
Spanners and Reachability Oracles for Directed
Transmission Graphs∗

Haim Kaplan1, Wolfgang Mulzer2, Liam Roditty3, and Paul
Seiferth2

1 School of Computer Science, Tel Aviv University, Israel
haimk@post.tau.ac.il

2 Institut für Informatik, Freie Universität Berlin, Germany
{mulzer,pseiferth}@inf.fu-berlin.de

3 Department of Computer Science, Bar Ilan University, Israel
liamr@macs.biu.ac.il

Abstract
Let P ⊂ Rd be a set of n points, each with an associated radius rp > 0. The transmission graph
G for P has vertex set P and an edge from p to q if and only if q lies in the ball with radius rp
around p. Let t > 1. A t-spanner H for G is a sparse subgraph of G such that for any two vertices
p, q connected by a path of length ` in G, there is a p-q-path of length at most t` in H. We show
how to compute a t-spanner for G if d = 2. The running time is O(n(logn + log Ψ)), where Ψ
is the ratio of the largest and smallest radius of two points in P . We extend this construction
to be independent of Ψ at the expense of a polylogarithmic overhead in the running time. As a
first application, we prove a property of the t-spanner that allows us to find a BFS tree in G for
any given start vertex s ∈ P in the same time.

After that, we deal with reachability oracles for G. These are data structures that answer
reachability queries: given two vertices, is there a directed path between them? The quality of an
oracle is measured by the space S(n), the query time Q(n), and the preproccesing time. For d = 1,
we show how to compute an oracle with Q(n) = O(1) and S(n) = O(n) in time O(n logn). For
d = 2, the radius ratio Ψ again turns out to be an important measure for the complexity of the
problem. We present three different data structures whose quality depends on Ψ: (i) if Ψ <

√
3,

we achieve Q(n) = O(1) with S(n) = O(n) and preproccesing time O(n logn); (ii) if Ψ ≥
√

3 , we
get Q(n) = O(Ψ3√n) and S(n) = O(Ψ5n3/2); and (iii) if Ψ is polynomially bounded in n, we use
probabilistic methods to obtain an oracle with Q(n) = O(n2/3 logn) and S(n) = O(n5/3 logn)
that answers queries correctly with high probability. We employ our t-spanner to achieve a fast
preproccesing time of O(Ψ5n3/2) and O(n5/3 log2 n) in case (ii) and (iii), respectively.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems—Geometrical
Problems and Computations.

Keywords and phrases Transmission Graphs, Reachability Oracles, Spanner, Intersection Graph

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

A common model for wireless sensor networks is the unit-disk graph: each sensor p is
modeled by a unit disk centered at p, and there is an edge between two sensors iff their disks
intersect [7]. Intersection graphs of disks with arbitrary radii have also been used to model

∗ This work is supported by GIF project 1161 & DFG project MU/3501/1.

© Haim Kaplan, Wolfgang Mulzer, Liam Roditty and Paul Seiferth;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Spanners and Reachability Oracles for Directed Transmission Graphs

sensors with different transmission radii [2, Chapter 4]. Intersection graphs of disks are
undirected, however. For some networks we may want a directed model. In such networks, a
sensor p that can transmit information to a sensor q may not be able to receive information
from q. This motivated various researchers to consider what we call here transmission
graphs [15, 16]. A transmission graph G is defined for a set of points P ⊂ R2 where each
point p ∈ P has a (transmission) radius rp associated with it. Each vertex of G corresponds
to a point of P , and there is a directed edge from p to q iff q lies in the disk D(p) of radius
rp around p. We can weight each edge pq of G by its Euclidean length |pq| and treat G
as a weighted graph. We study (approximate) shortest path and reachability problems for
transmission graphs.

Even though transmission graphs have a linear size representation, they may be very dense,
even with Θ(n2) edges (similar to many other geometric intersection graphs). Thus, if one
applies a standard graph algorithm, like breadth first search (BFS), to a dense transmission
graph, it runs slowly, since it requires an explicit representation of all the edges in the graph.
Thus, given an transmission graph G implicitly as points with radii, it is desirable to construct
a sparse approximation of G that preserves connectivity and proximity properties. For any
t > 1, a subgraph H of G is a t-spanner for G if the distance between any pair of vertices p
and q in H is at most t times the distance between p and q in G, i.e., dH(p, q) ≤ t · dG(p, q)
for any pair p, q (see [14] for an overview of spanners for geometric graphs). Fürer and
Kasivisawnathan show how to compute a t-spanner for unit- and general disk graphs using a
variant of the Yao graph [9, 17]. Peleg and Roditty [15] give a construction for t-spanners in
transmission graphs in any metric space with bounded doubling dimension. However, except
for the unit-disk case, the running times of these algorithms depend on the number of edges
in the intersection graph. We avoid this dependency and give an almost linear time algorithm
that constructs a t-spanner of a transmission graph for the Euclidean metric in the plane.
Our construction is based on the Yao graph [17]. The basic Yao graph is a spanner for the
complete graph defined by n points in the plane (with Euclidean distances). To determine the
points adjacent to a particular point q, we divide the plane by equally spaced rays emanating
from q and connect q to the closest point in each wedge (the number of wedges increases as t
gets smaller). Transmission graphs, being directed, pose a severe computational difficulty as
we want to consider, in each wedge, only the points p with q ∈ D(p) and pick the closest to q
only among those. Our spanner construction generalizes the Yao graph in this manner. We
further need to relax this construction in a subtle way, without hurting the approximation too
much, in order to construct the spanner efficiently. Even with a good approximation in terms
of a t-spanner at hand, we sometimes wish to obtain exact solutions for certain problems on
disk graphs. Working in this direction, Cabello and Jejĉiĉ gave an O(n logn) time algorithm
for computing a BFS tree in a unit-disk graph, rooted at any given vertex [3]. For this, they
exploited the special structure of the Delaunay triangulation of the disk centers. We show
that our spanner admits similar properties for transmission graphs. As a first application of
our spanner, we get an efficient algorithm to compute a BFS tree in a transmission graph.

A classical data structure problem for a directed graph G is to construct a space efficient
reachability oracle that can answer reachability queries quickly. In a reachability query we
get two vertices p and q and we would like to determine if there is a directed path from p to
q. The quality of a reachability oracle for a graph G with n vertices is measured by three
parameters: the query time Q(n), the space requirement S(n), and the preprocessing time.
In the planar case, efficient reachability oracles exist and a recent result by Holm, Rotenberg
and Thorup achieves optimal parameters [11]. However, for general directed graphs, there
are no nontrivial results, and special cases, such as transmission graphs, are of great interest.

