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Efficient Spanner Construction for Directed Transmission Graphs*
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Abstract

Let P C R? be a set of n points, each with an asso-
ciated radius 7, > 0. The transmission graph G for
P has vertex set P and a directed edge from p to ¢ if
and only if ¢ lies in the ball with radius r, around p.
Let t > 1. A t-spanner H for G is a sparse subgraph
such that for any two vertices p and ¢ connected by a
path of length [ in G, there is a path of length at most
t-[l from p to ¢ in H. Given G implicitly as points
with radii, we show how to compute a t-spanner for
G in time O(n(logn +log ¥)), where U is the ratio of
the largest and smallest radius in P.

1 Introduction

A common model for wireless sensor networks is the
unit-disk graph: each sensor is modeled by a unit disk,
and there is an edge between two sensors iff their disks
intersect. Intersection graphs of disks with arbitrary
radii have been used to model different transmission
radii. These graphs are undirected, while for some
networks a directed model would be more appropri-
ate. This motivated Peleg and Roditty [5] to define
transmission graphs. The vertex set of a transmission
graph G is a point set P C R?, where each p € P has
a radius r, > 0. There is a directed edge @ from p
to ¢ iff ¢ lies in the disk D(p) of radius r, around p.
Although transmission graphs are represented suc-
cinctly, they may have ©(n?) edges. Thus we would
like to approximate them by sparse spanners. For
t > 1, a subgraph H C G is a t-spanner for G if the
distance between any two vertices p and ¢ in H is at
most ¢ times the distance between p and ¢ in G (cf,
e.g., [4]). Firer and Kasivisawnathan showed how to
compute spanners for unit and general disk graphs by
adapting the Yao graph [3, 6]. Peleg and Roditty [5]
gave a spanner-construction for transmission graphs
in any metric of bounded doubling dimension. Ex-
cept for the unit-disk case, the running times depend
on the number of edges. We avoid this dependency
and give an efficient algorithm to construct ¢-spanners
for transmission graphs for the planar Euclidean case.
Preliminaries and Results. Let P C R? be a point
set with radii, and let G be its transmission graph. Let
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® = max, qep [pqg|/ minyqep [pg| be the spread of P.
In §2, we give a construction depending on ®:

Theorem 1 Let G be the transmission graph for an
n-point set P C R? with spread ®. For any t > 1, we
can find a t-spanner for G in time O(n(log n+log ®)).

The radius ratio ¥ = max,, 4ep rp/7q of P is the ratio
of the largest and the smallest radius in P. In §3 we
extend our construction to depend on ¥ instead of ®.

Theorem 2 Let G be the transmission graph for an
n-point set P C R? with radius ratio W. Fort > 1, we
can find a t-spanner for G in time O(n(logn+log ¥)).

We may assume that ¥ < ®: a radius less than the
smallest distance ¢ in P can be set to ¢/2, and a radius
larger than the diameter d of P can be set to d.

Our construction uses planar grids. For i =
0,1,..., the grid at level i, Q;, consists of axis-parallel
squares of diameter 2¢ that partition the plane in grid-
like fashion (the cells). Q; is aligned so that the origin
is a grid vertex. The distance between two cells is the
smallest distance of any two points contained in them.
We assume that our computational model can find the
grid cell containing a given point in O(1) time.

2 Efficient Spanner Construction

Let P C R? be a point set with radii, and let ® be
the spread of P. Let G be the transmission graph
of P. Our spanner construction is a modification of
the Yao graph [6] that takes the disks into account.
Ideally, our spanner H should look as follows: we pick
a suitable £ € N, and we let C be a set of k cones
with opening angle 27 /k and the origin as apex that
partition the plane. For ¢ € P and C € C, let C; be
the translated copy of C' with apex q. We pick the
closest vertex p € P in C, with ¢ € D(p), and we add
the edge p§ to H. This gives O(kn) edges, and one
can show that H is a t-spanner for t = 1 4+ ©(1/k).
This is folklore in the spanners community [2, 5].
Since we do not know how to find these edges
quickly, we present an approximate construction with
similar properties. We partition each cone C, into
“intervals” obtained by intersecting C; with annuli
centered at ¢ whose inner and outer radii grow ex-
ponentially; see Fig. 1. Then we cover each inter-
val with O(1) grid cells whose diameter is “small”
compared to the distance between the interval and q.
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This gives two properties that help us find an approx-
imately shortest incoming edge for ¢ in Cj: once we
have an incoming edge, we need not consider larger in-
tervals, and if there are multiple edges from the same
cell, it suffices to pick one of them. Below, we define a
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Figure 1: A cone C, covered by discretized intervals.
We only need one of the edges, pg or 74, for H.

