Routing in Unit Disk Graphs*

Haim Kaplan!, Wolfgang Mulzer?, Liam Roditty?, and Paul Seiferth?

L School of Computer Science, Tel Aviv University, Israel
haimk@post.tau.ac.il
2 Institut fiir Informatik, Freie Universitét Berlin, Berlin, Germany.
[mulzer, pseiferth]@inf.fu-berlin.de
3 Department of Computer Science, Bar Ilan University, Israel
liamr@macs.biu.ac.il

Abstract. Let S C R? be a set of n sites. The unit disk graph UD(S)
on S has vertex set S and an edge between two distinct sites s,t € S if
and only if s and ¢ have Euclidean distance |st| < 1.

A routing scheme R for UD(S) assigns to each site s € S a label {(s) and
a routing table p(s). For any two sites s,¢ € S, the scheme R must be able
to route a packet from s to ¢ in the following way: given a current site r
(initially, 7 = s), a header h (initially empty), and the target label £(t),
the scheme R may consult the current routing table p(r) to compute a
new site 7’ and a new header h’, where r’ is a neighbor of r. The packet
is then routed to 7/, and the process is repeated until the packet reaches
t. The resulting sequence of sites is called the routing path. The stretch
of R is the maximum ratio of the (Euclidean) length of the routing path
of R and the shortest path in UD(S), over all pairs of sites in S.

For any given € > 0, we show how to construct a routing scheme for
UD(S) with stretch 14-¢ using labels of O(log n) bits and routing tables of
O(¢" log® nlog? D) bits, where D is the (Euclidean) diameter of UD(SS).
The header size is O(lognlog D) bits.

1 Introduction

Routing in graphs constitutes a fundamental problem in distributed graph algo-
rithms [7,10]. Given a graph G, we would like to be able to route a packet from
any node in G to any other node. The routing algorithm should be local, meaning
that it uses only information stored with the packet and with the current node,
and it should be efficient, meaning that the packet does not travel much longer
than necessary. There is an obvious solution to this problem: with each node s of
G, we store the shortest path tree for s. Then it is easy to route a packet along
the shortest path to its destination. However, this solution is very inefficient: we
need to store the complete topology of G with each node, leading to quadratic
space usage. Thus, the goal of a routing scheme is to store as little information
as possible with each node of the graph, while still guaranteeing a routing path
that is not too far from optimal.

* This work is supported by GIF project 1161 & DFG project MU/3501/1.

For general graphs a plethora of results is available, reflecting the work of
almost three decades (see, e.g., [3,11] and the references therein). However, for
general graphs, any efficient routing scheme needs to store 2(n®) bits per node,
for some o > 0 [10]. Thus, it is natural to ask whether improved results are
possible for specialized graph classes. For example, for trees it is known how
to obtain a routing scheme that follows a shortest path and requires O(logn)
bits of information at each node [5,12,14]. In planar graphs, for any € > 0 it is
possible to store a polylogarithmic number of bits at each node in order to route
a packet along a path of length at most 1 + € times the length of the shortest
path [13].

A graph class that is of particular interest for routing problems comes from
the study of mobile and wireless networks. Such networks are traditionally mod-
eled as unit disk graphs [4]. The nodes are represented as points in the plane, and
two nodes are connected if and only if the distance between the corresponding
points is at most one. Even though unit disk graphs may be dense, they share
many properties with planar graphs, in particular with respect to algorithmic
problems. There exists a vast literature on routing in unit disk graphs (cf. [7]),
but most known schemes cannot ensure a short routing path in the worst case.
Yan, Xiang, and Dragan [15] present a scheme with provable worst case guar-
antees. They extend a scheme by Gupta et al. [8] for planar graphs to unit disk
graphs by using a delicate planarization argument to obtain small-sized bal-
anced separators. Even though the scheme by Yan et al. is conceptually simple,
it requires a detailed analysis with an extensive case distinction.

