
Approximating Tverberg Points in Linear Time for Any
Fixed Dimension

Wolfgang Mulzer
Institut für Informatik, Freie Universität Berlin

Takustr. 9
14195 Berlin, Germany

mulzer@inf.fu-berlin.de
http://page.mi.fu-berlin.de/mulzer

Daniel Werner
∗

Institut für Informatik, Freie Universität Berlin
Takustr. 9

14195 Berlin, Germany
daniel.werner@fu-berlin.de

http://page.mi.fu-berlin.de/dawerner

ABSTRACT
Let P ⊆ Rd be a d-dimensional n-point set. A Tverberg par-
tition of P is a partition of P into r sets P1, . . . , Pr such that
the convex hulls conv(P1), . . . , conv(Pr) have non-empty in-
tersection. A point in

⋂r
i=1 conv(Pi) is called a Tverberg

point of depth r for P . A classic result by Tverberg im-
plies that there always exists a Tverberg partition of size
dn/(d+1)e, but it is not known how to find such a partition
in polynomial time. Therefore, approximate solutions are of
interest.

We describe a deterministic algorithm that finds a Tver-
berg partition of size dn/4(d+ 1)3e in time dO(log d)n. This
means that for every fixed dimension we can compute an ap-
proximate Tverberg point (and hence also an approximate
centerpoint) in linear time. Our algorithm is obtained by
combining a novel lifting approach with a recent result by
Miller and Sheehy [10].

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations

General Terms
Algorithms, Theory

Keywords
discrete geometry, Tverberg’s theorem, centerpoint, approx-
imation, high dimension

∗This research was funded by Deutsche Forschungsgemein-
schaft within the Research Training Group (Graduiertenkol-
leg) “Methods for Discrete Structures”.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’12, June 17–20, 2012, Chapel Hill, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1299-8/12/06 ...$10.00.

1. INTRODUCTION
Let P ⊆ Rd be a d-dimensional point set with n points.

In many applications (such as statistical analysis or finding
sparse geometric separators in meshes) we would like to have
a way to generalize the one-dimensional notion of a median
to the high-dimensional point set P . A very natural means
to accomplish this are centerpoints; a point c ∈ Rd is a
centerpoint for P if every halfspace that contains c meets P
in at least n/(d+1) points. Equivalently, for every direction
~v, the projection of c onto ~v splits the projection of P onto ~v
into pieces with no more than dn/(d+1) points [3]. A classic
result in discrete geometry, the centerpoint theorem, shows
that there exists a centerpoint for every point set [5, 12].

However, if we actually would like to compute a center-
point for a given point set, the situation becomes more in-
volved. Helly’s theorem implies that the set of all center-
points is given by the intersection of O(nd) halfspaces [6],
so we can find a centerpoint in O(nd) time through linear
programming. Chan [1] shows how to improve this running
time to O(nd−1) steps in expectation. He actually solves
the harder problem of finding a point with maximum Tukey
depth. The Tukey depth of a point c′ is defined as the min-
imum number of points in P that are met by any halfs-
pace containing c′. A centerpoint has Tukey depth at least
n/(d + 1). If the dimension is not fixed, a result by Teng
shows that it is co-NP-hard to check whether a given point
is a centerpoint [13]. In two dimensions, a center point can
be found in linear time [7].

Since a running time of O(nd−1) is not feasible for large
d, it makes sense to look for faster approximate solutions. A
classic approach uses ε-approximations [2]: in order to ob-
tain a point of Tukey depth n(1/(d+ 1)− ε) take a random
sample A ⊆ P of size O((d/ε2) log(d/ε)) and compute a cen-
terpoint for A, using the linear-programming method. This
gives the desired approximation with constant probability,
and the resulting running time after the sampling step is con-
stant. What more could we possibly wish for? For one, the
algorithm is Monte-Carlo: with a certain probability, the re-
ported point fails to be a centerpoint, and we know of no fast
algorithm to check its validity. This problem can be solved
by constructing the ε-approximation deterministically [2], at
the expense of a more complicated algorithm. Nonetheless,
in either case the resulting running time, though constant,
still grows exponentially with d, an undesirable feature for
large dimensions.

