
EuroCG 2012, Assisi, Italy, March 19–21, 2012

Approximating Tverberg Points in Linear Time for Any Fixed Dimension

Wolfgang Mulzer∗ Daniel Werner†‡

Abstract

Let P be a d-dimensional n-point set. A Tver-
berg-partition of P is a partition of P into
r sets P1, . . . , Pr such that the convex hulls
conv(P1), . . . , conv(Pr) have non-empty intersection.
A point in

⋂r
i=1 conv(Pi) is called a Tverberg point of

depth r for P . A classic result by Tverberg implies
that there always exists a Tverberg partition of size
dn/(d + 1)e, but it is not known how to find such a
partition in polynomial time. Therefore, approximate
solutions are of interest.

We describe a deterministic algorithm that finds
a Tverberg partition of size n/4(d + 1)3 in time
dO(log d)n. This means that for every fixed dimen-
sion we can compute an approximate Tverberg point
(and hence also an approximate centerpoint) in lin-
ear time. Our algorithm is obtained by combining a
novel lifting approach with a recent result by Miller
and Sheehy [8].

1 Introduction

Let P ⊆ Rd be a d-dimensional point set with n
points. In many applications (such as statistical anal-
ysis or mesh generation) we would like to have a way
to generalize the one-dimensional notion of a median
to the high-dimensional point set P . A very natural
means to accomplish this are centerpoints: a point
c ∈ Rd is a centerpoint for P if every halfspace that
contains c meets P in at least n/(d+1) points. A clas-
sic result in discrete geometry, the centerpoint theo-
rem, shows that there exists a centerpoint for every
point set [5, 9].

However, if we actually would like to compute a cen-
terpoint for a given point set, the situation becomes
more involved. Helly’s theorem implies that the set of
all centerpoints is given by the intersection of O(nd)
halfspaces [6], so we can find a centerpoint in O(nd)
time through linear programming. Chan [1] shows
how to improve this running time to O(nd−1) steps in
expectation. He actually solves the harder problem

∗Institut für Informatik, Freie Universität Berlin, Germany
mulzer@inf.fu-berlin.de
†Institut für Informatik, Freie Universität Berlin, Germany

dwerner@mi.fu-berlin.de
‡This research was funded by Deutsche Forschungsgemein-

schaft within the Research Training Group (Graduiertenkolleg)
“Methods for Discrete Structures”

of finding a point with maximum Tukey depth. The
Tukey depth of a point c′ is defined as the minimum
number of points in P that are met by any halfs-
pace containing c′. If the dimension is not fixed, Teng
shows that it is co-NP-hard to check whether a given
point is a centerpoint [10].

Since a running time of O(nd−1) is not feasible
for large d, it makes sense to look for faster ap-
proximate solutions. A classic approach uses ε-
approximations [2]: in order to obtain a point of
Tukey depth n(1/(d + 1) − ε) take a random sam-
ple A ⊆ P of size O((d/ε2) log(d/ε)) and compute
a centerpoint for A, using the linear-programming
method. This gives the desired approximation with
constant probability, and the resulting running time
after the sampling step is constant. What more could
we possibly wish for? For one, the algorithm is Monte-
Carlo: with a certain probability, the reported point
fails to be a centerpoint, and we know of no fast al-
gorithm to check its validity. This problem can be
solved by constructing the ε-approximation determin-
istically [2], at the expense of a more complicated al-
gorithm. Nonetheless, in either case the resulting run-
ning time, though constant, still grows exponentially
with d, an undesirable feature for large dimensions.

This situation motivated Clarkson et al. [3] to look
for more efficient randomized algorithms for approx-
imate centerpoints. They give a simple probabilis-
tic algorithm that computes a point of Tukey depth
O(n/(d+1)2) in time O(d2(d log n+log(1/δ))log(d+2)),
where δ is the error probability. They also describe a
more sophisticated algorithm that finds such a point
in time polynomial in n, d, and log(1/δ). Both algo-
rithms are based on a repeated algorithmic applica-
tion of Radon’s theorem (see below). Unfortunately,
there remains a probability of δ that the result is not
correct, and we do not know how to detect a failure
efficiently.

More than ten years later, Miller and Sheehy [8]
launched a new attack at the problem. Their goal is to
develop a deterministic algorithm for approximating
centerpoints whose running time is subexponential in
the dimension. The resulting algorithm is determin-
istic and runs in time nO(log d). At the same time, it
is the first algorithm that also finds an approximate
Tverberg partition of P . The running time is subex-
ponential in d, but it is still the case that n depends
exponentially on log d.