H. Kaplan, W. Mulzer, L. Roditty, and P. Seiferth 3

We give efficient constructions of reachability oracles for transmission graphs by exploiting
their geometry. For points in 1D, we give an O(n) space oracle with query time O(1). In 2D
it turns out that the ratio Ψ of the largest and smallest radius of points in P is an important
complexity measure for transmission graphs. We give three oracles for different ranges of Ψ.

Our Contribution and Organization of the Paper. In Section 2, we show how to compute,
for every fixed t > 1, a t-spanner H of G. Our construction is quite generic and can be
adapted to several situations. In the simplest case, if the spread Φ (i.e., the ratio between
the largest and the smallest distance in P) is bounded, we can obtain a t-spanner in time
O(n(logn+ log Φ)) (Section 2.1). With a little more work, we can weaken the assumption to
a bounded radius ratio Ψ (the ratio between the largest and smallest radius in P), giving a
running time of O(n(logn+ log Ψ)) (Section 2.2). Using even more advanced data structures,
we can compute a t-spanner in expected time O(n log6 n), without any dependence on Φ
or Ψ (Section 2.3). Our spanners have several applications. For one, we adapt a result by
Cabello and Jejĉiĉ [3] to show that once a spanner is at hand, we can compute the BFS-tree
of any given vertex p ∈ P with additional time O(n logn) (Section 2.4). Furthermore, we
use t-spanners to obtain efficient preprocessing algorithms for reachability oracles.

The remaining paper is dedicated to these reachability oracles. We will see that in 1D
transmission graphs admit a rich structure that can be exploited to construct a simple linear
space reachability oracle with constant query time and O(n logn) preprocessing time. This
construction is described in Section 3. Unfortunately, in 2D most of their structure vanishes.
However, if the radius ratio Ψ is less than

√
3, we show how to make the transmission graph

planar in O(n logn) time, while preserving the reachability structure and keeping the number
of vertices linear in n. Now we can construct a reachability oracle for the resulting planar
graph. A recent construction of Holm, Rotenberg and Thorup [11] gives a distance oracle for
planar graphs in linear time that takes linear space and can answer a query in O(1) time.
This construction is in Section 4.1. When Ψ ≥

√
3 we do not know how to planarize G.

Fortunately, we can use a separation theorem by Alber and Fiala that allows us to find a small
and balanced separator with respect to the area of the union of the disks [1]. This allows
us to build a reachability oracle with query time O(Ψ3√n) and space and preprocessing
time O(Ψ5n3/2). See Section 4.2. When Ψ is even larger but still polynomially bounded
in n, we use random sampling combined with a quad tree of logarithmic depth to obtain
a reachability oracle with query time O(n2/3 logn), space O(n5/3 logn), and preprocessing
time O(n5/3 log2 n). Refer to Section 4.3.

Many of our constructions rely on planar grids. For i = 0, 1, . . . , we define Qi to be the
grid at level i. It consists of axis-parallel squares with diameter 2i that partition the plane
in grid-like fashion (the cells). Qi is aligned so that the origin is a vertex of the grid. The
distance between two grid cells is the smallest distance of any two points contained in them.
Furthermore, we assume that the input is scaled so that the distance of the closest pair in P
is 1. We assume that in our model of computation we can find for any given point the grid
cell that contains it in O(1) time. For space reasons, all proofs in this extended abstract are
omitted. We refer the interested and ambitious reader to the full version.

2 Spanners and BFS Trees

2.1 Efficient Spanner Construction
Let P ⊂ R2 be a point set with radii, and let Φ = maxp,q∈P |pq|/minp 6=q∈P |pq| be the spread
of P . First, we give a spanner construction for the transmission graph G of P that depends

4 Spanners and Reachability Oracles for Directed Transmission Graphs

on the spread of P . In Section 2.2, we will weaken this to a dependence on the radius ratio.

I Theorem 2.1. Let G be the transmission graph for a two-dimensional n-point set P with
spread Φ. For any t > 1, we can compute a t-spanner for G in time O(n(logn+ log Φ)).

Our construction creates a subgraph H of G that is similar to the Yao graph [17], but
modified to take the disks into account. Ideally, our spanner should look as follows: we pick
a suitable integer k, and we take a set C of k cones with opening angle 2π/k that partition
the plane and that have the origin as apex. For each vertex q ∈ P , we attach the cones in C
to q, and in each translated cone we pick the closest vertex p ∈ P with q ∈ D(p). We add the
edge pq to H. The resulting graph has O(kn) edges, and using standard techniques, one can
show that it is a t-spanner for large enough k. This construction seems to be folklore [5, 15].

However, the standard algorithms for computing the Yao graph do not seem to adapt
easily for our setting without affecting the running time. Thus, we need a more sophisticated
construction that gives a graph with similar properties. The idea is to partition each cone
Cq attached to q into “intervals” obtained by intersecting Cq with annuli centered at q
whose inner and outer radius grows exponentially; see Figure 1. Each of these intervals is
discretized by covering it with O(1) grid cells whose diameter is relatively small compared to
the distance between the interval and q. This enforces two properties that help us to find an
approximately shortest incoming edge for q in Cq: we only need to consider edges from the
interval that is closest to q since these edges will be shorter than any edge from any later
interval; and if there are multiple edges from the same grid cell to q, it suffices to pick only
one of them since their endpoints are close together.

q
p
r

s

Figure 1 A cone Cq covered by discretized inter-
vals. We only need one of the edges −→pq, −→rq for H.

We define a decomposition of P that
represents the discretized intervals by
a neighborhood relation between grid
cells. Given this decomposition, there
is a simple (rather inefficient) rule how to
pick incoming edges for each q ∈ P such
that the resulting graph H is a spanner.
We first give the definition of the decom-
position and prove that H is a t-spanner
if we pick the parameters appropriately.
Then we show how compute the decomposition using a quadtree T . Finally, we use the
structure of T to find the edges within the desired time bound. Let c > 2 be a large constant.
For a grid cell σ, let mσ be the point in P ∩ σ with the largest radius.

I Definition 2.2. Let G be the transmission graph of a point set P ⊂ R2. A c-separated
annulus decomposition for G consists of a finite set Q ⊂

⋃∞
i=0Qi, a symmetric neighborhood

relation N ⊆ Q×Q, and assigned sets Rσ ⊆ P ∩ σ for each σ ∈ Q so that (i) for all
(σ, σ′) ∈ N , diam(σ) = diam(σ′) and d(σ, σ′) ∈ [(c − 2) diam(σ), 2cdiam(σ)); and (ii) for
every edge −→pq of G, there is a (σ, σ′) ∈ N with p ∈ σ, q ∈ σ′, and with either p ∈ Rσ or
q ∈ D(mσ).

For σ ∈ Q, we define N(σ) = {σ′ | (σ, σ′) ∈ N}. Definition 2.2(i) implies |N(σ)| = O(1).