We propose an alternative approach to routing in unit disk graphs. Our
scheme is based on the well-separated pair decomposition for unit disk graphs [6].
It stores a polylogarithmic number of bits with each node of the graph, and it
constructs a routing path that can be made arbitrarily close to a shortest path
(see Section 2 for a precise statement of our results). This compares favorably
with the scheme by Yan et al. [15] which achieves only a constant factor ap-
proximation. Moreover, our scheme is arguably simpler to analyze. However,
unlike the algorithm by Yan et al., we require that the packet contain a modifi-
able header with a polylogarithmic number of bits. It is an interesting question
whether this header can be removed.

2 The Model and Our Results

Let S C R? be a set of n sites in the plane. We say that S has density & if every
unit disk contains at most ¢ points from S. The density § of S is bounded if
0 = O(1). The unit disk graph for S is the graph UD(S) with vertex set S and
an edge st between two distinct sites s,t € S if and only if |st| < 1, where | - |
denotes the Euclidean distance. We define the weight of the edge st to be its
Euclidean length and use d(-,-) to denote the shortest path distance in UD(S5).

We would like to obtain a routing scheme for UD(S) with small stretch and
compact routing tables. Formally, this is defined as follows: we can preprocess
UD(S) to obtain for each site s € S (i) a label ¢(s) € {0,1}*, and (ii) a routing

table p(s) € {0,1}*. Furthermore, we need to define a routing function f :
S x {0,1}* x {0,1}* — S x {0,1}* x {0,1}*. The function f takes as input a
current site s, the label £(t) of a target site t, and a header h € {0,1}*. The
routing function may use its input and the routing table p(s) of s to compute a
new site ', a modified header h’, and the label of an intermediate target £(t').
The new site s’ may be either s or a neighbor of s in UD(S). Even though the
eventual goal of the packet is the target ¢, we introduce the intermediate target ¢’
into the notation, since it allows for better presentation of the routing algorithm.

The routing scheme is correct if the following holds: let hg be the empty
header. For any two sites s,t € S, consider the sequence of triples given by
(So,éo,ho) = (S,f(f,),ho) and (Si,gi,hi) = f(si—lagi—lahi—l) for i > 1. Then
there exists a k = k(s,t) > 0 such that s, =t and s; # ¢ for i < k, i.e., the
routing scheme reaches t after k steps. We call sg, s1,..., s, the routing path
between s and t, and we define the routing distance d,(s,t) between s and t
as d,(s,t) = Zle |si—1si]. The quality of the routing scheme is measured by
several parameters:

— the label size L(n) = max|g|—, maxcs [{(s)],

the table size T'(n) = max|g|—, maxscs |p(s)|,

the header size H(n) = max|g|—, MaXsxrcs MaAX;—1,.._ (s,¢) il
— and the stretch ¢(n) = max|g|—, maxsxies dp(s,t)/d(s,1).

We show that for any S C R?, |S| = n, and any € > 0 we can construct a
routing scheme with (n) = 1+¢, L(n) = O(logn), T(n) = O(s~°log® nlog® D),
and H(n) = O(lognlog D), where D is the weighted diameter of UD(S), i.e.,
the maximum length of a shortest path between two sites in UD(S).

3 The Well-Separated Pair Decomposition for UD(S)

Our routing scheme uses the well-separated pair decomposition (WSPD) for the
unit disk graph metric given by Gao and Zhang [6]. WSPDs provide a compact
way to efficiently encode the approximate pairwise distances in a metric space.
Originally, WSPDs were introduced by Callahan and Kosaraju [2] in the context
of the Euclidean metric, and they have found numerous applications since then
(see, e.g., [6,9] and the references therein).

Since our routing scheme relies crucially on the specific structure of the
WSPD described by Gao and Zhang, we remind the reader of the main steps of
their algorithm and analysis.

