
Self-improving Algorithms for Coordinate-wise Maxima

[Extended Abstract]

Kenneth L. Clarkson
IBM Almaden Research

Center
San Jose, USA

klclarks@us.ibm.com

Wolfgang Mulzer
Institut für Informatik

Freie Universität Berlin
Berlin, Germany

mulzer@inf.fu-berlin.de

C. Seshadhri
Sandia National Laboratories

Livermore, USA
scomand@sandia.gov

ABSTRACT
Computing the coordinate-wise maxima of a planar point
set is a classic and well-studied problem in computational
geometry. We give an algorithm for this problem in the self-
improving setting. We have n (unknown) independent distri-
butions D1,D2, . . . ,Dn of planar points. An input pointset
(p1, p2, . . . , pn) is generated by taking an independent sam-
ple pi from each Di, so the input distribution D is the prod-
uct

∏
iDi. A self-improving algorithm repeatedly gets input

sets from the distribution D (which is a priori unknown) and
tries to optimize its running time for D. Our algorithm uses
the first few inputs to learn salient features of the distribu-
tion, and then becomes an optimal algorithm for distribution
D. Let OPTD denote the expected depth of an optimal lin-
ear comparison tree computing the maxima for distribution
D. Our algorithm eventually has an expected running time
of O(OPTD + n), even though it did not know D to begin
with.

Our result requires new tools to understand linear com-
parison trees for computing maxima. We show how to con-
vert general linear comparison trees to very restricted ver-
sions, which can then be related to the running time of our
algorithm. An interesting feature of our algorithm is an
interleaved search, where the algorithm tries to determine
the likeliest point to be maximal with minimal computa-
tion. This allows the running time to be truly optimal for
the distribution D.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations

General Terms
Algorithms, Theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’12, June 17–20, 2012, Chapel Hill, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1299-8/12/06 ...$10.00.

Keywords
Coordinate-wise maxima; Self-improving algorithms

1. INTRODUCTION
Given a set P of n points in the plane, the maxima prob-

lem is to find those points p ∈ P for which no other point
in P has a larger x-coordinate and a larger y-coordinate.
More formally, for p ∈ R2, let x(p) and y(p) denote the x
and y coordinates of p. Then p′ dominates p if and only if
x(p′) ≥ x(p), y(p′) ≥ y(p), and one of these inequalities is
strict. The desired points are those in P that are not domi-
nated by any other points in P . The set of maxima is also
known as a skyline in the database literature [BKS01] and
as a Pareto frontier.

This algorithmic problem has been studied since at least
1975 [KLP75], when Kung et al. described an algorithm
with an O(n logn) worst-case time and gave an Ω(n logn)
lower bound. Results since then include average-case run-
ning times of n + Õ(n6/7) point-wise comparisons [Gol94];
output-sensitive algorithms needing O(n log h) time when
there are h maxima [KS86]; and algorithms operating in
external-memory models [GTVV93]. A major problem with
worst-case analysis is that it may not reflect the behavior of
real-world inputs. Worst-case algorithms are tailor-made for
extreme inputs, none of which may occur (with reasonable
frequency) in practice. Average-case analysis tries to ad-
dress this problem by assuming some fixed distribution on
inputs; for maxima, the property of coordinate-wise inde-
pendence covers a broad range of inputs, and allows a clean
analysis [Buc89], but is unrealistic even so. The right distri-
bution to analyze remains a point of investigation. Nonethe-
less, the assumption of randomly distributed inputs is very
natural and one worthy of further research.

The self-improving model. Ailon et al. introduced the
self-improving model to address this issue [ACCL06]. In this
model, there is some fixed but unknown input distribution D
that generates independent inputs, that is, whole input sets
P . The algorithm initially undergoes a learning phase, where
it processes inputs with a worst-case guarantee but tries to
learn information about D. The aim of the algorithm is
to become optimal for the distribution D. After seeing some
(hopefully small) number of inputs, the algorithm shifts into
the limiting phase. Now, the algorithm is tuned for D and
the expected running time is (ideally) optimal for D. A self-
improving algorithm can be thought of as an algorithm that
attains the optimal average-case running time for all, or at
least a large class of, distributions D.

Following earlier self-improving algorithms, we assume the
input has a product distribution. An input is a set of n
points P = (p1, p2, . . . , pn) in the plane. Each pi is gener-
ated independently from a distributionDi, so the probability
distribution of P is the product

∏
iDi. The Dis themselves

are arbitrary, and the only assumption made is their inde-
pendence. There are lower bounds showing that some re-
striction on D is necessary for a reasonable self-improving
algorithm, as we explain later.

The first self-improving algorithm was for sorting; this
was extended to Delaunay triangulations, with these results
eventually merged [CS08, ACC+11]. A self-improving al-
gorithm for planar convex hulls was given by Clarkson et
al. [CMS10], however their analysis was recently discovered
to be flawed.

1.1 Main result
Our main result is a self-improving algorithm for pla-

nar coordinate-wise maxima over product distributions. We
need some basic definitions before stating our main theo-
rem. We explain what it means for a maxima algorithm to
be optimal for a distribution D. This in turn requires a no-
tion of certificates for maxima, which allow the correctness
of the output to be verified in O(n) time. Any procedure for
computing maxima must provide some “reason” to deem an
input point p non-maximal. The simplest certificate would
be to provide an input point dominating p. Most current
algorithms implicitly give exactly such certificates [KLP75,
Gol94, KS86].

Definition 1.1. A certificate γ has: (i) the sequence of
the indices of the maximal points, sorted from left to right;
(ii) for each non-maximal point, a per-point certificate of
non-maximality, which is simply the index of an input point
that dominates it. We say that a certificate γ is valid for an
input P if γ satisfies these conditions for P .

The model of computation that we use to define optimal-
ity is a linear computation tree that generates query lines
using the input points. In particular, our model includes the
usual CCW-test that forms the basis for many geometric al-
gorithms.

Let ` be a directed line. We use `+ to denote the open
halfplane to the left of ` and `− to denote the open halfplane
to the right of `.

Definition 1.2. A linear comparison tree T is a binary
tree such that each node v of T is labeled with a query of
the form “p ∈ `+v ?”. Here p denotes an input point and
`v denotes a directed line. The line `v can be obtained in
three ways: (i) it can be a line independent of the input
(but dependent on the node v); (ii) it can be a line with a
slope independent of the input (but dependent on v) passing
through a given input point; (iii) it can be a line through an
input point and through a point q independent of the input
(but dependent on v); (iv) it can be the line defined by two
distinct input points. A linear comparison tree is restricted
if it only makes queries of type (i).

A linear comparison tree T computes the maxima for P if
each leaf corresponds to a certificate. This means that each
leaf v of T is labeled with a certificate γ that is valid for
every possible input P that reaches v.