This situation motivated Clarkson et al. [3] to look for
more efficient randomized algorithms for approximate cen-

terpoints. They give a simple probabilistic algorithm that
computes a point of Tukey depth O(n/(d + 1)2) in time

O(d2(d logn+ log(1/δ))log(d+2)), where δ is the error proba-
bility. They also describe a more sophisticated algorithm
that finds such a point in time polynomial in n, d, and
log(1/δ). Both algorithms are based on a repeated algo-
rithmic application of Radon’s theorem (see below). Un-
fortunately, there remains a probability of δ that the result
is not correct, and we do not know how to detect a failure
efficiently.

More than ten years later, Miller and Sheehy [10] launched
a new attack at the problem. Their goal is to develop a de-
terministic algorithm for approximating centerpoints whose
running time is subexponential in the dimension. For this,
they use a different proof of the centerpoint theorem that is
based on a result by Tverberg: any d-dimensional n-point
set can be partitioned into r = dn/(d + 1)e sets P1, . . . , Pr
such that the convex hulls conv(P1), . . . , conv(Pr) intersect.
Such a partition is called a Tverberg partition of P . Any
point in

⋂r
i=1 conv(Pi) must be a center point.

More generally, for any partition P1, . . . , Pr′ of P into r′

sets and any point c that is contained in the convex hull
of each of the sets, we say that c has Tverberg depth r′

with respect to P . Consequently, c is called an approximate
Tverberg point (of depth r′). See Figure 1.

c

P1

P3

P2P4

P5

r = 5

Figure 1: c is a point of Tverberg depth r = 5.

Miller and Sheehy describe how to find disjoint subsets
Q1, . . . , Qr′ , r

′ = dn/2(d + 1)2e, of P and a point c ∈ Rd,
such that each Qi contains d + 1 points and such that c ∈
conv(Qi). Hence, c constitutes an approximate centerpoint
for P , and the Qi provide a certificate for this fact. The
algorithm is deterministic and runs in time nO(log d). At
the same time, it is the first algorithm that also finds an
approximate Tverberg partition of P . The running time is
subexponential in d, but it is still the case that n depends
exponentially on log d.

In this paper, we show that the running time for finding
approximate Tverberg partitions (and hence approximate
centerpoints) can be improved. In particular, we show how
to find a Tverberg partition for a set of points P that con-
tains dn/4(d+1)3e sets in deterministic time dO(log d)n. This
is linear in n for any fixed dimension, and the dependence
on d is only quasipolynomial.

1.1 Some discrete geometry
We begin by recalling some basic facts and definitions

from discrete geometry [9]. A classic fact about convexity is
Radon’s theorem.

Theorem 1.1 (Radon’s theorem). For any P ⊆ Rd
with d+ 2 points there exists a partition (P1, P2) of P such
that conv(P1) ∩ conv(P2) 6= ∅.

As mentioned above, Tverberg [14] generalized this theorem
for larger point sets.

Theorem 1.2 (Tverberg’s theorem). Any set P ⊆
Rd with n = (r− 1)(d+ 1) + 1 points can be partitioned into
r sets P1, . . . , Pr such that

⋂r
i=1 conv(Pi) 6= ∅.

Let P be a set of n points in Rd. We say that x ∈ Rd has
Tverberg depth r (with respect to P) if there is a partition
of P into sets P1, . . . , Pr such that x ∈

⋂r
i=1 conv(Pi). Tver-

berg’s theorem thus states that, for any set P in Rd, there
is a point of Tverberg depth at least b(n− 1)/(d+ 1) + 1c =
dn/(d + 1)e. Note that every point with Tverberg depth r
also has Tukey depth r. Thus, from now on we will use the
term depth as a shorthand for Tverberg depth. As remarked
above, Tverberg’s theorem immediately implies the famous
centerpoint theorem (see [9]):

Theorem 1.3 (Centerpoint theorem). For any set
P of n points in Rd there is a point c such that all half-spaces
containing c contain at least dn/(d+ 1)e points from P .