First, Gao and Zhang assume that S has bounded density and that UD(S)
is connected. They construct the Euclidean minimum spanning tree T' for S.
It is easy to see that T is a spanning tree for UD(S) with maximum degree 6.
Furthermore, T' can be constructed in O(nlogn) time [1]. Since T' has maximum
degree 6, there exists an edge e in 7" such that T\ e consists of two trees with
at least [(n — 1)/6] vertices each. By applying this observation recursively, we
obtain a hierarchical decomposition H of T. The decomposition H is a binary
tree. Each node v of H represents a subtree T, of T" with vertex set .S, C S such

that (i) the root of H corresponds to T’ (ii) the leaves of H are in one-to-one
correspondence with the sites in S; and (iii) let v be an inner node of H with
children v and w. Then v has an associated edge e, € T, such that removing e,
from T, yields the two subtrees T,, and T, represented by u and w (see Figure 1).
Furthermore, we have |Sy/|, |Sw| > [(|Sy] — 1)/6].

Fig.1. An EMST of UD(S) (left) where the edges are annotated with their level in
the hierarchical decomposition (right).

It follows that H has height O(logn). The depth §(v) of a node v € H is
defined as the number of edges on the path from v to the root of H. The level of
the associated edge e, of v is the depth of v in H. This uniquely defines a level
for each edge in T. Now, for each node v € H, the subtree T, is a connected
component in the forest that is induced in T by the edges of level at least d(v).

After computing the hierarchical decomposition, the algorithm of Gao and
Zhang essentially uses the greedy algorithm of Callahan and Kosaraju to con-
struct a WSPD, with H in place of the quadtree (or the fair split tree). Let ¢ > 1
be a separation parameter. The algorithm traverses H and produces a sequence
= = (ug,v1), (u2,v2), ..., (tm,vy) of pairs of nodes of H, with the following
properties:

1. The sets Sy, X Sy, , Suy X Svgs- -+ Su,, X Sy, constitute a partition of S x S.
This means that for each ordered pair of sites (s,t) € S x S, there is exactly
one pair (u,v) € = with (s,t) € S, X S,. We say that (u,v) represents (s,t).

2. Each pair (u,v) € £ is c-well-separated, i.e., we have

(¢ +2) max{|Sy| = L[Sy = 1} < |o(u)o(v)], (1)
where o(u),o(v) are arbitrary sites in S, and S, chosen by the algorithm.

Since in the unit distance graph metric the diameter diam(S,,) is at most |S,|—1
and since |o(u)o(v)| < d(o(u),o(v)), (1) implies that

(¢ + 2) max{diam(S,,), diam(S,)} < d(o(u),o(v)), (2)

which is the traditional well-separation condition. However, (1) is easier to check
algorithmically and has additional advantages that we will exploit in our routing
scheme below.

Gao and Zhang show that their algorithm produces a ¢-WSPD with m =
O(dc*nlogn) pairs, where § is the density of S. More precisely, they prove the
following lemmas:

Lemma 3.1 (Lemma 4.3 and Corollary 4.6 in [6]). For each node v € H,
the WSPD = has O(6¢2|Sy|) pairs that contain u. O

4 Preliminary Lemmas

We begin with two technical lemmas on WSPDs that will be useful later on. The
proofs can be found in the full version. The first lemma shows that the choice
of the sites o(u) for the nodes u € H is essentially arbitrary.

Lemma 4.1. Let = be a c-WSPD for S and let s,t be two sites such that the
pair (u,v) € = represents (s,t). Then cdiam(Sy) < ¢(|Sy| — 1) < d(s,t).

The next lemma is a direct consequence of of Lemma 4.1 and shows that
short distances are represented by singletons.

Lemma 4.2. Let = be a c-WSPD for S and let s,t € S be two sites with
d(s,t) < ec. If (u,v) € Z represents (s,t), then S, = {s} and S, = {t}.