Let T be a linear comparison tree and v be a node of
T . Note that v corresponds to a region Rv ⊆ R2n such

that an evaluation of T on input P reaches v if and only
if P ∈ Rv. If T is restricted, then Rv is the Cartesian
product of a sequence (R1, R2, . . . , Rn) of polygonal regions.
The depth of v, denoted by dv, is the length of the path
from the root of T to v. Given T , there exists exactly one
leaf v(P) that is reached by the evaluation of T on input
P . The expected depth of T over D, dD(T), is defined as
EP∼D[dv(P)]. Consider some comparison based algorithm A
that is modeled by such a tree T . The expected depth of T
is a lower bound on the number of comparisons performed
by A.

Let T be the set of trees that compute the maxima of n
points. We define OPTD = infT ∈T dD(T). This is a lower
bound on the expected time taken by any linear comparison
tree to compute the maxima of inputs distributed according
to D. We would like our algorithm to have a running time
comparable to OPTD.

Theorem 1.3. Let ε > 0 be a fixed constant and D1, D2,
. . . ,Dn be independent planar point distributions. The in-
put distribution is D =

∏
iDi. There is a self-improving

algorithm to compute the coordinate-wise maxima whose ex-
pected time in the limiting phase is O(ε−1(n+OPTD)). The
learning phase lasts for O(nε) inputs and the space require-
ment is O(n1+ε).

There are lower bounds in [ACC+11] (for sorters) imply-
ing that a self-improving maxima algorithm that works for
all distributions requires exponential storage, and that the
time-space tradeoff (wrt ε) in the above theorem is optimal.

Challenges. One might think that since self-improving
sorters are known, an algorithm for maxima should follow
directly. But this reduction is only valid for O(n logn) al-
gorithms. Consider Figure 1(i). The distributions D1, D2,
. . . ,Dn/2 generate the fixed points shown. The remaining
distributions generate a random point from a line below
L. Observe that an algorithm that wishes to sort the x-
coordinates requires Ω(n logn) time. On the other hand,
there is a simple comparison tree that determines the max-
ima in O(n) time. For all pj where j > n/2, the tree simply
checks if pn/2 dominates pj . After that, it performs a linear
scan and outputs a certificate.

We stress that even though the points are independent,
the collection of maxima exhibits strong dependencies. In
Figure 1(ii), suppose a distribution Di generates either ph
or p`; if p` is chosen, we must consider the dominance rela-
tions among the remaining points, while if ph is chosen, no
such evaluation is required. The optimal search tree for a
distribution D must exploit this complex dependency.

Indeed, arguing about optimality is one of the key contri-
butions of this work. Previous self-improving algorithms em-
ployed information-theoretic optimality arguments. These
are extremely difficult to analyze for settings like maxima,
where some points are more important to process that oth-
ers, as in Figure 1. (The main error in the self-improving
convex hull paper [CMS10] was an incorrect consideration
of dependencies.) We focus on a somewhat weaker notion of
optimality—linear comparison trees—that nonetheless cov-
ers most (if not all) important algorithms for maxima.

In Section 3, we describe how to convert linear compar-
ison trees into restricted forms that use much more struc-
tured (and simpler) queries. Restricted trees are much more
amenable to analysis. In some sense, a restricted tree decou-
ples the individual input points and makes the maxima com-

L

U

p1 p2

pn/2

pn/2+1, . . . , pn
p`

ph

(i) (ii)

Figure 1: Examples of difficult distributions

putation amenable to separate Di-optimal searches. A leaf
of a restricted tree is associated with a sequence of polygons
(R1, R2, . . . , Rn) such that the leaf is visited if and only if
every pi ∈ Ri, and conditioned on that event, the pi remain
independent. This independence is extremely important for
the analysis. We design an algorithm whose behavior can
be related to the restricted tree. Intuitively, if the algorithm
spends many comparisons involving a single point, then we
can argue that the optimal restricted tree must also do the
same. We give more details about the algorithm in Section 2.

1.2 Previous work
Afshani et al. [ABC09] introduced a model of instance-

optimality applying to algorithmic problems including pla-
nar convex hulls and maxima. (However, their model is
different from, and in a sense weaker than, the prior notion
of instance-optimality introduced by Fagin et al. [FLN01].)
All previous (e.g., output sensitive and instance optimal)
algorithms require expected Ω(n logn) time for the distri-
bution given in Figure 1, though an optimal self-improving
algorithm only requires O(n) expected time. (This was also
discussed in [CMS10] with a similar example.),

We also mention the paradigm of preprocessing regions in
order to compute certain geometric structures faster (see,
e.g., [BLMM11, EM11, HM08, LS10, vKLM10]). Here, we
are given a set R of planar regions, and we would like to
preprocess R in order to quickly find the (Delaunay) trian-
gulation (or convex hull) for any point set which contains
exactly one point from each region in R. This setting is ad-
versarial, but if we only consider point sets where a point is
randomly drawn from each region, it can be regarded as a
special case of our setting. In this view, these results give us
bounds on the running time a self-improving algorithm can
achieve if D draws its points from disjoint planar regions.

1.3 Preliminaries and notation
Before we begin, let us define some basic concepts and

agree on a few notational conventions. We use c for a suf-
ficiently large constant, and we write log x to denote the
logarithm of x in base 2. All the probability distributions
are assumed to be continuous. (It is not necessary to do
this, but it makes many calculations a lot simpler.)

Given a polygonal region R ⊆ R2 and a probability distri-
bution D on the plane, we call ` a halving line for R (with
respect to D) if

Pr
p∼D

[p ∈ `+ ∩R] = Pr
p∼D

[p ∈ `− ∩R].

Note that if Prp∼D[p ∈ R] = 0, every line is a halving line for
R. If not, a halving line exactly halves the conditional prob-

ability for p being in each of the corresponding halfplanes,
conditioned on p lying inside R.

Define a vertical slab structure S as a sequence of vertical
lines partitioning the plane into vertical regions, called leaf
slabs. (We will consider the latter to be the open regions
between the vertical lines. Since we assume that our dis-
tributions are continuous, we abuse notation and consider
the leaf slabs to partition the plane.) More generally, a slab
is the region between any two vertical lines of the S. The
size of the slab structure is the number of leaf slabs it con-
tains. We denote it by |S|. Furthermore, for any slab S, the
probability that pi ∼ Di is in S is denoted by q(i, S).

A search tree T over S is a comparison tree that locates
a point within leaf slabs of S. Each internal node compares
the x-coordinate of the point with a vertical line of S, and
moves left or right accordingly. We associate each internal
node v with a slab Sv (any point in Sv will encounter v along
its search).

1.4 Tools from self-improving algorithms
We introduce some tools that were developed in previous

self-improving results. The ideas are by and large old, but
our presentation in this form is new. We feel that the fol-
lowing statements (especially Lemma 1.6) are of independent
interest.

We define the notion of restricted searches, introduced in
[CMS10]. This notion is central to our final optimality proof.
(The lemma and formulation as given here are new.) Let U
be an ordered set and F be a distribution over U. For any
element j ∈ U, qj is the probability of j according to F . For
any interval S of U, the total probability of S is qS .

