H(Cl) — lr((h)

For general 7, let p € P be the point with Ir(C;) =
p—r, and let 7 be a path from C; to p. We define the
component path 7' by listing the distinct components
7 visits. Let F' be the first component of " after C;,
then Ir(C;) = Ir(F'). Note that F' must be to the left
of C;. If F is on the stack, we are done. Otherwise, by
the invariant, there exists a component C; on S that
can reach ', i.e., Ir(C}) = Ir(F') and that is between F
and ;. The latter implies /¢, C [Ir(C;),10(C;)], and
by Obs. 1 C; can reach C;. Thus, the algorithm sets
Ir(C;) = Ir(C;) = Ir(F), as desired. The while-loop
ensures that the invariant for S is maintained. O

To summarize, we state our main theorem for d = 1.

Theorem 4 For 1-dimensional transmission graphs
we can construct a reachability oracle in time
O(nlogn) with S(n) = O(n) and Q(n) = O(1).

Proof. The only point that is not obvious is how
to determine the SCCs without explicitly construct-
ing the transmission graph . Recall the Kosaraju-
Sharir algorithm [1]: first, it performs a DFS of G
and records the finishing times of the vertices. Then
it performs a second DFS in the transpose graph G’.
The second DFS is initiated with the reversed order
of the finishing times.

In order to implement this algorithm, we need two
operations: given a point p, find an unvisited point ¢
such that pg is an edge of G or an edge of G’. For
(7, this can easily be done in O(logn) time: store the
points of P in a balanced search tree. When a point
p is visited for the first time, remove it from the tree.
When looking for an edge, determine the predecessor
and the successor of p in the current set, and check
the distance. For GG/, we proceed similarly, but we use
an interval tree to store the r,-balls around the points
in P [2]. When a point is visited for the first time, we
remove the corresponding r,-ball from p. When we
need to find a neighbor for p, we use the interval tree
to find one ball that is pierced by p. Again, this can
be done in O(logn) time.

Thus, C can be computed in O(nlogn) time. The
space requirement follows by construction. O

3 Two Dimensions with Small Radii

For d = 2, we restrict ourselves to radii in [1,1/3). We
show that in this restricted case, G can be planarized
by first removing superfluous edges and then resolv-
ing edge crossings by adding O(n) additional vertices.
This will not change the reachability between the orig-
inal vertices. Using Thorup’s Theorem, the existence
of efficient reachability oracles follows.

Let (uv) be a directed edge of G. If both, (uv) and
(vu), are edges, we say there is an wundirected edge
{uv} between u and v. Let G,/ be the grid with cells
of side length 1/2. A vertex or edge lying (completely)
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inside a grid cell [J belongs to it. If u belongs to [J
and v does not, (uv) is said to be originating from
(. The neighborhood N([1) are all cells in the 9 x 9
block of cells centered at []. If one grid cell is in the
neighborhood of another, they are neighboring. Note
that for an edge from u to v, the two points belong to
either the same or two neighboring grid cells.

3.1 Pruning the Graph

Consider the grid G, ,. We distribute the n points of
P among the grid cells. Let us construct a graph
on P by doing the following for each non-empty grid
cell [J: let U C P be the vertices belonging to [l.
First, we compute the euclidean minimum spanning
tree (EMST) 7T of U and add all edges of 7" as undi-
rected edges to (i. Second, for each non-empty cell
Oy in N(O), we check if there are one or more edges
originating from [] and going to (. If so, we add an
arbitrary one of those edges to G.

Lemma 5 (' has the following properties: a) it has
the same reachability as G; b) it has O(n) edges; c)
if embedded on P, there are O(n) edge crossings; and
d) it can be constructed in O(nlogn) time.