5 The Routing Scheme

Let § be the density of S. First we describe a routing scheme whose parameters
depend on 4. Then we show how to remove this dependency and extend the
scheme to work with arbitrary density. Our routing scheme uses the WSPD
described in Section 3, and it is based on the following idea: let = be the c-WSPD
for UD(S) and let T' be the EMST for S used to compute it. We distribute the
information about the pairs in = among the sites in S (in a way described later)
such that each site stores O(dc?logn) pairs in its routing table. To route from
s to t, we explore T, starting from s, until we find the site » with the pair
(u,v) representing (s,t). Our scheme will guarantee that s and r are sites in
Sy, and therefore it suffices to walk along T, to find r (see Figure 2). This is
called the local routing. With (u,v), we store in p(r) the middle site m on the
shortest path from r to o(v), i.e., the vertex “halfway” between r and o(v). We
recursively route from r to m and when reaching m from m to ¢. To keep track
of intermediate targets during the recursion, we store a stack in the header. This
second step, the recursive routing through the middle site, we call the global
routing. We now describe our routing scheme in detail. Let 1 + ¢, € > 0, be the
desired stretch factor.

~ Ld(s,t)

Fig. 2. To route a packet from s to ¢, we first walk along T3, until we find r. Then we
recursively route from r to m and from m to ¢.

5.1 Preprocessing

The preprocessing phase works as follows. We set ¢ = («a/e)log D, where D is
the Euclidean diameter of UD(S) and « is a sufficiently large constant we will
fix later. Then we compute a c-WSPD for UD(S). As explained in Section 3, the
WSPD counsists of a bounded degree spanning tree T of UD(SS), a hierarchical
balanced decomposition H of T" whose nodes u € H correspond to subtrees T,
of T, and a sequence = = (uy,v1), (U2, v2), - -, (Um, Vm) of m = O(6c*nlogn) =
0(65_2nlognlog2 D) well-separated pairs that represent a partition of S x S.

First, we determine the labeling ¢ for the sites in S. For this, we perform a
postorder traversal of H. Let [be a counter which is initialized to 1. Whenever
we encounter a leaf of H, we set the label £(s) of the corresponding site s € S to
[, and we increment [by 1. Whenever we visit an internal node u of H for the
last time, we annotate it with the interval I,, of the labels in T,. Thus, a site
s € S lies in a subtree T, if and only if £(s) € I,,. Each label has O(logn) bits.

Next, we describe the routing tables. Each routing table consists of two parts,
the local routing table and the global routing table. The local routing table py,(s)
of a site s stores the neighbors of s in 7', in counterclockwise order, together with
the levels in H of the corresponding edges (cf. Section 3). Since T has degree
at most 6, each local routing table consists of O(logn) bits. The global routing
table pg(s) of a site s is obtained as follows: we go through all O(logn) nodes
u of H that contain s in their subtree T},. By Lemma 3.1, = contains at most
O(6¢?|Sy,|) well-separated pairs in which u represents one of the sets. We assign
O(6¢%) = O(3e~2log® D) of these pairs to s, such that each pair is assigned to
exactly one site in S,,. For each pair (u,v) assigned to s, we store the interval
I,, corresponding to S,. Furthermore, if o(v) is not a neighbor of s, we store the
label £(m) of the middle site m of a shortest path 7 from s to o(v). Here, m
is a site on 7 that minimizes the maximum distance, max{d(s, m),d(m,o(v))},
to the endpoints of 7. A site s lies in O(logn) different sets S,,, at most one for
each level of H. For each such set, we store O(dc~2log® D) pairs in pg(s), each
of which requires O(logn) bits. Thus, pe has O(6e=2log? nlog?® D) bits.

Finally, we argue that the routing scheme can be computed efficiently. See
the full version for a proof.

Lemma 5.1. The preprocessing time for the routing scheme described above is
O(n?logn + dn? 4 de>nlognlog® D).