Getting a Spanner. Let t > 1 be the desired stretch. Depending on t, we pick suitable
constants c (separation parameter) and k (number of cones). Let Q be a c-separated annulus
decomposition for G. To obtain a t-spanner H ⊆ G, we pick the incoming edges for each
point q ∈ P and each cone C ∈ C as in Alg. 1. For σ ∈ Q let Cσ be the translated copy of C

H. Kaplan, W. Mulzer, L. Roditty, and P. Seiferth 5

that has the center of σ as apex and let C2
σ be the cone obtained by doubling the opening

angle of Cσ. Instead of Cq we use the cones C2
σ with q ∈ σ to find incoming edges for q. This

gives the generality needed for later extensions of this algorithm.

1 Qq ← cells of Q that contain q
2 Sort Qq by the diameter of the cells in increasing order; give q the status active
3 while q is active do
4 σ ← next largest cell in Qq
5 foreach cell σ′ ∈ N(σ) that is contained in C2

σ do
6 if there is a r ∈ Rσ′ ∪ {mσ′} with q ∈ D(r) then
7 take an arbitrary such r, add the edge rq to H, and set q to be inactive.

Algorithm 1: Selecting the incoming edges for q and the cone Cq.

For each cone C ∈ C and each q ∈ P there is only one σ ∈ Qq that produces incoming edges
for q: after σ is processed, q is inactive. Since we have k cones and since |N(σ)| = O(1), q
has O(k) incoming edges, for a total of O(n) edges in H. To show that H is a t-spanner, we
use induction on the rank of the edge lengths. The proof is done in a similar manner as for
standard Yao graphs, but with a few additional twists.

I Lemma 2.3. For any t > 1, there are constants c and k such that H is a t-spanner for G.

Finding the Decomposition. Let c > 3 be the separation parameter. We scale P s.t. the
smallest distance in P is c. A quadtree for P is a rooted tree T in which each internal node
has degree four. Each node v of T has an associated cell σv from a grid Qi, i ≥ 0, and we
say that v has level i. If v is an internal node, the cells of its four children partition σv into
four congruent squares, each with half the diameter of σv. We describe how to compute a
quadtree T for P s.t. the cells of T form the set Q for the c-separated annulus decomposition.

We construct T level-wise. Let L be the smallest integer such that there is a cell σ ∈ QL
that (possibly after shifting) contains P . Since c is constant and since P has spread Φ, the
scaled point set has diameter cΦ, and we can take L = O(log Φ). We create the root node
v and set σv = σ. This will be level L. To construct level i − 1, given level i, we do the
following for each level i node v whose cell σv is non-empty: take the four cells of Qi−1
that partition σv and create four nodes w1, . . . , w4. To each of the four nodes w1, . . . , w4 we
assign one of the four cells, and we make w1, . . . , w4 children of v. This process stops at level
0. The scaling of P ensures that a cell of a level 0 node contains at most one point of P .

We now set Q = {σv | v ∈ T}. We let (σv, σw) ∈ N if v and w have the same level and if
d(σv, σw) ∈ [(c−2) diam(σv), 2cdiam(σv)). As Rσv

we take all points in σv ∩P whose radius
is between (c− 2) diam(σv) and 2(c+ 1) diam(σv). To see that this satisfies Definition 2.2(ii),
consider an edge pq of G with q ∈ σv and p ∈ σ′ ∈ N(σv). Since D(p) must intersect σv, we
have rp ≥ (c− 2) diam(σv). Thus, we have either p ∈ Rσ′ or rp > 2(c+ 1) diam(σ′). In the
second case for any r ∈ σ′ with radius rr ≥ rp the disk D(r) fully contains σv. In particular
this holds for r = mσ′ . Since Def. 2.2(i) is satisfied by construction, we get the next lemma.

I Lemma 2.4. The set Q with N and the assignment Rσ described above is a c-separated
annulus decomposition for G.

Finding the Edges. To find the edges for the spanner H more quickly, we use the cells of
Q to group the points and find incoming edges for multiple points at once. We process the
cells of Q by increasing diameter, following the structure of the quadtree T .

6 Spanners and Reachability Oracles for Directed Transmission Graphs

Fix one cone C ∈ C of the k cones we want to process. For σ ∈ Q, let C2
σ be the cone with

opening angle 4π/k whose apex is the center of σ obtained by translating C and doubling
its opening angle. We give all points in P the status active. We process T in level-order,
starting with level 0. For each v ∈ T , we select incoming edges for the active points Q in
σv ∩ P as in Algorithm 2. First we sort Q by x and y-direction in linear time, using the
sorted lists of v’s children (preproccesing). Let σ′ ∈ N(σv) be a neighbor of σv. The sorting
enables us to efficiently find incoming edges for points in Q from points in R = Rσ′ ∪ {mσ′}
(edge selection): Q and R are separated by a line ` that is parallel to either the x or the y
axis, namely one of the supporting lines of the boundary of σv. We can compute the lower
envelope E of the disks in R and sweep over Q in ` direction, see Fig. 2. This takes time
linear in |Q| since Q is sorted in ` direction. To check whether the current point q ∈ Q is
contained in a disk of R, we only need to test the disk of the arc of E intersected by the
sweepline through q orthogonal to `. We summarize the above discussion in Lemma 2.5.

`
R

Q

Figure 2 The lower envelope (orange), the points Q (red) and R (blue), and the sweepline (green).

I Lemma 2.5. Let Q,R, and ` be as above with |Q| = n and |R| = m. Suppose that Q is
sorted along ` and that ` separates Q and R. We can compute in time O(m logm+ n) for
each q ∈ Q one disk from R that contains it, provided that such a disk exists.

The edges selected by Algorithm 2 have the same properties as the edges selected by
Algorithm 1. Thus, by Lemma 2.3, the resulting graph is a t-spanner.

1 for i = 0, . . . , L do
2 foreach v ∈ T of level i do
3 Q← active points in σv ∩ P

// preproccesing
4 Sort Q in x and y-direction by merging the sorted lists of the children of v

foreach σ′ ∈ N(σv) contained in C2
σv

do
5 R← Rσ′ ∪ {m′σ}

// edge selection
6 For each q ∈ Q find a r ∈ R with q ∈ D(r), if it exists; add the edge −→rq to H
7 Set all q ∈ Q for which at least one incoming edge was found to inactive

Algorithm 2: Selecting the edges for H for a fixed cone C.

Running Time. By Lemma 2.5, we can argue that the running time of Algorithm 2 is
dominated by the edge selection step. Since T has depth O(log Φ), each p ∈ P takes part in
O(log Φ) edge selections as a point in Q for incoming edges, taking O(1) time for that point
(by Lemma 2.5). Furthermore, each point is in O(1) different sets Rσ and thus takes part in
O(1) edges selections as a disk-center in R, taking O(log |R|) = O(logn) time for that point.
Thus, we have a total running time of O(n(log Φ + logn)), as stated in the next lemma.