Proof. a) Since for any two vertices u, v belonging to
the same grid cell d(u,v) < 1, all of them form a clique
in G. Thus, our construction does not create new
edges inside each cell. Also, any edge in G from [J; to
[, is an edge of G as well. Therefore, £(G) C E(G)
and every path « ~ v in ( is also present in ;. On
the other hand, for an edge (uv) in G, there is a path
in G: either (uv) belongs to a cell [, then we take
the path along the EMST inside [, or (uv) originates
from [J; and goes to [Js. In this case, there is an edge
(u/v") from [J; going to [Jy in (& and we take the path
(using the EMSTs of [J; and [J5) from « to «/, then
the edge (uv/v’) and finally from v’ to v.

b) For each cell [J with m vertices we create m — 1
edges. Also, since |N(OJ)| is constant, at most O(1)
edges originate from [J. Altogether, we have at most
O(n) non-empty grid cells, and thus (' is sparse.

c) We distinguish whether an edge ¢ belongs to some
grid cell [J or not. In the former case it cannot be
intersected by any other edge belonging to [, since
the EMST is non-crossing. It might be intersected by
other edges, but these must originate from either [J
itself or a cell in N (OJ). This is a constant number of
cells, each having O(1) originating edges. It follows
that e is intersected O(1) times.

In the latter case, it remains to count edges cross-
ing e that do not belong to some grid cell. Let A
be the region where all endpoints of those edges may
lie in. It follows by the bounded radii of the disks
that A is covered by constant many grid cells, each
contributing O(1) to the number of edges crossing e.
Therefore, each edge not belonging to some grid cell

is also intersected O(1) times and, using b), we have
O(n) edge intersections in (G overall.
d) Using universal hashing and the floor function,
we can distribute the points among the grid cells
in time O(n) [3]. Computing the EMST for a cell
with m vertices needs O (m log m) time and altogether
O(nlogn). To check if an edge between two cells ex-
ists, assume we know for every vertex v in []; its near-
est neighbor v’ in [Jy. Then, there is an edge from v
to Uy if and only if d(v,v") < r,. Thus, if [J; has m
vertices, we can check in time O(m) if an edge exists.
To obtain the nearest neighbor information we
first compute for each cell the Voronoi diagram to-
gether with a point location structure in overall time
O(nlogn) [2]. Afterwards, for each vertex v in a cell
[J, we query the nearest neighbor of v in each cell
of N([J) with a point location in its Voronoi diagram.
Since |N([J)| is constant, a vertex participates in O(1)
point locations, taking O(logn) time each. Hence, we
can compute the nearest neighbor information in time
O(nlogn). O

3.2 Removing the Crossings

Consider a crossing of two edges between the vertices
a,b and c,d. To eliminate it, we add a new vertex x
and replace the two edges by four new ones. If the
edge between a and b is directed we add (ax) and
(xb), otherwise {ax} and {xb}. For ¢ and d we apply
the same rule, and we call this procedure resolving
a crossing. There are three types of crossings: (i)
undirected—undirected, (ii) undirected—-directed, and
(iii) directed—directed

d a d

(i) (ii) (iii)
To argue that resolving crossings preserves reachabil-
ity, we need the calculations in Obs. 3 as well as Obs. 4
about the local reachability under the presence of ad-
ditional edges. For space reasons we omit/sketch the

proofs of Obs. 3 & 4, but we note that Obs. 3 is the
reason for the /3-restriction on the size of the radii.

Observation 3 Let a,b be two points in R?.

a) If d(a,b) = 1 and c¢,d are the two intersection
points of C'(a, 1) and C (b, 1), then d(c,d) = /3.

b) If d(a,b) = /3 and c,d are the two intersection
points of C'(a,+/3) and C'(b, 1), then d(c,d) > /3.

c) If d(a,b) = /3 and d is an intersection point of
C(a,1) and C(b, 1), then for any value r. € [1,/3]
the following holds: let ¢ be the intersection point of
C(a,r.) and C(b,r.) on the side of the line through a
and b opposite to d, then d(c,d) > r.. O

Observation 4 Resolving a type (i), (ii) or (iii) cross-
ing does not change the reachability if one of the edges
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{ac}, {ad}, {cb} or {bd} exists. For type (iii) it is also
sufficient if (cb) and either (ac) or (ad) exists.