5.2 Routing a Packet

Suppose we are given two sites s and ¢, and we would like to route a packet from
s to t. Recall our overall strategy: we first perform a local exploration of UD(.S)
in order to discover a site r that stores a pair (u,v) € = representing (s,t) in its
global routing table pg(r). To find r, we consider the subtrees of T' that contain
s by increasing size, and we perform an Euler tour in each subtree until we find
r. In pg(r) we have stored the middle site m of a shortest path from r to o(v).
We put ¢ into the header, and we recursively route the packet from r to m. Once
we reach m, we retrieve the original target ¢ from the header and recursively
route from m to t, see Algorithm 1 for pseudo-code.

Local Routing: The Fuler-Tour. We start at s, and we would like to find the site
r that stores the pair (u,v) representing (s,t). By construction, both s and r
are contained in S, and it suffices to perform an Euler tour on T, to discover
r. Since we do not know wu in advance, we begin with the leaf in H that contains
s, and we explore all nodes on the path to the root until we find w.

Fig. 3. To find » we do an Euler Tour on T, the subtree that contains s whose edges
have level at least 7. Since we do not find r, we search the next larger subtree T/,
where v’ is the parent of u in H by decreasing the search level to 6.

We store s as the start site in the header h. Let w € H be the node to be
explored, and let [= §(w) be the depth of w in H. We store [in h. Recall that T,
is a connected component of the forest induced by all edges of level at least [. We
perform an Euler tour on T, using the local routing tables as follows: starting
at s, we follow the first edge in pr(s) that has level at least [. Every time we
visit a site r, we check for all WSPD-pairs (u,v) in pg(r) whether £(t) € I,
i.e., whether t € S,,. If so, we clear the local routing information from h, and we
proceed with the global routing. If not, we scan py,(r) for the next edge in pr,(r)
that has level at least I, going back to the beginning of pr,(r) if necessary, and
we follow this edge. For this, we must remember in h the edge through which
we last entered r (note that we must store only the last edge of the tour). Once

we reach s for the last time (i.e., through the last edge in pr(s) with level at
least 1), we decrease [by one and restart the process. Decreasing [corresponds
to proceeding with the parent of w in H.

Global Routing: The WSPD. Suppose we are at a site s such that pg(s) contains
the pair (u,v) with the target ¢ being in S,. If ¢ is not a neighbor of s, then
pc(s) also contains the label of a middle site m for (u, v). We push (the label of)
t onto the header stack, and we use ¢(m) as the new target. Then we perform a
local routing, starting at s, in order to find a pair (u',v") with m € S,.. If ¢ is
a neighbor of s, we go directly to t. Since ¢ may be an intermediate target, we
pop the next element from the header stack and set it as the new target label.
If the header stack is empty, ¢ is our final destination.

Input: currentSite s, targetLabel £(t), header h
Output: nextSite, nextTargetLabel, header

1 if 4(s) = £(t) then /* intermediate target reached? */
2 if h.stack = () then /* final target? */
3 ‘ return (s, L, 1)
4 else
5 ‘ return (s, h.stack.pop(), h)
6 else if p(s) stores a WSPD-pair (u,v) with ¢t € S, then /* global routing */
7 h.startSite < ()
8 if s and ¢ are neighbors in UD(S) then
9 ‘ return (t,£(t), h)
10 else
11 nextTargetLabel + label of middle site for (u,v)
12 h.stack.push(£(t))
13 return (s, nextTargetLabel, h)
14 else /* local routing */
15 if h.startSite = () then
16 h.startSite < s
17 h.level < §(s)
18 r < next clockwise neighbor of s with level of edge sr > h.level
19 if r =1 then /* Euler tour is finished */
20 h.level <— h.level — 1
21 return (s, ¢(t),h)
22 else
23 | return (r,((t),h)

Algorithm 1: The routing algorithm.

5.3 Analysis of the Routing Scheme

We now prove that the described routing scheme is correct and has low stretch,
i.e., that for any two sites s and ¢, it produces a routing path s = sg,...,sp =t
of length at most (1 + €)d(s,).