decomposition of P that represents the discretized in-
tervals by a neighborhood relation between grid cells.

We first give the properties of this decomposition
and use it to find the edges for H. Then we prove
that H is a t-spanner for an appropriate choice of
parameters. Finally, we show how to use a quadtree
to find this decomposition and how to implement the
main steps in the desired running time.

Let ¢ > 2 be a large constant. For a grid cell o, let
me be the point in P N ¢ with the largest radius.

Definition 1 Let G be a transmission graph with
vertex set P C R2. A c-separated annulus decomposi-
tion for G consists of a finite set Q C Ufio Q; of grid
cells, a symmetric neighborhood relation N C Q x Q,
and assigned sets R, for each o € Q so that (i) for
all (¢,06') € N, diam(c) = diam(o’) and d(c,0’) €
[(¢ — 2)diam(0), 2cdiam(o)); and (ii) for every edge
p§ of G, there is (0,0') € N withp € o, ¢ € ¢/, and
with either p € R, or g € D(m,).

For 0 € Q, we define N(o) = {0’ | (0,0") € N}.
Property (i) in Def. 1 implies |N(o)| = O(1).
Getting a Spanner. Let ¢t > 1 be the desired stretch
factor. Depending on ¢, we choose constants ¢ (separa-
tion) and k (number of cones) in a way to be described
later. Let Q be a c-separated annulus decomposition
for G. To get a t-spanner H C G, we go through all
cones C' € C and pick all incoming edges for C' as in
Alg. 1. Instead of searching incoming edges for each
point ¢ € P separately, we group points using the cells
of Q. This gives the speed-up required for the desired
running time, as shown later. We consider the cells
o € Q by increasing diameter, and we search incom-
ing edges for points in ¢ N P without incoming edges
so far. These are the active points. Initially all points
are active. Fix a pair (o,0’) € N and let Q and R as
in Alg. 1. We find for each point in ) one incoming
edge whose other endpoint is in R, if such an edge ex-
ists (edge selection). Having @ sorted (line 5) allows
us to find these edges efficiently (see Lemma 8).

Set all points in P to active
foreach o € Q by increasing diameter do
foreach ¢’ € N(o) do
Q « all active ¢ € c N P with CyNo’ #0
Sort @ in z/y-direction // preproccess
R+ Ry U{my}
// edge selection
For all ¢ € Q find r € R with ¢ € D(r), if
it exists, and add '@ to H
9 Make all ¢ € @ with incoming edges inactive
Algorithm 1: Finding edges for P in a cone C € C.
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For each C € C and ¢ € P, at most one cell 0 € Q with
q € o gives incoming edges for ¢q: ¢ becomes inactive
after processing o. Since |C| = k and |N(0)| = O(1),
q has O(k) incoming edges, and H has O(n) edges.
Next, we show that H is a t-spanner. For this, we
need three technical lemmas: Lemma 3 deals with the
imprecision due to the grid. Let pé be an edge of G
contained in the cone C,. We prove that if we slightly
increase the opening angle of Cy, Alg. 1 picks at least
one edge @ contained in the larger cone. Lemmas 4
and 5 let us bound the distance between the endpoints
r and p. Lemma 5 is due to Bose et al [1]. For space
reasons, we omit the proofs of Lemmas 3 and 4.