Proof. See Fig. 1 for type (i) and {ac}. Resolving
introduces the blue and green connections. But they
already existed by going along the dashed paths. The
remaining cases can be verified analogously. (]

- D

Figure 1: Since {ac} exists, reachablhty is preserved

We claim that resolving crossings retains reachability:
type (i): We may assume that d(a,b) < d(c,d). Since
{ab} is undirected we can also, without losing gener-
ality, decrease 7, and r;, to max{1, d(a,b)}. This does
not add new connections between vertices. If now
d(a,b) > 1, everything is scaled by a factor 1/d(a,b),
so d(a,b) = r, = 1, = 1 after scaling. Note that if
either c or d lie in B(a)UB(b), we are done by Obs. 4.
Thus, assume this is not the case. To intersect {ab},
c and d must lie on opposite sides of the line through
a and b. Then, the positions for ¢ and d minimizing
their distance are the two intersections of C'(a) and
C'(b). But now, if d(a,b) = 1, we are in the situation
of Obs. 3a). Otherwise, if d(a,b) < 1, the distance
between d and ¢ only can increase. Hence, since all
radii are at most \ﬁ, such an edge cannot exist.
type (ii): This case can be reduced to a type (iii)
crossing: assume w.l.o.g that r. > r4. Then, we de-
crease 4 to 1 and treat it as a type (iii) crossing.
type (iii): Assume w.lo.g that r, > r.. Then, (cd)
being directed implies r, > r. > r4. Furthermore,
everything can be scaled so that r, = V3. We dis-
tinguish three cases: 1) ¢ € B(a), 2) d € B(a), 3)
or neither of them. See Fig. 2 for the three cases
and where the points ¢ and d must lie in each case
to minimize their distance. If either ¢ € B(a,r.),
ce B(b,1),de Bla,1), or d € B(b,1), then we are
done by Obs. 4. Thus, assume this not be the case.
Case 1): The edge (ac) exists. If (¢b) is also an edge,
we are done by Obs. 4. So assume it is not, i.e.
b ¢ B(c) or, dually, ¢ ¢ B(b,r.). Thus, the posi-
tions to minimize d(c, d) are the intersection points of
C(a,r.) and C(b,r.) for ¢ and C'(a, 1) and

C'(b,1) for d. Minimizing d(c,d) further leads to
d(a,b) = /3. But then, by Obs. 3c), d(c,d) > r. and
(cd) is not an edge.
Case 2): The edge (ad) exists. Similar to Case 1)
there cannot be the edge (cb) at the same time, i.e
c ¢ D(b,r.), by Obs. 4. Again, the best position for d
minimizing the distance to ¢ is the intersection point
of C(a,1) and C(b,1). Since ¢ ¢ B(a), the best posi-
tion for ¢ is the intersection of C'(a) and C(b,r.). But
r, > 7. and thus in any case we have that d(c,d) is
greater than d(cq,d) for ¢; being the ¢ from Case 1).

Hence, (cd) cannot be an edge by Obs. 3c¢).

Case 3): This is impossible by Obs. 3b): the positions
for ¢ and d minimizing their distance are the intersec-
tion points of C'(a) and C(b,1). Further minimizing
their distance leads again to d(a,b) = /3. This is
exactly the 51tuat10n of Obs 3b).

Figure 2: The edge ab of a type (iii) crossmg and
the circles C'(a), C(a, . ),C(b, re)and C'(a, 1), C'(b, 1).
Optimal positions for ¢ and d in case j) are ¢; and dj.

Summarizing the above argumentation gives:

Lemma 6 We can planarize G by adding O(n) ver-
tices without changing the reachability. g

3.3 Putting Things Together

We are now able to prove our main theorem for d = 2.

Theorem 7 For 2-dimensional transmission graphs
with radii in [1,\/3) we can compute in time and
space O(nlogn) a reachability oracle with S(n) =
O(nlogn) and Q(n) = O(1).

Proof. We prune G using Lem. 5, compute all inter-
sections in time O(n log n) using a sweepline approach
and resolve them as shown in Sec 3.2, to obtain a pla-
nar graph [2]. Then, the oracle can be constructed by
Thm. 1. O
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