We let T denote a search tree over U. It will be convenient
to think of T as (at most) ternary, where each node has at
most 2 children that are internal nodes. In our application
of the lemma, U will just be the set of leaf slabs of a slab
structure S. We now introduce some definitions regarding
restricted searches and search trees.

Definition 1.4. Consider a distribution F and an inter-
val S of U . An S-restricted distribution is given by the
probabilities (for element r ∈ U) q′r/

∑
j∈U q

′
j, where the

sequence {q′j |j ∈ U} has the following property. For each
j ∈ S, 0 ≤ q′j ≤ qj. For every other j, q′j = 0.

Suppose j ∈ S. An S-restricted search is a search for j in
T that terminates once j is located in any interval contained
in S.

For any sequence of numbers {q′j |j ∈ U} and S ⊆ U , we
use q′S to denote

∑
j∈S q

′
j .

Definition 1.5. Let µ ∈ (0, 1) be a parameter. A search
tree T over U is µ-reducing if: for any internal node S and
for any non-leaf child S′ of S, qS′ ≤ µqS.

A search tree T is c-optimal for restricted searches over F
if: for all S and S-restricted distributions FS, the expected
time of an S-restricted search over FS is at most c(− log q′S+
1). (The probabilities q′ are as given in Definition 1.4.)

We give the main lemma about restricted searches. A tree
that is optimal for searches over F also works for restricted
distributions. The proof is given in the full version of the
paper.

Lemma 1.6. Suppose T is a µ-reducing search tree for
F . Then T is O(1/ log(1/µ))-optimal for restricted searches
over F .

We list theorems about data structures that are built in
the learning phase. Similar structures were first constructed
in [ACC+11], and the following can be proved using their
ideas. The data structures involve construction of slab struc-
tures and specialized search trees for each distribution Di.
It is also important that these trees can be represented in
small space, to satisfy the requirements of Theorem 1.3. The
following lemmas give us the details of the data structures
required. Because this is not a major contribution of this
paper, we relegate the details to §5.

Lemma 1.7. We can construct a slab structure S with
O(n) leaf slabs such that, with probability 1 − n−3 over the
construction of S, the following holds. For a leaf slab λ
of S, let Xλ denote the number of points in a random in-
put P that fall into λ. For every leaf slab λ of S, we have
E[X2

λ] = O(1). The construction takes O(logn) rounds and
O(n log2 n) time.

Lemma 1.8. Let ε > 0 be a fixed parameter. In O(nε)
rounds and O(n1+ε) time, we can construct search trees T1,
T2, . . ., Tn over S such that the following holds. (i) the
trees can be represented in O(n1+ε) total space; (ii) with
probability 1−n−3 over the construction of the Tis, every Ti
is O(1/ε)-optimal for restricted searches over Di.

2. OUTLINE
We start by providing a very informal overview of the

algorithm. Then, we shall explain how the optimality is
shown.

If the points of P are sorted by x-coordinate, the maxima
of P can be found easily by a right-to-left sweep over P : we
maintain the largest y-coordinate Y of the points traversed
so far; when a point p is visited in the traversal, if y(p) < Y ,
then p is non-maximal, and the point pj with Y = y(pj) gives
a per-point certificate for p’s non-maximality. If y(p) ≥ Y ,
then p is maximal, and can be put at the beginning of the
certificate list of maxima of P .

This suggests the following approach to a self-improving
algorithm for maxima: sort P with a self-improving sorter
and then use the traversal. The self-improving sorter of
[ACC+11] works by locating each point of P within the slab
structure S of Lemma 1.7 using the trees Ti of Lemma 1.8.

While this approach does use S and the Ti’s, it is not op-
timal for maxima, because the time spent finding the exact
sorted order of non-maximal points may be wasted: in some

sense, we are learning much more information about the in-
put P than necessary. To deduce the list of maxima, we do
not need the sorted order of all points of P : it suffices to
know the sorted order of just the maxima! An optimal al-
gorithm would probably locate the maximal points in S and
would not bother locating “extremely non-maximal” points.
This is, in some sense, the difficulty that output-sensitive
algorithms face.

As a thought experiment, let us suppose that the maximal
points of P are known to us, but not in sorted order. We
search only for these in S and determine the sorted list of
maximal points. We can argue that the optimal algorithm
must also (in essence) perform such a search. We also need
to find per-point certificates for the non-maximal points.
We use the slab structure S and the search trees, but now
we shall be very conservative in our searches. Consider the
search for a point pi. At any intermediate stage of the search,
pi is placed in a slab S. This rough knowledge of pi’s loca-
tion may already suffice to certify its non-maximality: let m
denote the leftmost maximal point to the right of S (since
the sorted list of maxima is known, this information can be
easily deduced). We check if m dominates pi. If so, we have
a per-point certificate for pi and we promptly terminate the
search for pi. Otherwise, we continue the search by a single
step and repeat. We expect that many searches will not pro-
ceed too long, achieving a better position to compete with
the optimal algorithm.

Non-maximal points that are dominated by many maxi-
mal points will usually have a very short search. Points that
are “nearly” maximal will require a much longer search. So
this approach should derive just the “right” amount of infor-
mation to determine the maxima output. But wait! Didn’t
we assume that the maximal points were known? Wasn’t
this crucial in cutting down the search time? This is too
much of an assumption, and because the maxima are highly
dependent on each other, it is not clear how to determine
which points are maximal before performing searches.

The final algorithm overcomes this difficulty by interleav-
ing the searches for sorting the points with confirmation of
the maximality of some points, in a rough right-to-left order
that is a more elaborate version of the traversal scheme given
above for sorted points. The searches for all points pi (in
their respective trees Ti) are performed “together”, and their
order is carefully chosen. At any intermediate stage, each
point pi is located in some slab Si, represented by some node
of its search tree. We choose a specific point and advance
its search by one step. This order is very important, and is
the basis of our optimality. The algorithm is described in
detail and analyzed in §4.

Arguing about optimality. A major challenge of self-
improving algorithms is the strong requirement of optimality
for the distribution D. We focus on the model of linear com-
parison trees, and let T be an optimal tree for distribution
D. (There may be distributions where such an exact T does
not exist, but we can always find one that is near optimal.)
One of our key insights is that when D is a product distribu-
tion, then we can convert T to T ′, a restricted comparison
tree whose expected depth is only a constant factor worse.
In other words, there exists a near optimal restricted com-
parison tree that computes the maxima.

In such a tree, a leaf is labeled with a sequence of re-
gions R = (R1, R2, . . . , Rn). Any input P = (p1, p2, . . . , pn)
such that pi ∈ Ri for all i, will lead to this leaf. Since the

distributions are independent, we can argue that the proba-
bility that an input leads to this leaf is

∏
i Prpi∼Di [pi ∈ Ri].

Furthermore, the depth of this leaf can be shown to be
−
∑
i log Pr[pi ∈ Ri]. This gives us a concrete bound that

we can exploit.
It now remains to show that if we start with a random

input from R, the expected running time is bounded by the
sum given above. We will argue that for such an input, as
soon as the search for pi locates it inside Ri, the search will
terminate. This leads to the optimal running time.