I Lemma 2.6. The construction of the spanner H of G takes O(n(log Φ + logn)) time.

Theorem 2.1 follows by combining Lemmas 2.3 and 2.6.

H. Kaplan, W. Mulzer, L. Roditty, and P. Seiferth 7

2.2 From Bounded Spread to Bounded Radius Ratio
Let P ⊂ R2 be a point set with radii and let Ψ be the radius ratio of P . We extend the
spanner construction from Section 2.1 to be depended on the radius ration Ψ of P .

I Theorem 2.7. Let G be the transmission graph for a n-point set P ⊂ R2 with radius ratio
Ψ. For any t > 1, we can compute a t-spanner for G in O(n(logn+ log Ψ)) time.

The main observation is that the spread is irrelevant in our setting: points that are close
together form a clique in G and can be handled through classic spanners, and points that
are far away from each other form distinct components and can be dealt with independently.

Given t, we pick large enough constants k and c. Then, we scale the input such that the
smallest radius is c. Let M = O(Ψ) be the largest radius. First, we partition P into sets
that are far away from each other and can be handled separately.

I Lemma 2.8. In O(n logn) time, we can partition P into sets P1, . . . , P` so that each Pi
has diameter O(nΨ) and so that for any i 6= j, no point in Pi can reach a point of Pj in G.

By Lemma 2.8, we may assume that our input point set has diameter O(nΨ). As in
Section 2.1, we can compute a quadtree T for P with L levels and L = O(log(nΨ)): take a
large enough grid cell that contains P and recursively subdivide each non-empty cell into four
cells of half the diameter. We stop when the diameter of the cells is 1. Unlike in Section 2.1,
the set of the cells of all nodes of T does not yield a c-separated annulus decomposition for
G. In particular, Definition 2.2(ii) is not true anymore. Therefore, there can be edges in G
that do not go between neighboring cells. These are the short edges.

First, we handle very short edges: let v ∈ T be a level 0 node and let σv ∈ Q0 be the
cell of v. Let Q ⊆ P be all points that lie in cells of Q0 with distance at most c/2− 3 from
σ. Since any pair of points in Q has distance at most c, the set Q forms a clique in G. We
compute a (classic) t-spanner for Q in O(|Q| log |Q|) time [14]. Since any p ∈ P participates
in O(c2) such spanners, we generate O(n) edges in total and require O(n logn) time.

Second, we handle not quite so short edges: for each q ∈ P , let v be the level 0 node of T
whose cell σv contains q. For any cell σ ∈ Q0 with d(σv, σ) ∈ (c/2 − 3, c − 2), we take an
arbitrary point r ∈ σ ∩ P and add the edge −→rq to our spanner. All these edges have length
at most c and are therefore valid edges in G. This takes O(n) time and creates O(n) edges.

Finally, we handle the remaining edges: for this, we mark all points of P as active, and
we run Algorithm 2 from Section 2.1 starting from level 0 of T . Call the resulting graph H.

As in Lemma 2.3, induction on the rank of the edges lengths shows that H is a t-spanner.

I Lemma 2.9. The graph H is a t-spanner for G if c and k are large enough constants.

Using Lemma 2.9, Theorem 2.7 follows in the same way as in Section 2.1. The running time
analysis goes exactly as in Lemma 2.6, but the quadtree now has O(logn+ log Ψ) levels.

2.3 Spanners for Unbounded Spread and Radius Ratio
We show how eliminate the bounded radius ratio assumption at the expense of using a more
involved data structure and of losing a polylog factor in the running time. Let P ⊂ R2 and
the desired stretch factor t > 1 be given. Assume that the closest pair in P has distance 1.

First we compute a compressed quadtree T for P . It is a rooted tree in which each internal
node has degree 1 or 4. Each node v has an associated cell σv from a grid Qi. To keep
the notation simple, we write diam(v) for diam(σv) = 2i, and for two nodes v, w, we write
d(v, w) for d(σv, σw). If v has degree 4, then the associated cells of its children partition

8 Spanners and Reachability Oracles for Directed Transmission Graphs

σv into 4 congruent squares of half the diameter, and at least two of them are non-empty.
If v has degree 1, then the associated cell of the only child w of v has diameter at most
diam(v)/4. Furthermore, there are no points from P in σv \ σw. Each internal node of T
contains at least 2 points from P in its cell and each leaf at most 1 point. A compressed
quadtree for P with O(n) nodes can be computed in O(n logn) time [10].

Our goal is to use the algorithm from Section 2.1 on the compressed quadtree T . There
are two problems with this: since the depth of T can be linear, we cannot consider all points
for incoming edges in each level, as in Algorithm 2. Instead we use Chan’s dynamic nearest
neighbor data structure to quickly identify the relevant points. It has the following properties.

I Theorem 2.10 (Chan [6]). There exists a dynamic data structure that maintains a planar
point set S such that (i) we can insert a point into S in expected, amortized time O(log3 n);
(ii) we can delete a point from S in expected, amortized time O(log6 n); and (iii) given a
query point q, we can find the nearest neighbor for q in S in worst-case time O(log2 n).

Furthermore, the cells of T do not form a c-separated annulus decomposition anymore. The
notion of neighborhood needs to be adapted to accommodate internal nodes of degree 1 and to
ensure that Definition 2.2(ii) holds. We fix this by inserting O(n) additional nodes into T that
have the desired properties. To find these nodes, we use the well-separated pair decomposition
algorithm of Callahan and Kosaraju [4]. Let a large enough constant c be given. As in
Section 2.1, we define the neighborhood relation N as the pairs (σv, σw) whose nodes v and w
have the same level in T and that satisfy d(σv, σw) ∈ [(c− 2) diam(σv), 2cdiam(σv)). The set
Rσv

are all points in σv ∩ P whose radius is between (c− 2) diam(σv) and 2(c+ 1) diam(σv).

I Lemma 2.11. For any c > 0 we can in O(n logn) time insert O(n) nodes into the
compressed quadtree T s.t. Q = {σv | v ∈ T} with N and the assignment Rσ is a c-separated
annulus decomposition for G. In the same time we can compute N and Rσv for each σv ∈ Q.