Finally, another classic theorem will be useful for us.

Theorem 1.4 (Carathéodory’s theorem). Suppose
that P is a set of n points in Rd and x ∈ conv(P). Then
there is a set of d+ 1 points P ′ ⊆ P such that x ∈ conv(P ′).

This means that, in order to describe a Tverberg partition
of depth r, we only need r(d + 1) points from P . This
observation is also used by Miller and Sheehy [10]. They
also observe that replacing d+2 by d+1 points can be done
in O(d3) time by using Gaussian elimination. We denote
the process of replacing larger sets by sets of size d + 1 as
pruning.

1.2 Our contribution
We now describe our results in more detail. In Section 2,

we present a simple lifting argument which leads to an easy
Tverberg approximation algorithm.

Theorem 1.5. Let P be a set of n points in Rd in general
position. One can compute a Tverberg point of depth dn/2de
for P and the corresponding partition in time dO(1)n.

While this does not yet give a good approximation ratio
(though constant for any fixed d), it is a very natural ap-
proach to the problem: it computes a higher dimensional
Tverberg point via successive median partitions — just as a
Tverberg point is a higher dimensional generalization of the
1-dimensional median.

By collecting several low-depth points and afterwards ap-
plying the brute-force algorithm on small point sets, we get
an even higher depth in linear time for any fixed dimension:

Theorem 1.6. Let P be a set of n points in Rd. Then one
can compute a Tverberg point of depth dn/2(d + 1)2e and

a corresponding partition in time f(2d+1) + dO(1)n, where
f(m) is the time for computing a Tverberg point of depth
dm/(d+ 1)e for m points brute force.

Finally, by combining our approach with that of Miller
and Sheehy, we improve our algorithm to yield an algorithm
whose running time is quasipolynomial in d:

Theorem 1.7. Let P be a set of n points in Rd. Then
one can compute a Tverberg point of depth dn/4(d + 1)3e
and a corresponding pruned partition in time dO(log d)n.

In Section 4, we compare these results to the Miller-Sheehy
algorithm and its extensions.

2. A SIMPLE FIXED PARAMETER ALGO-
RITHM

First, we present a simple algorithm that runs in linear
time for any fixed dimension and computes a point of depth
dn/2de. For this, we show how to compute a Tverberg point
by recursion on the dimension. As a byproduct, we obtain
a quick proof of a weaker version of Tverberg’s theorem.

2.1 The lifting argument and a simple algo-
rithm

Let P be a d-dimensional point set. A natural way to
compute a Tverberg point for P is to first project P to
some lower-dimensional space, then to recursively compute a
good Tverberg point for this projection, and use this point to
find a solution in the higher-dimensional space. Surprisingly,
we are not aware of any argument along these lines having
appeared in the literature so far.

In what follows, we will describe how to lift a lower-
dimensional Tverberg point into some higher dimension. Un-
fortunately, this process will come at the cost of a decreased
depth for the lifted Tverberg point. For clarity of presenta-
tion, we first explain the lifting lemma in its simplest form.
In Section 3.1, we then state the lemma in its full generality.

Lemma 2.1. Let P be a set of n points in Rd, and let h be
a hyperplane in Rd. Let c′ ∈ h be a Tverberg point of depth
r for the projection of P onto h, and suppose we know a
corresponding Tverberg partition. Then we can find a Tver-
berg point c ∈ Rd of depth dr/2e for P and a corresponding
Tverberg partition in time O(n).

Proof. For every point p ∈ P , let pr(p) denote the pro-
jection of p onto h, and for every Q ⊆ P , let pr(Q) be the
projections of all the points in Q. Let P1, . . . , Pr ⊆ P such
that pr(P1), . . . , pr(Pr) is a Tverberg partition for pr(P)
with Tverberg point c′. Let ` be the line orthogonal to
h that passes through c′.