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

28th European Workshop on Computational Geometry, 2012

In this paper, we show that the running time for
finding approximate Tverberg partitions (and hence
approximate centerpoints) can be improved. In par-
ticular, we show how to find a Tverberg partition for
P that contains n/4(d+1)3 sets in deterministic time
dO(log d)n. This is linear in n for any fixed dimension,
and the dependence on d is only quasipolynomial.

1.1 Some discrete geometry

We begin by recalling some basic facts and definitions
from discrete geometry [7].

Theorem 1 (Radon’s theorem) For every set
P ⊆ Rd with d + 2 points there exists a partition
(P1, P2) of P such that conv(P1) ∩ conv(P2) 6= ∅.

As mentioned above, Tverberg [11] generalized this
theorem for larger point sets.

Theorem 2 (Tverberg’s theorem) Every set
P ⊆ Rd with n = (r − 1)(d + 1) + 1 points can
be partitioned into r sets P1, . . . , Pr such that⋂r
i=1 conv(Pi) 6= ∅.

Let P be a set of n points in Rd. We say that
x ∈ Rd has Tverberg depth r (with respect to P) if
there is a partition of P into sets P1, . . . , Pr such that
x ∈ ⋂ri=1 conv(Pi). Tverberg’s theorem thus states
that, for any set P in Rd, there is a point of Tverberg
depth at least b(n − 1)/(d + 1) + 1c = dn/(d + 1)e.
Note that every point with Tverberg depth r also has
Tukey depth r. Thus, from now on we will use the
term depth as a shorthand for Tverberg depth. As
remarked above, Tverberg’s theorem immediately im-
plies the famous centerpoint theorem:

Theorem 3 (Centerpoint theorem) For any set
P of n points in Rd there is a point c such that all
half-spaces containing c contain at least dn/(d + 1)e
points from P .

By Carathéodory’s theorem, in order to describe a
Tverberg partition of depth r, we only need r · (d+ 1)
points from P . This observation is also used by Miller
and Sheehy [8]. They also observe that replacing d+2
by d + 1 points can be done in O(d3) time by using
Gaussian elimination. We denote the process of re-
placing larger sets by sets of size d+ 1 as pruning. A
partition for which each set consists of d+ 1 points is
called a pruned partition.

1.2 Our contribution

In Section 2, we present a simple lifting argument
which leads to an easy Tverberg approximation algo-
rithm.

Theorem 4 Let P be a set of n points in Rd in gen-
eral position. One can compute a Tverberg point of
depth n/2d for P and the corresponding partition in
time O(n).

While this does not yet give a good approxima-
tion ratio (though constant for any fixed d), it is a
very natural approach to the problem: it computes a
higher dimensional Tverberg point via successive me-
dian partitions — just as a Tverberg point is a higher
dimensional generalization of the 1-dimensional me-
dian.

By collecting several low-depth points and apply-
ing the brute-force algorithm on small point sets, we
get an even higher depth in linear time for any fixed
dimension:

Theorem 5 Let P be a set of n points in Rd. Then
one can compute a Tverberg point of depth n/2(d+1)2

and a corresponding partition in time f(2d) + dO(1)n,
where f(m) = O(m!) is the time for computing a
Tverberg point of depth m/(d+1) for m points brute
force.

Finally, by combining our approach with that of
Miller and Sheehy, we improve our algorithm to have
a running time which is quasipolynomial in d:

Theorem 6 Let P be a set of n points in Rd. Then
one can compute a Tverberg point of depth n/4(d+1)3

and a corresponding partition in time dO(log d) · n.

2 A simple fixed parameter algorithm

A natural way to compute a Tverberg point for P ⊆
Rd is to first project P to some lower-dimensional
space, then to recursively compute a good Tverberg
point for this projection, and to use this point to find
a solution in the higher-dimensional space. Surpris-
ingly, we are not aware of any argument along these
lines having appeared in the literature so far.

In what follows, we will describe how to lift a lower-
dimensional Tverberg point into some higher dimen-
sion. Unfortunately, this process will come at the cost
of a decreased depth for the lifted Tverberg point.
For clarity of presentation, we first explain the lifting
lemma in its simplest form. In Section 3, we then
state the lemma in its full generality.

Lemma 7 Let P be a set of n points in Rd, and let
h be a hyperplane in Rd. Let c′ ∈ h be a Tverberg
point of depth r for the projection of P onto h, and
suppose we know a corresponding Tverberg partition.
Then we can find a Tverberg point c ∈ Rd of depth
dr/2e for P and a corresponding Tverberg partition
in time O(n).

EuroCG 2012, Assisi, Italy, March 19–21, 2012

Proof. For every point p ∈ P , let pr(p) denote the
projection of p onto h. Let P1, . . . , Pr ⊆ P such that
pr(P1), . . . ,pr(Pr) is a Tverberg partition for pr(P)
with Tverberg point c′. Let ` be the line orthogonal
to h that passes through c′.