Finding the Edges. To find the edges for the spanner H ⊆ G, we choose constants k and c
depending on t. The algorithm proceeds as follows: we compute a compressed quadtree T
for P . To obtain a c-separated annulus decomposition Q, N , Rσv

for G, we augment T with
O(n) nodes as in Lemma 2.11. We create the dynamic nearest neighbor (NN) data structure
from Theorem 2.10 for each leaf node v of T whose cell σv is non-empty. We sort all cells of
nodes of T by increasing diameter. A point is called active if it is in the NN data structure
of some v, thus initially all points of P are active. Fix a cone C. For σ ∈ Q let C2

σ be the
cone whose apex is the center of σ and such that C2

σ is obtained from C by translating and
doubling the opening angle to 4π/k. To select the spanner edges for C, we consider the
nodes of T in increasing order and perform two steps for each node v, similar to Algorithm 2
of Section 2.1: let w be the child of v that has the most active points in its NN structure.
To get the NN data structure for v, we insert all active points of the remaining children of v
into the NN data structure of w (preproccesing). Since w has the most points, overall each
point is inserted O(logn) times in some NN structure. Then we do the edge selection for all
σ′ ∈ N(σv) contained in C2

σv
using the NN structure of v; see Algorithm 3. We take each

point r ∈ Rσ′ ∪ {mσ′} and repeatedly query the NN structure of v. Let q be the result. If rq
constitutes an edge in G, we call the query successful, add rq to H, delete q, and do another
query with r. Otherwise, we proceed with the next point of R. Each such query causes O(1)
additional insertion/deletions to a NN structure. If it was successful, we charge these costs
to the created edge. Otherwise, we charge the costs to this point r. Since each point p ∈ P
is in O(1) sets Rσ, it can only be responsible for O(1) unsuccessful queries. Thus, since H
has n vertices and O(n) edges, we can to prove the next lemma.

H. Kaplan, W. Mulzer, L. Roditty, and P. Seiferth 9

I Lemma 2.12. The algorithm has total expected running time O(n log6 n).

The edges selected by this procedure have the same properties as the edges selected by
Algorithm 1. Thus, by Lemma 2.3 we obtain a t-spanner H, which establishes Theorem 2.10.

// preproccesing
1 Let w be the child of v whose NN structure contains the most points
2 Insert all points of each child w′ 6= w of v into the NN structure of w
3 foreach σ′ ∈ N(σv) contained in C2

σv
do

4 foreach r ∈ R = Rσ′ ∪ {mσ′} do
// edge selection

5 q ← NN(v, r) // query NN structure of v with r

6 while q ∈ D(r) and q 6= ∅ do
7 add the edge rq to H; delete q from NN(v); q ← NN(v, r)
8 reinsert all deleted points into NN(v)
9 delete all q from NN(v) for which at least one edge rq was found
Algorithm 3: Selecting incoming edges for the points of a node v of T and a cone C.

2.4 From Spanners to BFS Trees
We show how to compute BFS trees for a transmission graph G. Let the desired root s ∈ P
be given. We apply a technique that Cabello and Jejĉiĉ used for unit-disk graphs [3]. Denote
by dh(s, p) the BFS distance from s to p in G. For i ∈ N0 let Wi ⊆ P be the vertices p ∈ P
with dh(s, p) = i. Cabello and Jejĉiĉ used the Delaunay triangulation (DT) to efficiently
identify Wi+1, given W0, . . . ,Wi. Our t-spanner provides similar properties for transmission
graphs as the DT does for unit-disk graphs.

I Lemma 2.13. Let H be the t-spanner for G from Theorem 2.7 for t small enough, and let
v ∈Wi+1, for some i ≥ 0. Then there is a vertex u ∈Wi and a path u = ql, . . . , q1 = v in H
with dh(s, qj) = i+ 1 for j = l − 1, . . . , 1.

1 W0 ← {s}; d[s] = 0; π[s] = s; i = 0; and, for p ∈ P \ {s}, d[p] =∞ and π[p] = NIL
2 while Wi 6= ∅ do
3 compute power diagram with point location structure PDi of Wi

4 queue Q←Wi ; Wi+1 ← ∅
5 while Q 6= ∅ do
6 p← dequeue(Q)
7 foreach edge pq of H do
8 u← PDi(q) // query PDi with q

9 if q ∈ D(u) and d[q] =∞ then
10 enqueue(Q, q); d[q] = i+ 1; π[q] = u; add q to Wi+1

11 i← i+ 1
Algorithm 4: Compute the BFS tree for G with root s using H.

The BFS tree for s is computed iteratively; see Alg. 4 for pseudocode. Initially, we set
W0 = {s}. Now assume we computed everything up to Wi. By Lemma 2.13, all vertices in
Wi+1 can be reached from Wi in the subgraph of H induced by Wi ∪Wi+1. Thus, we can

10 Spanners and Reachability Oracles for Directed Transmission Graphs

compute Wi+1 as follows: for each u ∈Wi, start a BFS search in H from u. Every time we
encounter a new vertex q, we check if it lies in a disk of Wi. If so, we add q to Wi+1 and add
the new neighbors of q to the queue. Otherwise, we discard q for now. To test whether q lies
in a disk of Wi, we use the power diagram. This weighted version of the Voronoi Diagram
represents the union of the Wi-disks as a planar subdivision. It takes O(|Wi| log |Wi|) time
to compute, and augmented with a point location structure it supports the following queries
in time O(log |Wi|): given a point q, find a disk in Wi that contains it, if it exists [12,13].

Each edge pq of H is considered at most twice by Alg. 4, and each time we query a power
diagram with q (in O(logn) time). Since H is sparse, the total time is O(n logn).

3 Reachability Oracles for 1-dimensional Graphs

In this section we prove the following theorem.

I Theorem 3.1. Let G be the transmission graph of an n-point set P ⊂ R. We can construct
in O(n logn) time a reachability oracle for G with S(n) = O(n) and Q(n) = O(1).

Let C be the set of strongly connected components (SCCs) of G and let C ∈ C. We say that
C can reach a point p ∈ P if there is a path in G from a point in C to p. We say that C can
reach an SCC D ∈ C if C can reach a point in D. By strong connectivity, this means that
all points in C can reach all points in D. Next, we define several points related to C: the
leftmost point of C, l(C), is the point in C with the smallest x-coordinate; the left reachpoint
of C, lr(C), is the leftmost point in R that lies in a ball around a point in P reachable from
C; and the direct left reachpoint of C, dl(C), is the leftmost point in R that lies in a ball
around a point in C, i.e., dl(C) = minp∈C(p− rp). The right versions r(C), rr(C), and dr(C)
are defined analogously. The interval of C, IC , is defined as IC = [l(C), r(C)].

I Lemma 3.2. Let C ∈ C be an SCC, and let p ∈ C a point in C. For any q ∈ P , there is a
path in G from p to q if and only if q ∈ [lr(C), rr(C)].

Lemma 3.2 suggests the following reachability oracle with O(n) space and O(1) query time:
for each C ∈ C, store the reachpoints lr(C) and rr(C); and for each point p ∈ P , store the
SCC of G that contains it. Given two query points p, q, we look up the SCC C for p, and we
return YES iff q ∈ [lr(C), rr(C)]. It remains to describe an efficient preprocessing algorithm.
To find the reachpoints quickly, we investigate the structure of the SCCs in G.