Since our assumption implies c′ ∈ conv(pr(Pi)) for i =
1, . . . , r, it follows that ` intersects each conv(Pi) at some

point xi. Let Q̂i = {xi1 , xi2}, i = 1, . . . , dr/2e, be a Tver-
berg partition of x1, . . . , xr. (If r is odd, one of the sets
contains only one point, the median.) Since the points xi
lie on the line `, such a Tverberg partition exists and can
be computed in time O(r) by finding the median c, i.e., the
element of rank dr/2e, according to the order along ` [4].

We claim that c is a Tverberg point for P of depth dr/2e.
Indeed, we have

c ∈ conv(Q̂i) = conv({xi1 , xi2}) ⊂ conv(Pi1 ∪ Pi2),

for 1 ≤ i ≤ dr/2e. Thus, if we set Qi := Pi1 ∪ Pi2 , then
Q1, . . . , Qdr/2e is a Tverberg partition for the point c. The
total time to find c and the Qi is O(n), as claimed. See

Figure 2 for a two-dimensional illustration of the lifting ar-
gument.

The proof of Theorem 1.5 is now a direct consequence of
Lemma 2.1.

Proof of Theorem 1.5. If d = 1, we can immediately
find a Tverberg point and a corresponding partition by find-
ing the median c of P [4] and pairing each point to the left
of the median with exactly one point to the right of the
median.

If d > 1, we project the points onto the hyperplane defined
by xd = 0. This results in an n-point set P ′ ⊆ Rd−1. We
recursively find a Tverberg point and a Tverberg partition
of depth dn/2d−1e for P ′, and then apply Lemma 2.1: in
each step, the depth it at most halved. Thus, we end of
with a point of depth at least dn/2de. We apply the pruning
step described in the introduction to the resulting partition
in each step, in order to ensure that the size of the resulting
sets is d+ 1.

Then the running time for each level of the recursion is
dO(1)n, and there are d levels, which implies the result.

In particular, we obtain a weak version of Tverberg’s the-
orem with a very elementary proof.

Corollary 2.2 (Weak Tverberg theorem). Let P
be a set of n points in Rd. Then P can be partitioned into
dn/2de sets P1, . . . , Pdn/2de such that

dn/2de⋂
i=1

conv(Pi) 6= ∅.

2.2 Improving the approximation factor
In order to improve the approximation factor, we will use

an easy lemma to bootstrap the Tverberg depth.

Lemma 2.3. Suppose for any m-point set Q ⊆ Rd we can
compute a point of Tverberg depth dm/ρe and a correspond-
ing Tverberg partition in time q(m, d). Let P ⊆ Rd with
|P | = n, and let c ∈ [2, n/ρ] be a constant. Then we can find

α := dn(1−1/c)
δ(d+1)

e many Tverberg points of depth δ := dn/cρe
for P and their corresponding partitions. These partitions
have the additional property that each point of P appears in
at most one partition. This takes total time

O
((c− 1)ρ

d+ 1
(p(n, d) + q(n, d))

)
,

where p(n, d) is the time for the pruning phase.

Proof. Let P1 := P . We take an arbitrary subset P ′1 ⊆
P1 with dn/ce points and find a Tverberg point c1 of depth
dn/cρe and a corresponding Tverberg partition P ′1 for P ′1.
Then we prune P ′1 to get a Tverberg partition P1. Note that
this takes time p(n, d) + q(n, d) and that Q1 :=

⋃
Z∈P1

Z

contains at most dn/cρe(d + 1) points. Set P2 := P1 \ Q1

and continue.
Each partition Pi partitions a set Qi ⊆ P such that the

Qi are pairwise disjoint. We can repeat this process until

n− iδ(d+ 1) <
n

c
,

h

(a) project

c′
h

(b) find partition

c′

`

h

(c) intersect hulls of the sets with orthogonal complement

c

(d) find median of intersections and combine

Figure 2: Illustrating the lifting lemma in the plane: we project the point set P to the line h and find a
Tverberg partition and a Tverberg point c′ for the projection. Then, we construct the line ` through c′ that
is perpendicular to h, and we take the intersection with the lifted convex hulls of the Tverberg partition. We
then find the median c and the corresponding partition for the intersections along `. Finally, we group the
points according to this partition.

which so solves to

α ≥ i >
⌈

n(1− 1/c)

dn/cρe(d+ 1)

⌉
.