Since our assumption implies c′ ∈ conv(pr(Pi))
for i = 1, . . . , r, it follows that ` intersects each
conv(Pi) at some point xi. Let Q̂i = {xi1 , xi2},
i = 1, . . . , dr/2e, be a Tverberg partition of x1, . . . , xr.
(If r is odd, one of the sets contains only one point,
the median.) Since the points xi lie on the line `, such
a Tverberg partition exists and can be computed in
time O(r) by finding the median c, i.e., the element
of rank dr/2e, according to the order along ` [4].

We claim that c is a Tverberg point for P of depth
dr/2e. Indeed, we have

c ∈ conv(Q̂i) = conv({xi1 , xi2}) ⊂ conv(Pi1 ∪ Pi2),

for 1 ≤ i ≤ dr/2e. Thus, if we set Qi := Pi1 ∪ Pi2 ,
then Q1, . . ., Qdr/2e is a Tverberg partition for c. The
total time to find c and the Qi is O(n), as claimed.
See Figure 1 for a two-dimensional illustration of the
lifting argument. �

c′

(a) project and find Tver-
berg point

c′

l

(b) lift and intersect

l

c′

x3 = c

(c) find median and combine

Figure 1: Illustrating the lifting lemma in the plane.

Proof. [of Theorem 4] We apply Lemma 7 recursively
on the dimension, pruning the partitions after each
lifting. This leads to an O(n) running time. �

2.1 Improving the approximation factor

In order to improve the approximation factor, we will
use an easy lemma to improve the Tverberg depth by
collecting and combining several lower-depth points.

Lemma 8 Let P ⊆ Rd, |P | = n. If we can
find a Tverberg point of depth n/ρ and the cor-
responding pruned partition in time f(n, d), then

we can find ρ/(d + 1) points of depth n/2ρ in

time O
(

ρ
(d+1) (p(n, d) + f(n, d))

)
, where p(n, d) is

the time for the pruning phase.

By Theorem 4 we can find a point of depth n/2d

and a corresponding pruned partition in time O(n).
Thus, by applying Lemma 8 with ρ = 2d, we can also
find 2d/(d+ 1) points of depth n/2d+1 in linear time.

In order to make use of Lemma 8, we will need
a lemma that states that sometimes by combining
Tverberg points we can multiply their depth. This
generalizes a similar lemma by Miller and Sheehy [8,
Lemma 4.1].

Lemma 9 Let P be a set of n points in Rd, and let
P =

⊎k
i=1 Pi be a partition of P . Furthermore, sup-

pose that for each Pi we have a Tverberg point ci ∈ Rd
of depth r, together with a corresponding pruned
Tverberg partition Pi. Let C := {ci | 1 ≤ i ≤ k}
and c be a point of depth r′ for C, with correspond-
ing pruned Tverberg partition C. Then c is a point of
depth r · r′ for P . Furthermore, we can find a corre-
sponding pruned Tverberg partition in time dO(1)n.

Theorem 5 then follows by combining Theorem 4
with Lemmas 8 and 9.

3 An improved algorithm

Finally we show how to improve our approach through
a more sophisticated recursion and obtain an algo-
rithm with running time dO(log d) · n for the price of
losing a depth factor of 1/2(d + 1). First, however,
we describe the more general version of Lemma 7 we
promised above.

Let P ⊆ Rd. Recall that a k-dimensional flat F ⊆
Rd (often abbreviated as k-flat) is defined as a k-
dimensional affine subspace of Rd. A k-dimensional
flat F ⊆ Rd is called a Tverberg k-flat of depth r for
P , if there is a partition of P into sets P1, . . . , Pr such
that conv(Pi) ∩ F 6= ∅ for all i = 1, . . . , r.

Lemma 10 Let P be a set of n points in Rd, and
let h ⊆ Rd be a k-flat. Suppose we have a Tverberg
point c of depth r for pr(P), as well as a correspond-
ing Tverberg partition. Let h⊥c be the (d − k) flat
orthogonal to h that passes through c. Then h⊥c is a
Tverberg (d− k)-flat for P of depth r, with the same
Tverberg partition.

First of all, this shows how a good algorithm for
any fixed dimension improves the general case:

Corollary 11 Let δ ≥ 1 be a fixed integer. Suppose
we have an algorithm A with the following property:
for every point set Q ⊆ Rδ, algorithm A constructs a
Tverberg point of depth |Q|/ρ for Q as well as a cor-
responding pruned Tverberg partition in time f(|Q|).

28th European Workshop on Computational Geometry, 2012

Then, for any n-point set P ⊆ Rd and for any d ≥ δ,
we can find a Tverberg point of depth n/ρd/δ and a
corresponding pruned partition in time dd/δef(n) +
dO(1)n.