I Lemma 3.3. The intervals {IC | C ∈ C} for the SCCs form a laminar set family, i.e., for
any C,D ∈ C, we have either IC ∩ ID = ∅, IC ⊆ ID, or ID ⊆ IC .

By Lemma 3.3, we can obtain a forest with vertex set C by considering the set containment
relation on the intervals {IC | C ∈ C}. If necessary, we add a common root node to get a
tree T . The next lemma characterizes the left and right reachpoints.

I Lemma 3.4. Let C ∈ C. The left reachpoint lr(C) of C is either dl(C) or dl(D), where D
is a sibling of C in T . The situation for the right reachpoints is analogous.

Reachability Between Siblings. By Lemma 3.4, for an SCC C ∈ C, it suffices to search for
lr(C) and rr(C) among the siblings of C in T . Let C1, . . . , Ck be the children of a node in
T , sorted from left to right according to their intervals. To compute the left reachpoints
of C1, . . . , Ck, we set lr(C1) = dl(C1) and we push C1 onto an empty stack S. Then we go
through C2, . . . , Ck, from left to right. For the current child Ci, we initalize the tentative left

H. Kaplan, W. Mulzer, L. Roditty, and P. Seiferth 11

reachpoint lr(Ci) = dl(Ci). While the current tentative reachpoint lies to the left of the right
interval endpoint for the top of the stack, we pop the stack and we update the tentative
reachpoint of Ci to the left reachpoint of the popped component, if it lies further to the left.
Then we push Ci onto the stack and proceed to the next child; see Algorithm 5.

1 lr(C1)← dr(C1); push C1 onto an empty stack S
2 for i← 2 to k do
3 lr(Ci)← dr(Ci)
4 while S 6= ∅ and lr(Ci) ≤ r(top(S)) do
5 D ← pop(S); lr(Ci)← min{lr(Ci), lr(D)}
6 push Ci onto S

Algorithm 5: Computing left reachpoints.

The right reachpoints are computed analogously. Since each SCC is pushed/popped at most
once onto/from S, and sorting the SSCs needs O(n logn) time, we get the following lemma.

I Lemma 3.5. We can compute the reachability for all nodes in T in O(n logn) time.

It remains to find the SCCs without explicitly constructing G. To do so, we can use the
Kosaraju-Sharir algorithm [8] together with geometric data structures that allow us to
efficiently find unvisited edges. See the full version for details. This establishes Theorem 3.1.

4 Reachability Oracles for 2-dimensional Graphs

4.1 Ψ is less than
√

3
Suppose that Ψ ∈ [1,

√
3). We show that we can planarize G by first removing unnecessary

edges and then resolving edge crossings by adding O(n) additional vertices. This will not
change the reachability between the original vertices. The existence of efficient reachability
oracles then follows from known results for planar graphs. We prove the following lemma.

I Lemma 4.1. Let G be the transmission graph for a planar n-point set P , such that Ψ <
√

3.
In time O(n logn), we can find a plane graph H = (V,E) s.t. (i) |V | = O(n) and |E| = O(n);
(ii) P ⊆ V ; (iii) for any p, q ∈ P , p can reach q in G iff p can reach q in H.

Given Lemma 4.1, we can obtain the following result by constructing the distance oracle
from Holm, Rotenberg and Thorup for H [11]. It has O(1) query time and needs O(n) space.

I Theorem 4.2. Let G be the transmission graph for a two-dimensional set P of n points
and let Ψ be the ratio between the largest and smallest radius in P . If Ψ <

√
3, we can

construct in O(n logn) time a reachability oracle for G with S(n) = O(n) and Q(n) = O(1).

We prove Lemma 4.1 in three steps. First, we show how to reduce the number of edges in G
to O(n) without changing the reachability. Then we show how to remove the crossings from
G. Finally, we argue that we can combine these two operations to get the desired result.

Pruning the Graph. We construct a sparse subgraph H ⊆ G with the same reachability as
G but with O(n) edge crossings. Consider the grid Q0 whose cells have side length 1/

√
2.

Let σ ∈ Q0 be a grid cell. We say that an edge of G lies in σ if both endpoints are contained
in σ. The neighborhood N(σ) of σ consists of the 7 × 7 block of cells in Q0 with σ at the
center. Two grid cells are neighboring if they lie in each other’s neighborhood. For any edge

12 Spanners and Reachability Oracles for Directed Transmission Graphs

in G, its two endpoints must lie in neighboring grid cells. We assign each point in P to the
cell of Q0 that contains it. The subgraph H has P as vertex set, and we pick the edges as
follows: for each non-empty cell σ, let Pσ ⊆ P be the points in σ. We compute the Euclidean
minimum spanning tree (EMST) Tσ of Pσ, and for each edge pq of Tσ, we add the directed
edges pq and qp to H. Then, for cell σ′ ∈ N(σ), we check if there are any edges from σ to σ′
in G. If so, we add an arbitrary such edge to H. The following lemma states properties of H.

I Lemma 4.3. The graph H a) has the same reachability as G; b) has O(n) edges; c) can
be constructed in O(n logn) time; and d) has O(n) edge crossings if it is drawn in the plane
with vertex set P .

Removing the Crossings. Suppose an edge pq of G and an edge uv of G cross at a point x.
To eliminate the crossing, we add x as a new site to the graph, and we replace pq and uv by
the four new edges px, xq, ux and xv. Furthermore, if qp is an edge of G, we replace it by
the two edges qx, xp, and if vu is an edge of G, we replace it by the two edges vx, xu. We
say that this resolves the crossing between p, q, u and v. Let G̃ be the graph obtained by
iteratively resolving all crossings in G. We can show that the reachability on the vertices of
G stays the same in G̃. Intuitively speaking, the Ψ < 3 restriction forces the vertices to be
close together. This guarantees the existence of additional edges between p, q, u, v in G and
these edges are always sufficient to cover all new paths introduced by resolving the crossing.

I Lemma 4.4. For any two sites p, q ∈ P , if p can reach q in G̃ then p can reach q in G.

Putting it together. To prove Lemma 4.1, we first construct the sparse subgraph H as in
Lemma 4.3 in time O(n logn). Then we iteratively resolve all crossings in H to obtain H̃.
Since H has O(n) crossings that can be found in the same time, this takes O(n) time.

Let p, q ∈ P . We must argue that p can reach q in G if and only if p can reach q in H̃.
Let G̃ be the graph obtained by resolving the crossings in G, as in Lemma 4.4. We know that
the reachability between p and q is the same in G, H, and G̃. Furthermore, if p can reach q
in H, then also in H̃, and if p can reach q in H̃, then also in G̃, because (a subdivision of)
every edge of H̃ is present in G̃. Thus, H̃ and G have the same reachability properties.