Correctness. First, we consider only small distances and show that in this case
our routing scheme produces an actual shortest path.

Lemma 5.2. Let s,t be two sites in S with d(s,t) < c. Then, the routing scheme
produces a routing path Sg, S1, ..., Sk with the following properties

(i) so=s and sk =t,
(ii) dy(s,t) =d(s,t), and
(iii) the header stack is in the same state at the beginning and at the end of the
routing path.

Proof. We prove that our routing scheme has properties (i)—(iii) by induction on
the rank of d(s,?) in the sorted list of the pairwise distances in UD(SS).

For the base case, consider the edges st in UD(G), i.e., d(s,t) = |st| < 1.
By Lemma 4.2, there exists a pair (u,v) with S, = {s} and S, = {t}. Thus,
Algorithm 1 correctly routes to ¢ in one step and does not manipulate the header
stack. All properties are fulfilled.

Now, consider an arbitrary pair s,t with 1 < d(s,t) < c¢. By Lemma 4.2, there
is a pair (u,v) with S, = {s} and S, = {t}. By construction, (u,v) is stored in
pc(s) and the routing algorithm directly proceeds to the global routing phase.
Since d(s,t) > 1, the routing table contains a middle site m and since S,, and
S, are singletons, m is a middle site on a shortest path from s to ¢. Algorithm 1
pushes £(t) onto the stack and sets m as the new target. By induction, the
routing scheme now routes the packet along a shortest path from s to m (i,
ii), and when the packet arrives at m, the target label ¢(t) is at the top of the
stack (iii). Thus, Algorithm 1 executes line 5, and routes the packet from m to
t. Again by induction, the packet now follows a shortest path from m to ¢ (i, ii),
and when the packet arrives at ¢, the stack is in the same state a before pushing
£(t) (iii). The claim follows. O

Building on Lemma 5.2, we can now prove that our scheme is correct.

Lemma 5.3. Let s,t be two sites in S. Then, the routing scheme produces a
routing path sg, 81, ..., Sk with the following properties

(i) so =s and s =t, and
(i) the header stack is in the same state at the beginning and at the end of the
routing path.

Proof. Again, we use induction on the rank of d(s, t) in the sorted list of pairwise
distances in UD(S). If d(s,t) < ¢, the claim is immediate by Lemma 5.2.

Now, consider an arbitrary pair s,t € S. By construction, our routing scheme
will eventually find a site r € S whose global routing table stores a WSPD-pair
(u, v) that represents (s, t), together with a middle site m (m exists for d(s,t) > ¢
large enough). So far, the stack remains unchanged. Algorithm 1 pushes £(t) onto
the stack and sets m as the new target. By induction, the routing scheme routes
the packet correctly from s to m (i), and when the packet arrives at m, the
target label £(t) is at the top of the stack (ii). Thus, Algorithm 1 executes line 5,
and routes the packet from m to ¢t. Again by induction, the packet arrives at ¢,
with the stack in the same state as before pushing ¢(¢) (i, ii). O

Stretch factor. The analysis of the stretch factor requires some more technical
work. For space reasons, we omit the proofs of Lemma 5.4 and Lemma 5.6 and
refer the reader to the full version. We begin with a lemma that justifies the
term ”middle site“.

Lemma 5.4. Let s,t be two sites in S with d(s,t) > ¢ > 14 and let (u,v) € =
be the WSPD-pair that represents (s,t). If m is a middle site of a shortest path
from s to o(v) in UD(S), then

(i) d(s,
(i) d(s,

In the next lemma, we bound the distance traveled during the local routing.

) +d(m,t) < (1+2/c)d(s,t), and
), d(m,t) < (5/8)d(s,t).

33

Lemma 5.5. Let s,t be two sites in S with d(s,t) > c. Then, the total dis-
tance traveled by the packet during the local routing phase before the WSPD-pair
representing (s,t) is discovered is at most (48/c)d(s,t).