Lemma 3 Let k > 8 and ¢ > 3+ 2/(sinn/k). Given
i € Ng and cells 0,0’ € Q; with d(o,0’) > (c — 2)2¢,
let Cy be a cone with opening angle 27 /k and apex
q € o that intersects o’. Then the cone obtained from
Cy by doubling its opening angle contains o’.

Lemma 4 Let C, be a cone with apex q and opening
angle 47t /k. Suppose there are two points p and r in
C, with (¢ + 1)2° > |rq| > |pq| > (¢ — 2)2°. Then
lpr| < ((4m/k)(c+1) + 3)2".

Lemma 5 Let k > 14 and let

t=(14+/2—2cos(4r/k))/(2cos(4m/k) — 1).

For any distinct points p,q,7 € R? with |rq| < |pq|
and a = Zpqr € [0, 4w /k], we have |pr| < |pg|—|rq|/t.

We are now ready to prove that H is a t-spanner. This
is done in a similar manner as for Yao graphs.

Lemma 6 For any t > 1, there are constants ¢ and
k such that H is a t-spanner for G.

Proof. We show by induction on the rank of the
length of the edges in G that for each edge P4 in G
there is a p-g-path of length at most ¢|pq| in H.
Consider the shortest edge b of G. Let Cy be the
cone at ¢ that contains p. There is at least one pair in
N that fulfills Def. 1(ii) for p§. Among those, we pick
the pair (0,0’) € N with minimum diameter. Sup-
pose that ¢ € o, p € ¢/, and diam(o) = diam(o’) = 2°.
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Since p( is the shortest edge, o’ contains only p (tak-
ing ¢ > 3) and m, = p, so R = {p}. Furthermore,
since p € o', we have C; N o’ # 0. Thus, if ¢ is ac-
tive in o, then ¢ € @, and we pick the edge pg for H
(Alg. 1, line 8). Suppose not. Then we have picked
an incoming edge 7 for a smaller pair (6,5') € N
with diam(a) < 201, By Def. 1(i), |rq| < (c + 1)2°.
Also by Def. 1(i) we have |pg| > (¢ — 2)2% and since
Irq| > |pq|, we have (c+1)2¢ > |rq| > |pq| > (c—2)2".
By Lemma 3, ¢’ (and thus r) is contained in the
cone Cg obtained from Cj,; by doubling its angle to
4m/k. Using Lemma 4 with C7, we see that |pr| <
((47/k)(c + 1) + 3)2%. Since for ¢,k > 14 we have
(Ar/k)(c + 1) + 3 < ¢ — 2, this would mean that
lpr| < |pg| < rp. Thus, pf would be an edge of G
that is strictly shorter than pd, despite our choice of
pg. Hence, when processing o, we will discover pa.
For the inductive step, consider an edge ﬁ and the
cone Cy containing p. Again, let (0,0’) € N be the
smallest pair of cells with ¢ € ¢ and p € ¢’ that ful-
fill Def. 1(ii) and suppose diam(c) = 2°. We have
CyNo’ # 0, and we distinguish two cases.
Case 1: ¢ is active. Then ¢ € @ and Def. 1(i) guar-
antees that Alg. 1 obtains an incoming edge @ for ¢
with r € ¢’. If r = p, we are done, so suppose r # p.
Since |pr| < 2%, by induction there is a path from p
to 7 in H of length at most #2¢. Using the triangle
inequality, we estimate the distance d(p,q) in H by

d(p,q) < 12" +|rql < 12"+ [pg| +2' = [pg| + (1 +1)2".
For ¢ large enough the bound |pg| > (c — 2)2! gives
pal + (1 +)2" < (14 (L +1)/(c — 2))Ipa| < t|pq]-

Case 2: ¢ is inactive. There is an edge @ that was
selected due to a pair (7,5’) € N with ¢ € 7, r €
o' and diam(z) < 27!, By Lemma 3, p and r are
contained in the cone C’q2 with opening angle 4 /k.
We distinguish two subcases.