4.2 Ψ is constant
Our goal is to prove the following theorem:

I Theorem 4.5. Let G be the transmission graph for an n-point set P ⊂ R2 and let Ψ be
the ratio between the largest and smallest radius of the points in P . We can construct a
reachability oracle for G with S(n) = O(Ψ5n3/2) and Q(n) = O(Ψ3√n) in time O(Ψ5n3/2).

Let D be the disks induced by P . Let µ(D) be the area occupied by
⋃
D :=

⋃
D∈DD. Alber

and Fiala show how to compute a separator for disks with respect to µ(·) [1].

I Theorem 4.6 (Theorem 4.12 in [1]). There exist positive constants α < 1 and β such that
the following holds: let D be a set of n disks and Ψ the ratio of the largest and the smallest
radius in D. Then we can find in time O(Ψ2n) a partition A ∪ B ∪ S of D satisfying (i)⋃
A ∩

⋃
B = ∅, (ii) µ(S) ≤ Ψ2β

√
µ(D) and (iii) µ(A), µ(B) ≤ αµ(D).

To obtain the data structure, consider the grid Q = Q0 whose cells have diameter 1. All
vertices in one cell form a clique in G, so it suffices to determine the reachability for one of
them. For each non-empty cell σ ∈ Q we pick an arbitrary vertex as the representative of σ.

H. Kaplan, W. Mulzer, L. Roditty, and P. Seiferth 13

Let PD be the set of all representatives for D. We recursively create a separator tree T that
contains all needed reachability information: compute A,B, and S according to Theorem 4.6.
We create a node v of the separator tree. Let Qv be all cells in Q that intersect

⋃
S, and let

Pv be their representatives and Dv all disks with centers in Qv. For each s ∈ Pv, we store all
representatives of PD that s can reach and all the representatives that can be reached by
s in the transmission graph induced by D (this graph is a subgraph of G). We recursively
compute separator trees for A \ Dv and B \ Dv, and we connect them to v.

For the space requirement, we can show that |PD| = O(µ(D)) for any set of disks D.

I Lemma 4.7. Let D be a set of n disks with radius at least 1. Then the number of cells in
Q0 that intersect

⋃
D is O(µ(D)).

Then, the space requirement S(µ(D)) for a set of disks D with respect to µ(·) is

S(µ(D)) = S((1− α)µ(D)) + S(αµ(D)) +O(Ψ2µ(D)3/2), (1)

where the last term accounts for storing reachability between the O(Ψ2
√
µ(D)) vertices of PS

and the O(µ(D) vertices of PA ∪PB. For µ(D) = O(1), we have S(µ(D)) = O(1), and Eqn. 1
solves to S(µ(D)) = O(Ψ2µ(D)3/2). Since µ(D) = O(nΨ2), the total space is O(Ψ5n3/2).

Performing a Query. Let p, q ∈ P be given. We may assume that p and q are representative
for their cells. If p = q, we say YES. If p 6= q, we let vp and vq be the nodes in T with p ∈ Pvp

and q ∈ Pvq
, respectively. Let u be least common ancestor of vp and vq. It can be found in

O(logn) time by walking up the tree. Let L be the path from u to the root of T . We check
for each s ∈

⋃
v∈L Pv whether p can reach s and s can reach q. If so, we say YES. If there

is no such s, we say NO. Since |Pv| decreases geometrically along L, the running time is
dominated by the root, and it is O(Ψ2µ(D)1/2). Bounding µ(D) by O(Ψ2n), the total query
time is be O(Ψ3√n). We now argue correctness. First, note that we will say YES only if
there is a path from p to q. Now suppose there is a path π in G from p to q, where p 6= q and
p, q are representatives. Let vp, vq be the nodes in T for p and q, let u be their least common
ancestor, and L be the path from u to the root. By construction,

⋃
v∈LDv must contain a

disk for a point r in π. We pick r such that the corresponding node v is closest to the root.
Let s be the representative for the cell containing r. Then there is an edge from r to s and
from s to r, so p can reach s and s can reach q in the transmission graph of v. Thus, when
walking along L, the algorithm will discover s and the connection between p and q.

Preprocessing Time. We compute for each node v in T a spanner Hv for the corresponding
transmission graph, as in Theorem 2.7. Since we are only interested in the reachability Hv,
we can choose t > 1 to be some small constant. Since T has O(logn) levels, the total running
time for this step is O(n logn(logn+ log Ψ)). Then we go through all the nodes v ∈ T . For
each s ∈ Pv, we compute a BFS tree in Hv with root s. Next, we reverse all edges in Hv and
we again compute BFS-trees for all s ∈ Pv in the transposed graph. This gives the necessary
information we want to store for s. Since the amount of work is proportional to the total
size of the BFS-trees, we get a total running time of O(Ψ5n3/2). Theorem 4.5 now follows.

4.3 Ψ is polynomially bounded
Now we assume that Ψ is bounded by some polynomial in n. Then we can show the following.

I Theorem 4.8. Let G be the transmission graph for a two-dimensional set P of n points and
let Ψ be the ratio between the largest and smallest radii of the points in P . If Ψ = O(poly(n)),

14 Spanners and Reachability Oracles for Directed Transmission Graphs

we can construct a reachability oracle for G in O(n5/3 log2 n) time with S(n) = O(n5/3 logn)
and Q(n) = O(n2/3 logn). All queries are answered correctly with high probability.

We scale everything such that the smallest radius in P is 1. Our approach is as follows: let
p, q ∈ P . If there is a p-q-path with “many” vertices, we detect this by taking a large enough
random sample S ⊆ P and by storing the reachability information for every vertex in S. If
there is a path from p to q with “few” vertices, then p must be “close” to q, where “closeness”
is defined relative to the largest radius along the path. The radii from P can lie in O(log Ψ)
different scales, and for each scale we store few local information to find such a “short” path.

First we consider long paths. Let 0 < α < 1 be some constant to be determined later.
First, we show that a random sample can be used to detect paths with many vertices.

I Lemma 4.9. We can sample a set S ⊂ P of size O(nα logn) s.t. the following holds w.h.p.:
for any p, q ∈ P , if there is a path π from p to q in G of length at least n1−α, then π ∩S 6= ∅.

We find such a sample S, and for each s ∈ S, we store two Boolean arrays that indicate for
each p ∈ P whether p can reach s and whether s can reach p. This needs space O(n1+α logn).