3. THE COMPUTATIONAL MODEL AND
LOWER BOUNDS

3.1 Reducing to restricted comparison trees
We prove that when P is generated probabilistically, it

suffices to focus on restricted comparison trees. To show
this, we provide a sequence of transformations, starting from
the more general comparison tree, that results in a restricted
linear comparison tree of comparable expected depth. The
main lemma of this section is the following.

Lemma 3.1. Let T a finite linear comparison tree and D
be a product distribution over points. Then there exists a
restricted comparison tree T ′ with expected depth dD(T ′) =
O(dD(T)), as dD(T)→∞.

We will describe a transformation from T into a restricted
comparison tree with similar depth. The first step is to show
how to represent a single comparison by a restricted linear
comparison tree, provided that P is drawn from a prod-
uct distribution. The final transformation basically replaces
each node of T by the subtree given by the next claim. For
convenience, we will drop the subscript of D from dD, since
we only focus on a fixed distribution.

Claim 3.2. Consider a comparison C as described in Def-
inition 1.2, where the comparisons are listed in increasing
order of simplicity. Let D′ be a product distribution for P
such that each pi is drawn from a polygonal region Ri. Then
either C is the simplest, type (i) comparison, or there ex-
ists a restricted linear comparison tree T ′C that resolves the
comparison C such that the expected depth of T ′C (over the
distribution D′) is O(1), and all comparisons used in T ′C are
simpler than C.

Proof. v is of type (ii). This means that v needs to
determine whether an input point pi lies to the left of the
directed line ` through another input point pj with a fixed
slope a. We replace this comparison with a binary search.
Let Rj be the region in D′ corresponding to pj . Take a
halving line `1 for Rj with slope a. Then perform two com-
parisons to determine on which side of `1 the inputs pi and pj
lie. If pi and pj lie on different sides of `1, we declare success
and resolve the original comparison accordingly. Otherwise,
we replace Rj with the appropriate new region and repeat
the process until we can declare success. Note that in each
attempt the success probability is at least 1/4. The resulting
restricted tree T ′C can be infinite. Nonetheless, the proba-
bility that an evaluation of T ′C leads to a node of depth k is
at most 2−Ω(k), so the expected depth is O(1).

v is of type (iii). Here the node v needs to determine
whether an input point pi lies to the left of the directed line
` through another input point pj and a fixed point q.

We partition the plane by a constant-sized family of cones,
each with apex q, such that for each cone V in the family, the
probability that line qpj meets V (other than at q) is at most
1/2. Such a family could be constructed by a sweeping a
line around q, or by taking a sufficiently large, but constant-
sized, sample from the distribution of pj , and bounding the
cones by all lines through q and each point of the sample.
Such a construction has a non-zero probability of success,
and therefore the described family of cones exists.

We build a restricted tree that locates a point in the cor-
responding cone. For each cone V , we can recursively build
such a family of cones (inside V), and build a tree for this
structure as well. Repeating for each cone, this leads to an
infinite restricted tree T ′C . We search for both pi and pj
in T ′C . When we locate pi and pj in two different cones of
the same family, then comparison between pi and qpj is re-
solved and the search terminates. The probability that they
lie in the same cones of a given family is at most 1/2, so the
probability that the evaluation leads to k steps is at most
2−Ω(k).

v is of type (iv). Here the node v needs to determine
whether an input point pi lies to the left of the directed line
` through input points pj and pk.

We partition the plane by a constant-sized family of tri-
angles and cones, such that for each region V in the family,
the probability that the line through pj and pk meets V is
at most 1/2. Such a family could be constructed by taking a
sufficiently large random sample of pairs pj and pk and tri-
angulating the arrangement of the lines through each pair.
Such a construction has a non-zero probability of success,
and therefore such a family exists. (Other than the source
of the random lines used in the construction, this scheme
goes back at least to [Cla87]; a tighter version, called a cut-
ting, could also be used [Cha93].)

When computing C, suppose pi is in region V of the fam-
ily. If the line pjpk does not meet V , then the comparison
outcome is known immediately. This occurs with probability
at least 1/2. Moreover, determining the region containing
pi can be done with a constant number of comparisons of
type (i), and determining if pjpk meets V can be done with
a constant number of comparisons of type (iii); for the lat-
ter, suppose V is a triangle. If pj ∈ V , then pjpk meets V .
Otherwise, suppose pk is above all the lines through pj and
each vertex of V ; then pjpk does not meet V . Also, if pk
is below all the lines through pj and each vertex, then pjpk
does not meet V . Otherwise, pjpk meets V . So a constant
number of type (i) and type (iii) queries suffice.

By recursively building a tree for each region V of the
family, comparisons of type (iv) can be done via a tree whose
nodes use comparisons of type (i) and (iii) only. Since the
probability of resolving the comparison is at least 1/2 with
each family of regions that is visited, the expected number
of nodes visited is constant.

Proof of Lemma 3.1. We transform T into a tree T ′
that has no comparisons of type (iv), by using the construc-
tion of Claim 3.2 where nodes of type (iv) are replaced by
a tree. We then transform T ′ into a tree T ′′ that has no
comparisons of type (iii) or (iv), and finally transform T ′′′
into a restricted tree. Each such transformation is done in
the same general way, using one case of Claim 3.2, so we
focus on the first one.

We incrementally transform T into the tree T ′. In each

such step, we have a partial restricted comparison tree T ′′
that will eventually become T ′. Furthermore, during the
process each node of T is in one of three different states. It
is either finished, fringe, or untouched. Finally, we have a
function S that assigns to each finished and to each fringe
node of T a subset S(v) of nodes in T ′′.

The initial situation is as follows: all nodes of T are un-
touched except for the root which is fringe. Furthermore,
the partial tree T ′′ consists of a single root node r and the
function S assigns the root of T to the set {r}.

Now our transformation proceeds as follows. We pick a
fringe node v in T , and mark v as finished. For each child
v′ of v, if v′ is an internal node of T , we mark it as fringe.
Otherwise, we mark v′ as finished. Next, we apply Claim 3.2
to each node w ∈ S(v). Note that this is a valid application
of the claim, since w is a node of T ′′, a restricted tree.
Hence Rw is a product set, and the distribution D restricted
to Rw is a product distribution. Hence, replace each node
w ∈ S(v) in T ′′ by the subtree given by Claim 3.2. Now
S(v) contains the roots of these subtrees. Each leaf of each
such subtree corresponds to an outcome of the comparison in
v. (Potentially, the subtrees are countably infinite, but the
expected number of steps to reach a leaf is constant.) For
each child v′ of v, we define S(v′) as the set of all such leaves
that correspond to the same outcome of the comparison as
v′. We continue this process until there are no fringe nodes
left. By construction, the resulting tree T ′ is restricted.