Thus, we obtain α many sets of points c1, . . . , cα with cor-
responding Tverberg partitions P1, . . . ,Pα, each of depth at
least dn/cρe, as desired.

For example, by Theorem 1.5 we can find a point of depth
dn/2de and a corresponding pruned partition in time dO(1)n.
Thus, by applying Lemma 2.3 with c = 2, ρ = 2d, we can
also find dn/(2dn/2d+1e(d+1))e ≈ 2d/(d+1) points of depth
dn/2d+1e in linear time.

In order to make use of Lemma 2.3, we will also need a
lemma that states that sometimes by combining Tverberg
points we can multiply their depth. This generalizes a sim-
ilar lemma by Miller and Sheehy [10, Lemma 4.1].

Lemma 2.4. Let P be a set of n points in Rd, and let
P =

⊎k
i=1 Pi be a partition of P . Furthermore, suppose that

for each Pi we have a Tverberg point ci ∈ Rd of depth r,
together with a corresponding pruned Tverberg partition Pi.
Let C := {ci | 1 ≤ i ≤ k} and c be a point of depth r′ for
C, with corresponding pruned Tverberg partition C. Then c

is a point of depth rr′ for P . Furthermore, we can find a
corresponding pruned Tverberg partition in time dO(1)n.

Proof. For i = 1, . . . , k, write Pi = {Qi1, . . . , Qir}, and
write C = {D1, . . . , Dr′}. For a = 1, . . . , r′, b = 1, . . . , r, we
define sets Zab as

Zab :=
⋃

ci∈Da

Qib.

We claim that the set Z := {Zab | a = 1, . . . , r′; b = 1, . . . , r}
is a Tverberg partition of depth rr′ for P with Tverberg
point c. Clearly, by definition Z is a partition with the
appropriate number of elements. It only remains to check
that c ∈ conv(Zab) for each Zab. We have

c ∈ conv(Da) ⊆ conv
(⋃
ci∈Da

Qib
)

= conv(Zab),

for a = 1 . . . r′, b = 1 . . . r. Since certainly |Z| ≤ n, and since

each Zab can be pruned in dO(1) time, the lemma follows.

Combining Lemmas 2.3 and 2.4, we can now prove Theo-
rem 1.6.

Proof of Theorem 1.6. If n ≤ 2d+1, we use the brute-
force algorithm. This takes f(2d+1) time.

Otherwise, we apply Lemma 2.3 (as in the remark follow-
ing that lemma) to obtain a set C of

|C| =
⌈

n

2dn/2d+1e(d+ 1)

⌉
Tverberg points for P of depth dn/2d+1e with corresponding
pruned partitions in linear time. We then use the brute-
force algorithm to get a Tverberg point for C with depth
d|C|/(d+1)e with a corresponding partition, in time f(|C|).
Finally, we apply Lemma 2.4 to obtain a Tverberg point and
corresponding partition in time dO(1)n. The total running
time is f(2d) + dO(1)n, and the resulting depth is

d|C|/(d+ 1)e · dn/2d+1e ≥
⌈

n

2d+1

2d

(d+ 1)2

⌉
=

⌈
n

2(d+ 1)2

⌉
.

as desired.

Alternatively, instead of the brute-force algorithm, we can
use the algorithm by Miller and Sheehy to find a point of
depth dn/4(d+ 1)3e in time 2O(d log d) + dO(1)n.

3. AN IMPROVED ALGORITHM
The algorithm in the previous section runs in linear time

for any fixed dimension, but the constants are huge. Thus,
finally we show how to improve our approach through an im-
proved recursion and obtain an algorithm with running time
dO(log d)n while losing a depth factor of 1/2(d + 1). First,
however, we describe the more general version of Lemma 2.1
we promised above.