Proof. Let (u,v) be the WSPD-pair representing (s, t), and let ug, u1,...,ur = u
be the path in H from the leaf ug for s to uw. Let Ty, 11, ..., T, and Sy, S, ..., Sk
be the corresponding subtrees of T" and sites of S . The local routing algorithm
iteratively performs an Euler tour of Ty, T1,..., Ty (the tour of T} may stop
early). An Euler tour in T; takes 2|S;| — 2 steps, and each edge has length at
most 1. As described in Section 3, for i = 0....,k — 1, the WSPD ensures that

i < [Siga] = [(1Si4a] = 1)/6] < (5/6)[Siy1| +1/6 < (11/12)[Si1a],
since |S;11| > 2. It follows that the total distance for the local routing is at most

k k

D @21 = 2) < 2|8 Y (11/12)" < 24[Sj|.

=0 =0

By Lemma 4.1, we have d(s,t) > ¢(|S,| —1) and since S, = S, the total distance
is bounded by 24|S,,| < 24(d(s,t)/c+1) < (48/c)d(s,t), where the last inequality
is true for d(s,t) > c. O

Finally, we can bound the stretch factor:
Lemma 5.6. For any two sites s and t, we have d,(s,t) < (1+¢)d(s,t).
Combining Lemma 5.1 and Lemma 5.6 we obtain the following theorem.

Theorem 5.7. Let S be a set of n sites in the plane with density 6. For any
e > 0, we can preprocess S into a routing scheme for UD(S) with labels of size
O(logn) bits and routing tables of size O(6e=2log® nlog® D), where D is the
diameter of UD(S). For any two sites s,t, the scheme produces a routing path
with dy(s,t) < (14+¢)d(s,t) and during the routing the mazimum header size is
O(log nlog D). The preprocessing time is O(n?logn + én? +de~2nlognlog? D).

10

5.4 Extension to Arbitrary Density

Let 1 +¢&, € > 0, be the desired stretch factor. To extend the routing scheme
to point sets of unbounded density, we follow a strategy similar to Gao and
Zhang [6, Section 4.2]: we first pick an appropriate €; > 0, and we compute an
e1-net R C S, i.e., a subset of sites such that each site in S has distance at
most €1 to the closest site in R and such that any two sites in R have distance
at least €;. It is easy to see that R has density O(zsfz)7 and we would like to
represent each site in S by the closest site in R. However, the connectivity in
UD(R) might differ from UD(S). To rectify this, we add additional sites to R.
This is done as follows: two sites s,t € R are called neighbors if |st| > 1, but
there are p,q € S such that s,p, q,t is a path in UD(S) and such that |sp| < &1
and |gt| < e (possibly, s = p or ¢ = t). In this case, p and ¢ are called a bridge
for s,t. Let R’ be a point set that contains an arbitrary bridge for each pair of
neighbors in R. Set Z = RU R’. A simple volume argument shows that Z has
density 6 = O(e;?). Furthermore, Gao and Zhang show the following:

Lemma 5.8 (Lemma 4.8 and Lemma 4.9 in [6]). We can compute Z in
O((n/e?)logn) time, and if d%(-,-) denotes the shortest path distance in UD(Z),
then, for any s,t € R, we have d%(s,t) < (1 + 12¢1)d(s,t) + 12¢;.

Now, our extended routing scheme proceeds as follows: first, we compute R
and Z as described above, and we perform the preprocessing algorithm for Z
with £7 as stretch parameter. We assign arbitrary new labels to the sites in S\ Z.
Then, we extend the label £(s) of each site s € S, such that it also contains the
label of a site in R closest to s. The label size remains O(logn).