It remains to argue that dT ′ = O(dT). Let v be a node
of T . We define two random variables Xv and Yv. The
variable Xv is the indicator random variable for the event
that the node v is traversed for a random input P ∼ D.
The variable Yv denotes the number of nodes traversed in
T ′ that correspond to v (i.e., the number of nodes needed
to simulate the comparison at v, if it occurs). We have
dT =

∑
v∈T E[Xv], because if the leaf corresponding to an

input P ∼ D has depth d, exactly d nodes are traversed to
reach it. We also have dT ′ =

∑
v∈T E[Yv], since each node

in T ′ corresponds to exactly one node v in T . Claim 3.3
below shows that E[Yv] = O(E[Xv]), which completes the
proof.

Claim 3.3. E[Yv] ≤ cE[Xv]

Proof. Note that E[Xv] = Pr[Xv = 1] = Pr[P ∈ Rv].
Since the sets Rw, w ∈ S(v), partition Rv, we can write
E[Yv] as

E[Yv | Xv = 0] Pr[Xv = 0]+∑
w∈S(v)

E[Yv | P ∈ Rw] Pr[P ∈ Rw].

Since Yv = 0 if P /∈ Rv, we have E[Yv | Xv = 0] = 0
and also Pr[P ∈ Rv] =

∑
w∈S(v) Pr[P ∈ Rw]. Furthermore,

by Claim 3.2, we have E[Yv | P ∈ Rw] ≤ c. The claim
follows.

3.2 Entropy-sensitive comparison trees
Since every linear comparison tree can be made restricted,

we can incorporate the entropy of D into the lower bound.
For this we define entropy-sensitive trees, which are useful
because the depth of a node v is related to the probability
of the corresponding region Rv.

Definition 3.4. We call a restricted linear comparison

tree entropy-sensitive if each comparison “pi ∈ `+?” is such
that ` is a halving line for the current region Ri.

Lemma 3.5. Let v be a node in an entropy-sensitive com-
parison tree, and let Rv = R1 × R2 × · · · × Rn. Then
dv = −

∑n
i=1 log Pr[Ri].

Proof. We use induction on the depth of v. For the root
r we have dr = 0. Now, let v′ be the parent of v. Since T is
entropy-sensitive, we reach v after performing a comparison
with a halving line in v′. This halves the measure of exactly
one region in Rv, so the sum increases by one.

As in Lemma 3.1, we can make every restricted linear com-
parison tree entropy-sensitive without affecting its expected
depth too much.

Lemma 3.6. Let T a restricted linear comparison tree.
Then there exists an entropy-sensitive comparison tree T ′
with expected depth dT ′ = O(dT).

Proof. The proof extends the proof of Lemma 3.1, via
an extension to Claim 3.2. We can regard a comparison
against a fixed halving line as simpler than an comparison
against an arbitrary fixed line. Our extension of Claim 3.2
is the claim that any type (i) node can be replaced by a
tree with constant expected depth, as follows. A compari-
son pi ∈ `+ can be replaced by a sequence of comparisons to
halving lines. Similar to the reduction for type (ii) compar-
isons in Claim 3.2, this is done by binary search. That is,
let `1 be a halving line for Ri parallel to `. We compare pi
with `. If this resolves the original comparison, we declare
success. Otherwise, we repeat the process with the halving
line for the new region R′i. In each step, the probability of
success is at least 1/2. The resulting comparison tree has
constant expected depth; we now apply the construction of
Lemma 3.1 to argue that for a restricted tree T there is an
entropy-sensitive version T ′ whose expected depth is larger
by at most a constant factor.

Recall that OPTD is the expected depth of an optimal lin-
ear comparison tree that computes the maxima for P ∼ D.
We now describe how to characterize OPTD in terms of
entropy-sensitive comparison trees. We first state a simple
property that follows directly from the definition of certifi-
cates and the properties of restricted comparison trees.

Proposition 3.7. Consider a leaf v of a restricted linear
comparison tree T computing the maxima. Let Ri be the re-
gion associated with non-maximal point pi ∈ P in Rv. There
exists some region Rj associated with an extremal point pj
such that every point in Rj dominates every point in Ri.

We now enhance the notion of a certificate (Definition 1.1)
to make it more useful for our algorithm’s analysis. For tech-
nical reasons, we want points to be “well-separated” accord-
ing to the slab structure S. By Prop. 3.7, every non-maximal
point is associated with a dominating region.

Definition 3.8. Let S be a slab structure. A certificate
for an input P is called S-labeled if the following holds. Ev-
ery maximal point is labeled with the leaf slab of S containing
it. Every non-maximal point is either placed in the contain-
ing leaf slab, or is separated from a dominating region by a
slab boundary.

We naturally extend this to trees that compute the S-
labeled maxima.

Definition 3.9. A linear comparison tree T computes
the S-labeled maxima of P if each leaf v of T is labeled with
a S-labeled certificate that is valid for every possible input
P ∈ Rv.

Lemma 3.10. There exists an entropy-sensitive compari-
son tree T computing the S-labeled maxima whose expected
depth over D is O(n+ OPTD).

Proof. Start with an optimal linear comparison tree T ′
that computes the maxima. At every leaf, we have a list M
with the maximal points in sorted order. We merge M with
the list of slab boundaries of S to label each maximal point
with the leaf slab of S containing it. We now deal with
the non-maximal points. Let Ri be the region associated
with a non-maximal point pi, and Rj be the dominating
region. Let λ be the leaf slab containing Rj . Note that
the x-projection of Ri cannot extended to the right of λ.
If there is no slab boundary separating Ri from Rj , then
Ri must intersect λ. With one more comparison, we can
place pi inside λ or strictly to the left of it. All in all, with
O(n) more comparisons than T ′, we have a tree T ′′ that
computes the S-labeled maxima. Hence, the expected depth
is OPTD +O(n). Now we apply Lemmas 3.1 and 3.6 to T ′′
to get an entropy-sensitive comparison tree T computing the
S-labeled maxima with expected depth O(n+ OPTD).

4. THE ALGORITHM
In the learning phase, the algorithm constructs a slab

structure S and search trees Ti, as given in Lemmas 1.7
and 1.8. Henceforth, we assume that we have these data
structures, and will describe the algorithm in the limiting
(or stationary) phase. Our algorithm proceeds by searching
progressively each point pi in its tree Ti. However, we need
to choose the order of the searches carefully.

At any stage of the algorithm, each point pi is placed
in some slab Si. The algorithm maintains a set A of ac-
tive points. An inactive point is either proven to be non-
maximal, or it has been placed in a leaf slab. The active
points are stored in a data structure L(A). This struc-
ture is similar to a heap and supports the operations delete,
decrease-key, and find-max. The key associated with an ac-
tive point pi is the right boundary of the slab Si (represented
as an element of [|S|]).

We list the variables that the algorithm maintains. The
algorithm is initialized withA = P , and each Si is the largest
slab in S. Hence, all points have key |S|, and we insert all
these keys into L(A).

• A,L(A): the list A of active points stored in data struc-
ture L(A).

• λ̂, B: Let m be the largest key among the active points.