Proof. Induction on k := dd/δe �

The idea of the new algorithm then is as follows:
using Corollary 11, we reduce solving a d-dimensional
instance to solving two instances of dimension d/2.
This can be done recursively. Unfortunately, applying
Corollary 11 reduces the depth of the partition. To
fix this, we apply Lemmas 8, 9 and the Miller-Sheehy
algorithm to increase the depth again. Details follow.

Proof. [of Theorem 6] We prove the theorem by in-
duction on d. For d = 1 the claim is immediate: in
this case the problem reduces to median computation.

Thus, suppose that d > 1. By induction, for any
(d/2)-dimensional point set Q ⊆ Rd/2 there exists
an algorithm that returns a Tverberg point of depth
|Q|/4(d/2 + 1)3 and a corresponding pruned Tver-
berg partition in time dα log(d/2)n, for some sufficiently
large constant α > 0.

Thus, by Corollary 11 (with δ = d/2), there exists
an algorithm that finds a Tverberg point for P of
depth n/16(d/2 + 1)6 and a corresponding Tverberg
partition in time 2dα log(d/2) + dO(1)n.

Now a more general version of Lemma 8 can be used
to show that we can find 16(d/2 + 1)6/(d+ 1) points
of depth n/32(d/2 + 1)6 and corresponding (disjoint)
pruned partitions in time dα log(d/2)+O(1) · n.

Let C be the set of these Tverberg points. Applying
the Miller-Sheehy algorithm, we can find a Tverberg
point for C of depth |C|/2(d+1)2 and a corresponding
pruned Tverberg partition in time |C|O(log d). Now,
Lemma 9 shows that in additional dO(1)n time, we
obtain a Tverberg point and a corresponding Tver-
berg partition for P of size

n

2 · 16(d/2 + 1)6
· 16(d/2 + 1)6

2(d+ 1)2 · (d+ 1)
=

n

4(d+ 1)3
,

as desired.
It remains to analyze the running time. Adding up

the various terms, we end up with a time bound of

T (n, d) = dα log(d/2)+O(1)n+ |C|O(log d) + dO(1)n.

Since |C| = dO(1), for α large enough T (n, d) ≤
dα log dn = dO(log d)n, as claimed.

�

4 Conclusion and Outlook

We have presented a very simple algorithm for finding
an approximate Tverberg point, which runs in linear
time for any fixed dimension. Using more sophisti-
cated methods and combing our approach with known

results, we managed to improve the running time to
dO(log d) ·n, while getting within a factor of 1/4(d+1)2

of the guaranteed optimum.
Unfortunately, the resulting running time is still

quasi-polynomial in d, and we still do not know
whether there exists a polynomial algorithm (in n and
d) for finding an approximate Tverberg point. How-
ever, we are hopeful that our techniques constitute a
further step in this direction and that such an algo-
rithm will eventually be discovered.
Acknowledgments. We would like to thank Nabil
Mustafa for suggesting the problem to us. We also
thank him and Don Sheehy for helpful discussions and
the anonymous reviewers for their helpful comments.

References

[1] T. M. Chan. An optimal randomized algo-
rithm for maximum Tukey depth. In Proc. 15th
Annu. ACM-SIAM Sympos. Discrete Algorithms
(SODA), pages 430–436, 2004.

[2] B. Chazelle. The discrepancy method: ran-
domness and complexity. Cambridge University
Press, Cambridge, 2000.

[3] K. L. Clarkson, D. Eppstein, G. L. Miller,
C. Sturtivant, and S.-H. Teng. Approximating
center points with iterated Radon points. In-
ternat. J. Comput. Geom. Appl., 6(3):357–377,
1996.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to algorithms. MIT Press,
Cambridge, MA, third edition, 2009.

[5] L. Danzer, B. Grünbaum, and V. Klee. Helly’s
theorem and its relatives. In Proc. Sympos. Pure
Math., Vol. VII, pages 101–180. Amer. Math.
Soc., Providence, R.I., 1963.

[6] H. Edelsbrunner. Algorithms in combinatorial
geometry. Springer-Verlag, Berlin, 1987.

[7] J. Matoušek. Lectures on Discrete Geometry.
Springer, 2002.

[8] G. L. Miller and D. R. Sheehy. Approximate cen-
terpoints with proofs. Comput. Geom. Theory
Appl., 43(8):647–654, 2010.

[9] R. Rado. A theorem on general measure. J. Lon-
don Math. Soc., 21:291–300, 1946.

[10] S.-H. Teng. Points, spheres, and separators: a
unified geometric approach to graph partition-
ing. PhD thesis, School of Computer Science,
Carnegie Mellon University, 1992.

[11] H. Tverberg. A generalization of Radon’s theo-
rem. J. London Math. Soc., 41:123–128, 1966.