First, suppose that |rq| > |pg|. Then, since (¢ +
1)2t > |rq| > |pq| > (¢ — 2)2¢, Lemma 4 implies that
r € D(p), so pf is an edge of G of length at most
((47/k)(c + 1) + 3)2¢. Thus, we can bound d(p, q) by

tlpr| + |rql < t(@m(c+1)/k+3)2" + (c+1)2"
= (t(m(c+1)/k+3)+c+1)[pql/(c—2) < |pglt,

for ¢,k = ©(t/(t — 1)). Here we used the fact that
Irq| < (c+1)2% and that 2° < |pq|/(c — 2).

Second, suppose |rq| < |pg|. By Lemma 5, we get
lpr| < |pq| — |rq|/t. Thus, pf is an edge of G, and

d(p,q) < tlpr|+ |rq| < t(lpg| — Irql/t) + Iral = t|pql,
where the first inequality is by induction. (Il

Finding the Decomposition. We show how to find
the decomposition for G as in Def. 1. Let ¢ > 3 and

scale P so that the closest pair in P has distance ¢. A
quadtree for P is a rooted tree T where each internal
node has degree four. Each node v of T has an asso-
ciated cell o, from a grid Q;, ¢ > 0, and we say that v
has level i. If v is internal, the cells of its four children
partition o, into four congruent squares with half the
diameter of o,. We compute a quadtree T for P and
use it to find a c-separated annulus decomposition.

We construct T' level-wise. To begin, we take the
smallest integer L such that there is a cell ¢ € 9,
that contains P. Since c is constant and since P has
spread ®, the scaled point set has diameter ¢®, and
L = O(log @) (possibly after shifting P). We create
the root v and set o, = o. This gives level L. To
construct level ¢ — 1 from level i, we do the following
for each level-i-node v whose cell o, is non-empty: we
take the four cells of Q;_; that partition o, and create
four children wyq,...,ws of v. To each of wq,...,wy
we assign one of the four cells. We stop at level 0.
The scaling of P ensures that a cell of level 0 contains
at most one point and has diameter 1.

We now set Q = {0, | v € T}. Welet (0,,04) €N
if v and w have the same level and d(o,,04) € [(¢ —
2) diam(o,), 2cdiam(oy,)). As R,,, we take all p €
o, NP with r, € [(c—2) diam(o,), 2(c+ 1) diam(a,)].

Lemma 7 The set Q with N and R, as above is a
c-separated annulus decomposition with |Q| = O(n).

Proof. Since T has O(n) nodes, we have |Q| = O(n).
Property (i) of Def. 1 follows by construction. For
Property (i), let p§ be an edge of G and let i € N
such that |pq| € [c2¢, c2T1). Let 0,0’ € Q; withp € &
and g € ¢’. By construction, these cells are assigned
to nodes of T' and thus o,0’ € Q. Since diam(o) =
diam(co’) = 2%, we have (c — 2)2! < d(o,0") < |pq| <
21 5o (0,0') € N. Since pg is an edge of G, we
have 7, > |pq| > ¢2'. If r, < (c+ 1)2°*!, then p €
R,. Otherwise, 7, > 1, > (¢4 1)2°1, and D(m,)
contains ¢’ and also q. O

Running Time. Considering the cells of Q in
increasing order in Alg. 1 constitutes a level-order
traversal of T starting from level 0. Fix a cell o, of
a node v of T. We can sort o, N P in the preprocess
step (line 5) by merging the sorted lists of v’s children.
This takes O(n) time per level and O(nlog ®) time in
total. Now we bound the time for edge selection.

Lemma 8 Let Q, R as in Alg.1, line 8 with |Q| =n
and |R| = m. For each q € Q we can find anr € R
with q¢ € D(r), if such r exists, in time O(mlogm+n).