3.1 A more general version of the lifting argu-
ment

We present a more general version of the lifting argument
in Lemma 2.1. For this we need some more notation. Let
P ⊆ Rd. Recall that a k-dimensional flat F ⊆ Rd (often
abbreviated as k-flat) is defined as a k-dimensional affine
subspace of Rd (or, equivalently, as the affine hull of k + 1
affinely independent points in Rd). A k-dimensional flat F ⊆
Rd is called a Tverberg k-flat of depth r for P , if there is a
partition of P into sets P1, . . . , Pr such that conv(Pi)∩F 6= ∅
for all i = 1, . . . , r.

Lemma 3.1. Let P be a set of n points in Rd, and let
h ⊆ Rd be a k-flat. Suppose we have a Tverberg point c ∈ h
of depth r for pr(P), as well as a corresponding Tverberg
partition. Let h⊥c be the (d − k) flat orthogonal to h that
passes through c. Then h⊥c is a Tverberg (d − k)-flat for P
of depth r, with the same Tverberg partition.

Proof. Let pr(P1), . . . , pr(Pr) be the Tverberg partition
for the projection pr(P). It suffices to show that conv(Pi)
intersects h⊥c for i = 1, . . . , r. Indeed, for Pi = {pi1, . . . , pili}
let c =

∑li
j=1 λjpr(pij) be a convex combination that wit-

nesses c ∈ conv(pr(Pi)). We now write each pij = pr(pij) +
pr⊥(pij), where pr⊥(·) denotes the projection onto the or-
thogonal complement h⊥ of h. Then,

li∑
j=1

λjpij =

li∑
j=1

λjpr(pij) +

li∑
j=1

λjpr⊥(pij) ∈ c+ h⊥ = h⊥c ,

as claimed.

First of all, this shows how a good algorithm for any fixed
dimension improves the general case:

Corollary 3.2. Let δ ≥ 1 be a fixed integer. Suppose
we have an algorithm A with the following property: for
every point set Q ⊆ Rδ, the algorithm A constructs a Tver-
berg point of depth d|Q|/ρe for Q as well as a corresponding
pruned Tverberg partition in time f(|Q|).

Then, for any n-point set P ⊆ Rd and for any d ≥ δ,
we can find a Tverberg point of depth n/ρdd/δe and a corre-

sponding pruned partition in time dd/δef(n) + dO(1)n.

Proof. We use induction on k := dd/δe to show that

such an algorithm exists with running time k(f(n)+dO(1)n).
If k = 1, we can just use algorithm A and there is nothing
to show.

Now suppose k > 1. Let h ⊆ Rd be a δ-flat in Rd, and let
pr(P) be the projection of P onto h. We use algorithm A
to find a Tverberg point c of depth dn/ρe for pr(P) as well
as a corresponding pruned partition pr(P1), . . . , pr(Pdn/ρe).

This takes time f(n). By Lemma 3.1, the (d − δ)-flat h⊥c
is a Tverberg flat of depth dn/ρe for P , with corresponding
Tverberg partition P1, . . . , Pdn/ρe. For each i, we can find a

point qi in conv(Pi) ∩ h⊥c in time dO(1).
Now consider the point set Q = {q1, . . . , qdn/ρe} ⊆ h⊥c .

The set Q is a (d − δ)-dimensional point set. Since we
have d(d− δ)/δe = k − 1, by induction we can find a Tver-

berg point c′ for Q of depth |Q|/ρdd/δe−1 = n/ρdd/δe and
a corresponding pruned Tverberg partition Q in total time
(k−1)(f(n) +dO(1)n). Now, c′ is a Tverberg point of depth

n/ρdd/δe for P , and a corresponding Tverberg partition is
obtained by replacing each point qi in the partition Q by
the corresponding subset Pi. The resulting partition can be
pruned in time dO(1)n.

Thus, the total running time is

(k − 1)(f(n) + dO(1)n) + f(n) + dO(1)n = k(f(n) + dO(1)n),

and since k = O(d), the claim follows.