Then λ̂ is the leaf slab whose right boundary is m and B

is a set of points located in λ̂. Initially B is empty and m
is |S|, corresponding to the +∞ boundary of the rightmost,
infinite, slab.
• M, p̂: M is a sorted (partial) list of currently discovered

maximal points and p̂ is the leftmost among those. Initially
M is empty and p̂ is a “null” point that dominates no input
point.

The algorithm involves a main procedure Search, and
an auxiliary procedure Update. The procedure Search
chooses a point and proceeds its search by a single step in
the appropriate tree. Occasionally, it will invoke Update to
change the global variables. The algorithm repeatedly calls
Search until L(A) is empty. After that, we perform a final
call to Update in order to process any points that might
still remain in B.

Search. Let pi be obtained by performing a find-max in
L(A). If the maximum key m in L(A) is less than the right

boundary of λ̂, we invoke Update. If pi is dominated by p̂,
we delete pi from L(A). If not, we advance the search of pi
in Ti by a single step, if possible. This updates the slab Si.
If the right boundary of Si has decreased, we perform the
appropriate decrease-key operation on L(A). (Otherwise, we
do nothing.)

Suppose the point pi reaches a leaf slab λ. If λ = λ̂, we
remove pi from L(A) and insert it in B (in time O(|B|)).
Otherwise, we leave pi in L(A).

Update. We sort all the points in B and update the list of
current maxima. As Claim 4.1 will show, we have the sorted

list of maxima to the right of λ̂. Hence, we can append to

this list in O(|B|) time. We reset B = ∅, set λ̂ to the leaf
slab to the left of m, and return.

We prove some preliminary claims. We state an impor-
tant invariant maintained by the algorithm, and then give a
construction for the data structure L(A).

Claim 4.1. At any time in the algorithm, the maxima of

all points to the right of λ̂ have been determined in sorted
order.

Proof. The proof is by backward induction on m, the

right boundary of λ̂. When m = |S|, then this is trivially
true. Let us assume it is true for a given value of m, and
trace the algorithm’s behavior until the maximum key be-
comes smaller than m (which is done in Update). When
Search processes a point p with a key of m then either (i)
the key value decreases; (ii) p is dominated by p̂; or (iii) p is

eventually placed in λ̂ (whose right boundary is m). In all
cases, when the maximum key decreases below m, all points

in λ̂ are either proven to be non-maximal or are in B. By
the induction hypothesis, we already have a sorted list of
maxima to the right of m. The procedure Update will sort
the points in B and all maximal points to the right of m−1
will be determined.

Claim 4.2. Suppose there are x find-max operations and
y decrease-key operations. We can implement the data struc-
ture L(A) such that the total time for the operations is O(n+
x+ y). The storage requirement is O(n).

Proof. We represent L(A) as an array of lists. For every
k ∈ [|S|], we keep a list of points whose key values are k. We
maintain m, the current maximum key. The total storage is
O(n). A find-max can trivially be done in O(1) time, and
an insert is done by adding the element to the appropriate
list. A delete is done by deleting the element from the list
(supposing appropriate pointers are available). We now have
to update the maximum. If the list at m is non-empty,
no action is required. If it is empty, we check sequentially
whether the list at m − 1,m − 2, . . . is empty. This will

eventually lead to the maximum. To do a decrease-key, we
delete, insert, and then update the maximum.

Note that since all key updates are decrease-keys, the max-
imum can only decrease. Hence, the total overhead for scan-
ning for a new maximum is O(n).

4.1 Running time analysis
The aim of this section is to prove the following lemma.

Lemma 4.3. The algorithm runs in O(n+ OPTD) time.

We can easily bound the running time of all calls to Up-
date.

Claim 4.4. The expected time for all calls to Update is
O(n).

Proof. The total time taken for all calls to Update is
at most the time taken to sort points within leaf slabs. By
Lemma 1.7, this takes expected time

E
[∑
λ∈S

X2
λ

]
=
∑
λ∈S

E
[
X2
λ

]
=
∑
λ∈S

O(1) = O(n).

The important claim is the following, since it allows us
to relate the time spent by Search to the entropy-sensitive
comparison trees. Lemma 4.3 follows directly from this.

Claim 4.5. Let T be an entropy-sensitive comparison tree
computing S-labeled maxima. Consider a leaf v labeled with
the regions Rv = (R1, R2, . . . , Rn), and let dv denote the
depth of v. Conditioned on P ∈ Rv, the expected running
time of Search is O(n+ dv).

Proof. For each Ri, let Si be the smallest slab of S that
completely contains Ri. We will show that the algorithm
performs at most an Si-restricted search for input P ∈ Rv.
If pi is maximal, then Ri is contained in a leaf slab (this is
because the output is S-labeled). Hence Si is a leaf slab and
an Si-restricted search for a maximal pi is just a complete
search.

Now consider a non-maximal pi. By the properties of S-
labeled maxima, the associated region Ri is either inside a
leaf slab or is separated by a slab boundary from the domi-
nating region Rj . In the former case, an Si-restricted search
is a complete search. In the latter case, we argue that an
Si-restricted search suffices to process pi. This follows from
Claim 4.1: by the time an Si-restricted search finishes, all
maxima to the right of Si have been determined. In partic-
ular, we have found pj , and thus p̂ dominates pi. Hence, the
search for pi will proceed no further.

The expected search time taken conditioned on P ∈ Rv
is the sum (over i) of the conditional expected Si-restricted
search times. Let Ei denote the event that pi ∈ Ri, and E
be the event that P ∈ Rv. We have E =

∧
i Ei. By the in-

dependence of the distributions and linearity of expectation

EE [search time]

=

n∑
i=1

EE [Si-restricted search time for pi]

=

n∑
i=1

EEi [Si-restricted search time for pi].

By Lemma 1.6, the time for an Si-restricted search condi-
tioned on pi ∈ Ri is O(− log Pr[pi ∈ Ri]+1). By Lemma 3.5,
dv =

∑
i− log Pr[pi ∈ Ri], completing the proof.

We can now prove the main lemma.

Proof of Lemma 4.3. By Lemma 3.10, there exists an
entropy-sensitive comparison tree T that computes the S-
labeled maxima with expected depth O(OPT +n). Accord-
ing to Claim 4.5, the expected running time of Search is
O(OPT + n). Claim 4.4 tells us the expected time for Up-
date is O(n), and we add these bounds to complete the
proof.

5. DATA STRUCTURES OBTAINED DUR-
ING THE LEARNING PHASE

Learning the vertical slab structure S is very similar to
to learning the V -list in Ailon et al. [ACC+11, Lemma 3.2].
We repeat the construction and proof for convenience: take
the union of the first k = logn inputs P1, P2, . . ., Pk,
and sort those points by x-coordinates. This gives a list
x0, x1, . . . , xnk−1. Take the n values x0, xk, x2k, . . . , x(n−1)k.
They define the boundaries for S. We recall a useful and
well-known fact [ACC+11, Claim 3.3].

Claim 5.1. Let Z =
∑
i Zi be a sum of nonnegative ran-

dom variables such that Zi = O(1) for all i, E[Z] = O(1),
and for all i, j, E[ZiZj] = E[Zi]E[Zj]. Then E[Z2] = O(1).