Proof. @ and R are separated by one the supporting
lines £ of the cell o that contains ). Since o is axis-
aligned, @ is sorted along ¢ in the preprocess step.
Consider a coordinate system with z-axis ¢. The lower
envelope E of the disks of R and ¢ has O(m) arcs, can
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be computed in O(mlogm) time and is monotone in
¢ direction: since ¢ separates R and (), each arc and ¢
can be seen as a function of x, and F is the pointwise
minimum of these functions (cf. Fig. 2). Let S be
the points on E where the arcs change. We merge Q)
and S in time O(m + n), and we sweep over QU S in
z-direction to compute the point-disk incidences for
@ and R. We initialize D as the disk of the first arc
and ¢ as the first point of (). Whenever we reach a
point p € S U Q, we update D or ¢, depending on
whether p € S or p € Q. In the former case, we set
D to the disk of the new arc. In the latter case, we
first set ¢ = p, and then we check if ¢ € D. If so,
we assign D to ¢. This sweep takes O(m + n) time.
Since the lower envelope is monotone, it is enough to
check for each ¢ € @ only the arc intersected by the

line through ¢ orthogonal to /. (Il
:\i;_ \Q/K " )\/ '\‘7\/ Iy
n - LA /‘ /.\. ‘ ./ ] 33 _I/

Figure 2: The lower envelope and S (orange), the
points @ (red), and R (blue).

The next lemma states the running time of Alg. 1.
Due to space reasons, we omit the proof. The main
idea is that the running time is dominated by the edge
selection step. By the choice of R,, each point in P
participates in O(1) edge selections as a disk center,
at a cost of O(logn) per disk center (by Lemma 8),
and in O(log @) edge selections as a point in @, at
O(1) cost per point (by Lemma 8). Thm. 1 follows by
Lemmas 6 and 9.

Lemma 9 The construction of the spanner H of G
takes O(n(log ® + logn)) time.

3 From Bounded Spread to Bounded Radii

To get Theorem 2, we extend Alg. 1 from §2. We show
that the spread is irrelevant: points that are close to-
gether form cliques in G and can be handled through
classic spanners; points that are far away from each
other form pairwise independent components.

Given t, we pick the separation parameter ¢ large
enough. We scale P such that the smallest radius is
c. Let M = O(¥) be the largest radius. We par-
tition P into independent components. For this, we
put around each p € P an axis-parallel square of side
length 2M. The connected components of the inter-
section graph of the squares give the sets. We state
this in the next lemma. whose proof we omit.

Lemma 10 In O(nlogn) time, we can partition P
into sets Py, ..., Py of diameter O(n¥) so that for i #
Jj, no point in P; can reach a point in P; in G.

By Lemma 10, we may assume that P has diameter
O(n¥). Asin §2, we compute a quadtree T for P with
Llevels and L = O(log(n¥)). Unlike in §2, T does not
directly yield a c-separated annulus decomposition for
G. Def. 1(ii) does not hold, since there may be edges
in G that do not go between neighboring cells. These
are the short edges.

First, we handle very short edges: let v be a level 0
node of T with associated cell o, € Qq. Let Q C P be
the points in cells of Qy with distance at most ¢/2—3
from o,. Since any two points in () have distance at
most ¢, @ is a clique in G. We compute a (classic)
t-spanner for @ in O(|Q|log|Q|) time [4]. Since any
p € P is in O(c?) such spanners, we generate O(n)
edges in total and require O(nlogn) running time.

Second, we handle not quite so short edges: for
each ¢ € P, let v be the level 0 node of T" whose
cell o, contains q. For any non-empty o’ € Qg with
d(oy,0") € (¢/2—3,c—2), we take an arbitrary point
r € ¢’ NP and add the edge 7 to our spanner. All
these edges have length at most ¢ and thus are edges
in G. This takes O(n) time and creates O(n) edges.

Finally, we handle the remaining edges: we mark
all points in P as active, and we run Alg. 1 from §2
for the cells of T'. Call the resulting graph H.

As in Lemma 6, we can show inductively that each
edge of GG is approximated in H. The differences are in
the base case: if the shortest edge in G is very short,
the classic spanner does the job. If it is a not quite
so short, a calculation as in Lemma 6 shows that we
pick it. Otherwise, the base case is as in Lemma 6.

Lemma 11 For any t > 1, there are constants c,k
such that the graph H as above is a t-spanner for G.

Thm. 2 follows as in §2. The running time analysis
goes as in Lemma 9, but the quadtree has O(logn +
log ¥) levels.
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