3.2 An improved algorithm
We will now show how to combine the above techniques

for an algorithm with a better running time. The idea of the
new algorithm is as follows: using Corollary 3.2, we reduce
solving a d-dimensional instance to solving two instances of
dimension d/2. This can be done recursively. Unfortunately,
applying Corollary 3.2 reduces the depth of the partition.
To fix this, we apply Lemmas 2.3, 2.4 and the Miller-Sheehy
algorithm to increase the depth again. For clarity of presen-
tation, we omit the roundings, which can be taken care of
easily.

Proof of Theorem 1.7. We prove the theorem by in-
duction on d. As stated before, for d = 1 the claim is im-
mediate, as in this case the problem reduces to a median
computation.

Thus, suppose that d > 1. By induction, for any (d/2)-

dimensional point set Q ⊆ Rd/2 there exists an algorithm
that returns a Tverberg point of depth |Q|/4(d/2+1)3 and a

corresponding pruned Tverberg partition in time dα log(d/2)n,
for some sufficiently large constant α > 0.

Thus, by Corollary 3.2 (with δ = d/2), there exists an
algorithm that can compute a Tverberg point for P of depth
n/16(d/2 + 1)6 and a corresponding Tverberg partition in

total time 2dα log(d/2) + dO(1)n.
Now we apply Lemma 2.3. The lemma shows that we

can compute 16(d/2 + 1)6/(d + 1) many points with depth

n/32(d/2 + 1)6 and corresponding (disjoint) pruned parti-

tions in time dα log(d/2)+O(1)n.
Let C be the set of these Tverberg points. Applying the

Miller-Sheehy algorithm, we can find a Tverberg point for C
of depth |C|/2(d+1)2 and a corresponding pruned Tverberg

partition in time |C|O(log d). Now, Lemma 2.4 shows that in

additional dO(1)n time, we obtain a Tverberg point and a
corresponding Tverberg partition for P of size

n

2 · 16(d/2 + 1)6
16(d/2 + 1)6

2(d+ 1)2(d+ 1)
=

n

4(d+ 1)3
,

as desired.
It remains to analyze the running time. Adding the vari-

ous terms, we end up with a time bound of

T (n, d) = dα log(d/2)+O(1)n+ |C|O(log d) + dO(1)n.

Since |C| = dO(1), we get

T (n, d) ≤ dα log(d/2)+O(1)n+ dO(log d)n

≤ dα log d−α/2n+ dβ log dn,

for α large enough and some β > 0, independent of d. Hence,
it follows that for large enough α we have

T (n, d) ≤ dα log dn = dO(log d)n,

as claimed. This completes the proof.

4. COMPARISON TO MILLER-SHEEHY
In the table below, we compare our algorithm in more de-

tail to the Miller-Sheehy algorithm and its extensions. They
give a generalization of their approach that shows that by
computing higher order Tverberg points of depth r by brute-
force, the running time can be improved for small d. This
comes with the loss of factor r in the output. No exact val-
ues are given, but as far as we can tell, one can achieve a
polynomial O(f(d)n2) running time for fixed d by setting
the parameter r = (d+ 1), while losing a factor of (d+ 1) in
the approximation. Further, even though it is not explicitly
mentioned in the paper, we think that it is possible to also
bootstrap their own algorithm (for a better running time
in terms of d, while losing another factor of (d + 1) in the
output). Table 4 shows a rough comparison of the different
approaches. Again, f denotes the running time of the brute
force algorithm.

Algorithm Running time Depth

Theorem 1.5 O(dn) n/2d

Miller-Sheehy nO(log d) n/2(d+ 1)2

Theorem 1.6 O
(
f(2d) + dO(1)n

)
n/2(d+ 1)2

Miller-Sheehy gen-
eralized (r = d+ 1)

O
(
f(d)n2

)
≈ n/2(d+ 1)3

Theorem 1.6 with
M.-S.

O
(

2O(d log d) + n
)

n/4(d+ 1)3

Miller-Sheehy boot-
strapped

dO(log d)n3 ≈ n/2(d+ 1)4

Theorem 1.7 dO(log d)n n/4(d+ 1)3

5. CONCLUSION AND OUTLOOK
We have presented a very simple algorithm for finding an

approximate Tverberg point, which runs in linear time for
any fixed dimension. Using more sophisticated methods and
combining our methods with known results, we managed to
improve the running time to dO(log d)n, while getting within
a factor of 1/4(d+ 1)2 of the guaranteed optimum.