Now let λ be a leaf slab in S. Recall that we denote by Xλ
the number of points of a random input P that end up in λ.
Using Claim 5.1, we quickly obtain the following lemma.

Lemma 5.2. With probability 1 − n−3 over the construc-
tion of S, we have E[X2

λ] = O(1) for all leaf slabs λ ∈ S.

Proof. Consider two values xi, xj from the original list.
Note that all the other kn − 2 values are independent of

these two points. For every r /∈ {i, j}, let Y
(r)
t be the in-

dicator random variable for xr ∈ t := [xi, xj). Let Yt =∑
r Y

(r)
t . Since the Y

(r)
t ’s are independent, by Chernoff’s

bound [AS00], for any β ∈ (0, 1],

Pr[Yt ≤ (1− β)E[Yt]] ≤ exp(−β2E[Yt]/2).

With probability at least 1 − n−5, if E[Yt] > 12 logn, then
Yt > logn. By applying the same argument for any pair
xi, xj and taking a union bound over all pairs, with proba-
bility at least 1− n−3 the following holds: for any pair t, if
Yt ≤ logn, then E[Yt] ≤ 12 logn.

For any leaf slab λ = [xak, x(a+1)k], we have Yλ ≤ logn.

Let X
(i)
λ be the indicator random variable for the event that

xi ∼ Di lies in λ, so that Xλ =
∑
iX

(i)
λ . Since E[Yλ] ≥

(logn − 2)E[Xλ], we get E[Xλ] = O(1). By independence

of the Di’s, for all i, j, E
[
X

(i)
λ X

(j)
λ

]
= E

[
X

(i)
λ

]
E
[
X

(j)
λ

]
, so

E[X2
λ] = O(1), by Claim 5.1.

Lemma 1.7 follows immediately from Lemma 5.2 and the
fact that sorting the k inputs P1, P2, . . ., Pk takesO(n log2 n)
time. After the leaf slabs have been determined, the search
trees Ti can be found using essentially the same techniques
as before [ACC+11, Section 3.2]. The main idea is to use
nε logn rounds to find the first ε logn levels of Ti, and to
use a balanced search tree for searches that need to proceed
to a deeper level. This only costs a factor of ε−1. We restate
Lemma 1.8 for convenience.

Lemma 5.3. Let ε > 0 be a fixed parameter. In O(nε)
rounds and O(n1+ε) time, we can construct search trees T1,
T2, . . ., Tn over S such that the following holds. (i) the trees
can be totally represented in O(n1+ε) space; (ii) probability
1−n−3 over the construction of the Tis: every Ti is O(1/ε)-
optimal for restricted searches over Di.

Proof. Let δ > 0 be some sufficiently small constant and
c be sufficiently large . For k = cδ−2nε logn rounds and each
pi, we record the leaf slab of S that contains it. We break
the proof into smaller claims.

Claim 5.4. Using k inputs, we can compute estimates
q̂(i, S) for each index i and slab S. The following guarantee
holds (for all i and S) with probability > 1 − 1/n3 over the
choice of the k inputs. If at least 5 logn instances of pi fell
in S, then q̂(i, S) ∈ [(1− δ)q(i, S), (1 + δ)q(i, S)]1.

Proof. For a slab S, let N(S) be the number of times pi
was in S, and let q̂(i, S) = N(S)/k be the empirical proba-
bility for this event (q̂(i, S) is an estimate of q(i, S)). Fix a
slab S. If q(i, S) ≤ 1/2nε, then by a Chernoff bound we get
Pr[N(S) ≥ 5 logn ≥ 10kq(i, S)] ≤ 2−5 logn = n−5. Further-
more, if q(i, S) ≥ 1/2nε, then q(i, S)k ≥ (c/2δ2) logn and
Pr[N(S) ≤ (1 − δ)q(i, S)k] ≤ exp(−q(i, S)δ2k/4) ≤ n−5 as
well as Pr[N(S) ≥ (1 + δ)q(i, S)k] ≤ exp(−δ2q(i, S)k/4) ≤
n−5. Thus, by taking a union bound, we get that with prob-
ability at least 1 − n−3 for any slab S, if N(S) ≥ 5 logn,
then q(i, S) ≥ n−ε/2 and hence q̂(i, S) ∈ [(1− δ)q(i, S), (1 +
δ)q(i, S)].

We will henceforth assume that this claims holds for all i
and S. Based on the values q̂(i, S), we construct the search
trees. The tree Ti is constructed recursively. We will first
create a partial search tree, where some searches may end in
non-leaf slabs (or, in other words, leaves of the tree may not
be leaf slabs). The root is the just the largest slab. Given a
slab S, we describe how the create the sub-tree of Ti rooted
at S. If N(S) < 5 logn, then we make S a leaf. Otherwise,
we pick a leaf slab λ such that for the slab Sl consisting
of all leaf slabs (strictly) to the left of λ and the slab Sr
consisting of all leaf slabs (strictly) to the right of λ we have
q̂(i, Sl) ≤ (2/3)q̂(i, S) and q̂(i, Sr) ≤ (2/3)q̂(i, S). We make
λ a leaf child of S. Then we recursively create trees for Sl
and Sr and attach them as children to S. For any internal
node of the tree S, we have q(i, S) ≥ nε/2, and hence the
depth is at most O(ε logn). Furthermore, this partial tree
is β-reducing (for some constant β). The partial tree Ti is
extended to a complete tree in a simple way. From each
Ti-leaf that is not a leaf slab, we perform a basic binary
search for the leaf slab. This yields a tree Ti of depth at
most (1 + O(ε)) logn. Note that we only need to store the
partial Ti tree, and hence the total space is O(n1+ε).

Let us construct, as a thought experiment, a related tree
T ′i . Start with the partial Ti. For every leaf that is not a
leaf slab, extend it downward using the true probabilities
q(i, S). In other words, let us construct the subtree rooted
at a new node S in the following manner. We pick a leaf slab
λ such that q(i, Sl) ≤ (2/3)q(i, S) and q(i, Sr) ≤ (2/3)q(i, S)
(where Sl and Sr are as defined above). This ensures that
T ′i is β-reducing. By Lemma 1.6, T ′i is O(1)-optimal for re-
stricted searches over Di (we absorb the β into O(1) for
convenience).

1We remind the reader that this the probability that pi ∈ S.

Claim 5.5. The tree Ti is O(1/ε)-optimal for restricted
searches.

Proof. Fix a slab S and an S-restricted distribution
DS . Let q′(i, λ) (for each leaf slab λ) be the series of val-
ues defining DS . Note that q′(i, S) ≤ q(i, S). Suppose

q′(i, S) ≤ n−ε/2. Then − log q′(i, S) ≥ ε(logn)/2. Since
any search in Ti takes at most (1 + O(ε)) logn steps, the
search time is at most O(ε−1(− log q′(i, S) + 1)).