To route between two sites s,t € S, we first check whether we can go from
s to t in one step (we assume that this can be checked locally in the routing
function). If so, we route the packet directly. Otherwise, we have d(s,t) > 1.
Let ', € R be the closest sites in R to s and to ¢. By construction, we can
obtain s’ and ' from £(s) and £(¢). Now, we first go from s to s’. Then, we use
the low-density algorithm to route from s’ to ¢’ in UD(Z), and finally we go
from #' to ¢ in one step. Using the discussion above, the total routing distance
is bounded by

dp(s,t) < |ss'| +d7 (s, t') + [t't],
where dZ(-,-) is the routing distance in UD(Z). By Lemma 5.6 and 5.8, this is

<e + (A +4e)d? (s,)+ e
<21+ (T4e1)((1+ 12e1)d(s', ') + 12¢1),

and by using the triangle inequality twice this is

<21+ (1+e1)((1+12e1)(d(s,) + 2e1) + 12¢7).

11

Rearranging and using d(s,t) > 1 yields
< (14 29e1 + 5062 + 24e%)d(s,t) < (1 +¢)d(s, 1),

where the last inequality holds for €1 < £/103. This establishes our main theo-
rem:

Theorem 5.9. Let S be a set of n sites in the plane. For any € > 0, we can
preprocess S into a routing scheme for UD(S) with labels of O(logn) bits and
routing tables of size O(e~log® nlog® D), where D is the diameter of UD(S).
For any two sites s,t, the scheme produces a routing path with d,(s,t) < (1 +
e)d(s,t) and during the routing the maximum header size is O(lognlog D). The
preprocessing time is O(n?logn + e 3n? + e ®nlognlog® D).

Proof. The theorem follows from the above discussion and from the fact that
the set Z has density O(¢~3), by our choice of ¢;. O

References

1. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geome-
try: Algorithms and Applications. Springer, 3rd edn. (2008)

2. Callahan, P., Kosaraju, S.: A decomposition of multidimensional point sets with
applications to k-nearest-neighbors and n-body potential fields. J. ACM 42(1),
67-90 (1995)

3. Chechik, S.: Compact routing schemes with improved stretch. In: Proc. 32nd ACM
Symp. on Principles of Distributed Computing (PODC). pp. 33-41 (2013)

4. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Math. 86(1-
3), 165-177 (1990)

5. Fraigniaud, P., Gavoille, C.: Routing in trees. In: Proc. 28th Internat. Colloq.
Automata Lang. Program. (ICALP). pp. 757-772 (2001)

6. Gao, J., Zhang, L.: Well-separated pair decomposition for the unit-disk graph met-
ric and its applications. SIAM J. Comput. 35(1), 151-169 (2005)

7. Giordano, S., Stojmenovic, I.: Position based routing algorithms for ad hoc net-
works: A taxonomy. In: Cheng, X., Huang, X., Du, D.Z. (eds.) Ad Hoc Wireless
Networking, Network Theory and Applications, vol. 14, pp. 103-136 (2004)

8. Gupta, A., Kumar, A., Rastogi, R.: Traveling with a Pez dispenser (or, routing
issues in MPLS). SIAM J. Comput. 34(2), 453-474 (2004)

9. Narasimhan, G., Smid, M.H.M.: Geometric spanner networks. Cambridge (2007)

10. Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables. J.
ACM 36(3), 510-530 (1989)

11. Roditty, L., Tov, R.: New routing techniques and their applications. In: Proc. 34th
ACM Symp. on Principles of Distributed Computing (PODC). pp. 23-32 (2015)

12. Santoro, N., Khatib, R.: Labelling and implicit routing in networks. Comput. J.
28(1), 5-8 (1985)

13. Thorup, M.: Compact oracles for reachability and approximate distances in planar
digraphs. J. ACM 51(6), 993-1024 (2004)

14. Thorup, M., Zwick, U.: Compact routing schemes. In: Proc. 13th ACM Symposium
on Parallel Algorithms and Architectures (SPAA). pp. 1-10 (2001)

15. Yan, C., Xiang, Y., Dragan, F.F.: Compact and low delay routing labeling scheme
for unit disk graphs. Comput. Geom. 45(7), 305-325 (2012)

12