Now we treat short paths. Let L = dlog Ψe. We consider L grids Q0, . . . ,QL, s.t. the
cells in Qi have diameter 2i. For each σ ∈ Qi, let Qσ ⊆ P be the vertices p ∈ P ∩ σ with
rp ∈ [2i, 2i+1). Qσ forms a clique in G, and for each p ∈ Qσ, the disk D(p) covers σ. The
neighborhood N(σ) is defined as the set of all cells from Qi that have distance at most
2i+1n1−α from σ. We have |N(σ)| = O(n2−2α). Let Pσ ⊆ P be the points that lie in cells
of N(σ). For every i = 0, . . . , L and for every σ ∈ Qi with Qσ 6= ∅, we fix an arbitrary
representative point qσ ∈ Qσ. For every point p ∈ P , we store for every i ∈ {0, . . . , L} a
sorted list of all cells σ ∈ Qi with p ∈ Pσ such that qσ can be reached from p and a list of
all cells σ ∈ Qi with p ∈ Pσ such that qσ can reach p. A point in P appears in at most
O(n2−2α log Ψ) point sets Pσ, so the total space requirement is O(n3−2α log Ψ).

Performing a Query. Let p, q ∈ P be given. To decide whether p can reach q, we first
check all O(nα logn) points in S. If there is an s ∈ S such that p reaches s and such that
s reaches q, we return YES. Otherwise, for i = 0, . . . , L, we walk through the lists of cells
whose representative point is reachable from p at level i and through the list of cells whose
representative point can reach q at level i to check whether they contain a common element.
Since the lists are sorted, this can be done in time linear in the list size, as in merge sort. If
any of these pairs of lists contains a common cell, we return YES. Otherwise, we return NO.

For correctness, first note that we return YES only if there is a path from p to q. Now
assume that there is a path π from p to q. If π has more than n1−α vertices, then by
Lemma 4.9, the sample S hits π w.h.p., and the algorithm returns YES. Otherwise, let r
be the vertex of π with the largest radius, and let i be such that rr ∈ [2i, 2i+1). Let σ be
the cell of Qi that contains r. Since π has at most n1−α vertices and each edge of π has
length at most 2i+1, the path π lies in N(σ). In particular, both p and q are contained in
cells of N(σ). Since r ∈ Qσ and since Qσ forms a clique in G, the representative point qσ of
σ can be reached from p and can reach q. By the symmetry of neighborhood definition, σ is
contained in the list of reachable cells from p and in the lists of cells that can reach q. This
common cell will be detected when checking the corresponding lists for p and q at level i.

Time and Space Requirements. For long paths we need O(nα logn) time: for every s ∈ S
we test in O(1) time whether p can reach s and whether s can reach q. For short paths
there are O(log Ψ) levels, and at each level we step through two lists of size O(n2−2α).

H. Kaplan, W. Mulzer, L. Roditty, and P. Seiferth 15

Since we assume log Ψ = O(logn), the tradeoff for the query time is at α = 2/3, yielding
Q(n) = O(n2/3 logn). The same α is the tradeoff for the space usage, which is O(n5/3 logn).

For the preprocessing, we first compute the reachability arrays for each s ∈ S. To do so,
we build the spanner H for G from Section 2.2 in time O(n logn). Then, for each s ∈ S we do
a BFS search in H and its transposed graph. This gives all vertices that s can reach and that
can be reached by s in O(n3/2 logn) total time. Now, we do the preprocessing for short paths.
For each i = 0, . . . , L and each cell σ ∈ Qi that has a representative qσ we do the following:
consider the points Pσ. We compute the spanner Hσ from Section 2.2 for Pσ. For each qσ, we
do a BFS search in Hσ and its transposed graph starting from qσ. This gives all p ∈ Pσ that
reach qσ and that are reachable from qσ. The running time is dominated by constructing the
spanners. Since each point p ∈ P is contained in O(n2−2α log Ψ) = O(n2/3 logn) different
Pσ, and since constructing Hσ takes O(|Pσ|(log Ψ + log |Pσ|)) time, the preprocessing time
for the short paths is O(n5/6 log2 n).
Acknowledgements. We thank Paz Carmi and Günter Rote for valuable comments.

References
1 Jochen Alber and Jirí Fiala. Geometric separation and exact solutions for the parameterized

independent set problem on disk graphs. J. Algorithms, 52(2):134–151, 2004.
2 Azzedine Boukerche. Algorithms and Protocols for Wireless Sensor Networks. Wiley Series

on Parallel and Distributed Computing). Wiley-IEEE Press, 1st edition, 2008.
3 Sergio Cabello and Miha Jejĉiĉ. Shortest paths in intersection graphs of unit disks. Comput.

Geom., 48(4):360–367, 2015.
4 Paul Callahan and Rao Kosaraju. A decomposition of multidimensional point sets with

applications to k-nearest-neighbors and n-body potential fields. J. ACM, 42(1):67–90, 1995.
5 Paz Carmi. personal communication, 2014.
6 Timothy M. Chan. A dynamic data structure for 3-D convex hulls and 2-D nearest neighbor

queries. J. ACM, 57(3):Art. 16, 15, 2010.
7 Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk graphs. Discrete

Math., 86(1-3):165–177, 1990.
8 Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein. Introduction to

Algorithms. MIT Press, 2nd edition, 2001.
9 Martin Fürer and Shiva Prasad Kasiviswanathan. Spanners for geometric intersection

graphs with applications. J. Comput. Geom., 3(1):31–64, 2012.
10 Sariel Har-Peled. Geometric Approximation Algorithms. AMS, 2011.
11 Jacob Holm, Eva Rotenberg, and Mikkel Thorup. Planar Reachability in Linear Space and

Constant Time. CoRR, arXiv:1411.5867, 2014.
12 Hiroshi Imai, Masao Iri, and Kazuo Murota. Voronoi Diagram in the Laguerre Geometry

and its Applications. SICOMP, 14(1):93–105, 1985.
13 D. Kirkpatrick. Optimal Search in Planar Subdivisions. SICOMP, 12(1):28–35, 1983.
14 G. Narasimhan and M. Smid. Geometric spanner networks. Cambridge Univ. Press, 2007.
15 David Peleg and Liam Roditty. Localized spanner construction for ad hoc networks with

variable transmission range. TOSN, 7(3), 2010.
16 P. v. Rickenbach, R. Wattenhofer, and A. Zollinger. Algorithmic Models of Interference in

Wireless Ad Hoc and Sensor Networks. IEEE ACM T NETWORK, 17(1):172–185, 2009.
17 Andrew Chi-Chih Yao. On Constructing Minimum Spanning Trees in k-Dimensional Spaces

and Related Problems. SICOMP, 11(4):721–736, 1982.

	Introduction
	Spanners and BFS Trees
	Efficient Spanner Construction
	From Bounded Spread to Bounded Radius Ratio
	Spanners for Unbounded Spread and Radius Ratio
	From Spanners to BFS Trees

	Reachability Oracles for 1-dimensional Graphs
	Reachability Oracles for 2-dimensional Graphs
	Lg is less than Lg
	Lg is constant
	Lg is polynomially bounded