Suppose q′(i, S) > n−ε/2. Consider a single search for
some pi. We will classify this search based on the leaf of
the partial tree that is encountered. By the construction of
Ti, any leaf S′ is either a leaf slab or has the property that
q(i, S′) ≤ n−ε/2. The search is of Type 1 if the leaf of the
partial tree actually represents a leaf slab (and hence the
search terminates). The search is of Type 2 (resp. Type 3)
if the leaf of the partial tree is a slab S is an internal node
of Ti and the depth is at least (resp. less than) ε(logn)/3.

When the search is of Type 1, it is identical in both Ti
and T ′i . When the search is of Type 2, it takes at ε(logn)/3
in T ′i and at most (trivially) (1 + O(ε))(logn) in Ti. The
total number of leaves (that are not leaf slabs) of the partial

tree at depth less than ε(logn)/3 is at most nε/3. The total

probability mass of Di inside such leaves is at most nε/3 ×
n−ε/2 < n−2ε/3. Since q′(i, S) > n−ε/2, in the restricted
distribution DS , the probability of a Type 3 search is at
most n−ε/6.

Choose a random p ∼ DS . Let E denote the event that a
Type 3 search occurs. Furthermore, let Xp denote the depth
of the search in Ti and X ′p denote the depth in T ′i . When E
does not occur, we have argued that Xp ≤ O(X ′p/ε). Also,

Pr(E) ≤ n−ε/6. The expected search time is just E[Xp]. By
Bayes’ rule,

E[Xp] = Pr(E)EE [Xp] + Pr(E)EE [Xp]

≤ O(ε−1EE [X
′
p]) + n−ε/6(1 +O(ε)) logn

E[X ′p] = Pr(E)EE [X
′
p] + Pr(E)EE [Xp]

=⇒ EE [X
′
p] ≤ E[X ′p]/Pr(E) ≤ 2E[X ′p]

Combining, the expected search time is O(ε−1(E[X ′p] + 1)).
Since T ′i is O(1)-optimal for restricted searches, Ti is O(ε−1)-
optimal.

6. ACKNOWLEDGMENTS
C. Seshadhri was funded by the Early-Career LDRD pro-

gram at Sandia National Laboratories. Sandia National
Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary
of Lockheed Martin Corporation, for the U.S. Department
of Energy’s National Nuclear Security Administration under
contract DE-AC04-94AL85000.

We would like to thank Eden Chlamtáč for suggesting a
simple proof for Claim 3.3.

7. REFERENCES
[ABC09] Peyman Afshani, Jérémy Barbay, and

Timothy M. Chan. Instance-optimal geometric
algorithms. In Proc. 50th Annu. IEEE Sympos.
Found. Comput. Sci. (FOCS), pages 129–138,
2009.

[ACC+11] Nir Ailon, Bernard Chazelle, Kenneth L.
Clarkson, Ding Liu, Wolfgang Mulzer, and
C. Seshadhri. Self-improving algorithms. SIAM
Journal on Computing, 40(2):350–375, 2011.

[ACCL06] Nir Ailon, Bernard Chazelle, Seshadhri
Comandur, and Ding Liu. Self-improving
algorithms. In Proc. 17th Annu. ACM-SIAM
Sympos. Discrete Algorithms (SODA), pages
261–270, 2006.

[AS00] Noga Alon and Joel H. Spencer. The
probabilistic method. Wiley-Interscience, New
York, second edition, 2000.

[BKS01] S. Borzsony, D. Kossmann, and K. Stocker. The
skyline operator. In Data Engineering, 2001.
Proceedings. 17th International Conference on,
pages 421–430. IEEE, 2001.

[BLMM11] Kevin Buchin, Maarten Löffler, Pat Morin, and
Wolfgang Mulzer. Preprocessing imprecise
points for Delaunay triangulations: Simplified
and extended. Algorithmica, 61(3):674–693,
2011.

[Buc89] C. Buchta. On the average number of maxima
in a set of vectors. Inform. Process. Lett.,
33(2):63–66, 1989.

[Cha93] Bernard Chazelle. Cutting hyperplanes for
divide-and-conquer. Discrete Comput. Geom.,
9:145–158, 1993. 10.1007/BF02189314.

[Cla87] Kenneth L. Clarkson. New applications of
random sampling to computational geometry.
Discrete Comput. Geom., 2:195–222, 1987.

[CMS10] K. Clarkson, W. Mulzer, and C. Seshadhri.
Self-improving algorithms for convex hulls. In
Proc. 21st Annu. ACM-SIAM Sympos. Discrete
Algorithms (SODA), 2010.

[CS08] Kenneth L. Clarkson and C. Seshadhri.
Self-improving algorithms for Delaunay
triangulations. In Proc. 24th Annu. ACM
Sympos. Comput. Geom. (SoCG), pages
226–232, 2008.

[EM11] Esther Ezra and Wolfgang Mulzer. Convex hull
of imprecise points in o(nlogn) time after
preprocessing. In Proc. 27th Annu. ACM
Sympos. Comput. Geom. (SoCG), pages 11–20,
2011.

[FLN01] Ronald Fagin, Amnon Lotem, and Moni Naor.
Optimal aggregation algorithms for middleware.
In Proceedings of the twentieth ACM
SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, PODS ’01, pages
102–113, New York, NY, USA, 2001. ACM.

[Gol94] M. J. Golin. A provably fast
linear-expected-time maxima-finding algorithm.
Algorithmica, 11:501–524, 1994.
10.1007/BF01189991.

[GTVV93] M. T. Goodrich, Jyh-Jong Tsay, D. E.
Vengroff, and J. S. Vitter. External-memory
computational geometry. In Proceedings of the
1993 IEEE 34th Annual Foundations of
Computer Science, pages 714–723, Washington,
DC, USA, 1993. IEEE Computer Society.

[HM08] Martin Held and Joseph S. B. Mitchell.

Triangulating input-constrained planar point
sets. Inform. Process. Lett., 109(1):54–56, 2008.

[KLP75] H. T. Kung, F. Luccio, and F. P. Preparata. On
finding the maxima of a set of vectors. J. ACM,
22:469–476, October 1975.

[vKLM10] Marc J. van Kreveld, Maarten Löffler, and
Joseph S. B. Mitchell. Preprocessing imprecise
points and splitting triangulations. SIAM
Journal on Computing, 39(7):2990–3000, 2010.

[KS86] David G. Kirkpatrick and Raimund Seidel. The
ultimate planar convex hull algorithm? SIAM
Journal on Computing, 15(1):287–299, 1986.

[LS10] Maarten Löffler and Jack Snoeyink. Delaunay
triangulation of imprecise points in linear time
after preprocessing. Comput. Geom. Theory
Appl., 43(3):234–242, 2010.

	Introduction
	Main result
	Previous work
	Preliminaries and notation
	Tools from self-improving algorithms

	Outline
	The Computational Model and Lower Bounds
	Reducing to restricted comparison trees
	Entropy-sensitive comparison trees

	The algorithm
	Running time analysis

	Data structures obtained during the learning phase
	Acknowledgments
	References