Unfortunately, the resulting running time is still quasi-
polynomial in d, and we still do not know whether there
exists a polynomial algorithm (in n and d) for finding an
approximate Tverberg point. However, we are hopeful that
our techniques constitute a further step in this direction and
that such an algorithm will eventually be discovered—maybe
even by a more clever combination of our algorithm with
that of Miller and Sheehy.

A promising approach, as also pointed out by one of the
reviewers, would be to have a look at Sarkaria’s proof of
Tverberg’s theorem using Colorful Carathéodory’s theorem
(see Matoušek [9, Chapter 8]). If one can compute a colorful
simplex in truly polynomial time in any dimension, one can
also compute a Tverberg point efficiently.

As mentioned before, the problem of deciding whether a
given point has at least a certain depth is NP-complete. It
is possible to strengthen this result to show that in Rd+1,
the problem is d-Sum hard, using the approach by Knauer
et al. [8]. However, this does not tell us anything about
the actual problem of computing a point of depth n/(d +
1). As such a point is guaranteed to exist, it is not clear
how to prove the problem to be hard using the “standard”
NP-hardness reduction. Rather, we think that a hardness
proof along the lines of complexity classes such as PPAD
(see Papadimitriou [11]) should be pursued.

Acknowledgments. We would like to thank Nabil Mustafa
for suggesting the problem to us. We also thank him and
Don Sheehy for helpful discussions.

We would further like to thank the anonymous referees
for their helpful and detailed comments.

6. REFERENCES
[1] T. M. Chan. An optimal randomized algorithm for

maximum Tukey depth. In Proc. 15th Annu.
ACM-SIAM Sympos. Discrete Algorithms (SODA),
pages 430–436, 2004.

[2] B. Chazelle. The discrepancy method: randomness and
complexity. Cambridge University Press, Cambridge,
2000.

[3] K. L. Clarkson, D. Eppstein, G. L. Miller,
C. Sturtivant, and S.-H. Teng. Approximating center
points with iterative Radon points. Internat. J.
Comput. Geom. Appl., 6(3):357–377, 1996.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to algorithms. MIT Press,
Cambridge, MA, third edition, 2009.

[5] L. Danzer, B. Grünbaum, and V. Klee. Helly’s
theorem and its relatives. In Proc. Sympos. Pure
Math., Vol. VII, pages 101–180. Amer. Math. Soc.,
Providence, R.I., 1963.

[6] H. Edelsbrunner. Algorithms in combinatorial
geometry. Springer-Verlag, Berlin, 1987.

[7] S. Jadhav and A. Mukhopadhyay. Computing a
centerpoint of a finite planar set of points in linear
time. Discrete Comput. Geom., 12(3):291–312, 1994.

[8] C. Knauer, H. R. Tiwary, and D. Werner. On the
computational complexity of Ham-Sandwich cuts,
Helly sets, and related problems. In 28th International
Symposium on Theoretical Aspects of Computer
Science (STACS 2011), volume 9, pages 649–660.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2011.

[9] J. Matoušek. Lectures on Discrete Geometry. Springer,
2002.

[10] G. L. Miller and D. R. Sheehy. Approximate
centerpoints with proofs. Comput. Geom. Theory
Appl., 43(8):647–654, 2010.

[11] C. H. Papadimitriou. On the complexity of the parity
argument and other inefficient proofs of existence.
Journal of Computer and System Sciences, 48(3):498 –
532, 1994.

[12] R. Rado. A theorem on general measure. J. London
Math. Soc., 21:291–300, 1946.

[13] S.-H. Teng. Points, spheres, and separators: a unified
geometric approach to graph partitioning. PhD thesis,
School of Computer Science, Carnegie Mellon
University, 1992.

[14] H. Tverberg. A generalization of Radon’s theorem. J.
London Math. Soc., 41:123–128, 1966.

