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We present efficient dynamic data structures for maintaining the union of unit discs and the lower envelope of pseudo-lines in the

plane. More precisely, we present three main results in this paper:

(i) We present a linear-size data structure to maintain the union of a set of unit discs under insertions. It can insert a disc and

update the union in𝑂 ( (𝑘 + 1) log2 𝑛) time, where 𝑛 is the current number of unit discs and 𝑘 is the combinatorial complexity

of the structural change in the union due to the insertion of the new disc. It can also compute, within the same time bound,

the area of the union after the insertion of each disc.

(ii) We propose a linear-size data structure for maintaining the lower envelope of a set of 𝑥-monotone pseudo-lines. It can handle

insertion/deletion of a pseudo-line in𝑂 (log2 𝑛) time; for a query point 𝑥0 ∈ R, it can report, in𝑂 (log𝑛) time, the point on

the lower envelope with 𝑥-coordinate 𝑥0; and for a query point 𝑞 ∈ R2
, it can return all 𝑘 pseudo-lines lying below 𝑞 in time

𝑂 (log𝑛 + 𝑘 log
2 𝑛) .

(iii) We present a linear-size data structure for storing a set of circular arcs of unit radius (not necessarily on the boundary

of the union of the corresponding discs), so that for a query unit disc 𝐷 , all input arcs intersecting 𝐷 can be reported in

𝑂 (𝑛1/2+𝜀 + 𝑘) time, where 𝑘 is the output size and 𝜀 > 0 is an arbitrarily small constant. A unit-circle arc can be inserted or

deleted in𝑂 (log2 𝑛) time.
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Additional Key Words and Phrases: lower envelopes, pseudo-lines, unit discs, intersection searching, dynamic data structures, tentative

binary search
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1 INTRODUCTION

Problem statement. Let 𝑆 = {𝑝1, . . . , 𝑝𝑛} be set of 𝑛 points in R2
, let 𝐷 (𝑝𝑖 ) be the unit disc centered at 𝑝𝑖 , and let

𝑈 := 𝑈 (𝑆) := ⋃
𝑝∈𝑆 𝐷 (𝑝) be the union of the unit discs centered at the points of 𝑆 . We wish to maintain the boundary

𝜕𝑈 of𝑈 , as new points are added to 𝑆 . In particular, we wish to maintain (i) the set of edges on 𝜕𝑈 and (ii) the area of𝑈 .
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The efficient manipulation of collections of unit discs in the plane is a widely and frequently studied topic, e.g.,

in the context of sensor networks, where every disc represents the area covered by a sensor. In our setting, we are

motivated by the problem of multiple agents traversing a region in search of a particular target [16]. We are interested

in investigating the pace of coverage as the agents move, and we wish to estimate at each stage the overall area that has

been covered so far. The simulation is discretized, i.e., each agent is modeled by a unit disc whose motion is simulated

by changing its location at fixed time steps. In other words, we are receiving a stream {𝑝1, 𝑝2, ..., 𝑝𝑖 } of points in R2
.

When the next point 𝑝𝑖+1 arrives, we want to quickly compute the area of 𝐷 (𝑝𝑖+1) \
⋃

𝑗≤𝑖 𝐷 (𝑝 𝑗 ).

D

c

Fig. 1. An instance in which the union boundary of a set of unit discs in the plane undergoes Ω (𝑛2) combinatorial changes during 𝑛
insertions. The black discs are inserted first, and then red discs are inserted from bottom to top.

It is known that even for discs of arbitrary radii, the boundary 𝜕𝑈 has 𝑂 (𝑛) vertices and edges [24], and that 𝜕𝑈

can be computed in 𝑂 (𝑛 log𝑛) time using power diagrams [7]. An incremental algorithm [30] can maintain 𝜕𝑈 under

𝑛 insertions in total time 𝑂 (𝑛2). This is worst-case optimal, as the total amount of structural change to 𝜕𝑈 under a

sequence of 𝑛 insertions can be Ω(𝑛2) in the worst case. For instance, refer to Figure 1. Let 𝐷 be a disc of radius 2

centered at the origin (green). We first insert 𝑛/2 unit discs with equidistant centers on 𝜕𝐷 (black). Next, we insert 𝑛/2
(red) unit discs such that the center of the 𝑖th red disc is (0, 𝜀𝑖) on the 𝑦-axis, for some sufficiently small constant 𝜀 > 0.

The insertion of each of the last 𝑛/2 discs creates 𝑛 vertices on the union of the discs inserted so far. Our goal is thus

to develop an output-sensitive algorithm that uses 𝑂 (𝑛) space and updates 𝑈 in time proportional to the number of

changes in vertices and edges of 𝜕𝑈 due to the insertion of a new disc.

Maintaining the edges of 𝜕𝑈 requires answering intersection-searching queries of the following form: Given a

collection 𝒞 of unit-radius circular arcs that comprise 𝜕𝑈 and a query unit disc 𝐷 , report the arcs in 𝒞 that intersect 𝐷 .

Developing an efficient data structure for this intersection-searching problem led us to study the following problem,

which is interesting in its own right: A set of pseudo-lines is a set of bi-infinite simple curves in the plane such that each

pair of curves intersect in exactly one point and they cross at that point. Given a set 𝐸 of 𝑥-monotone pseudo-lines in

the plane, we wish to maintain their lower envelope ℒ (𝐸) (see Section 2 below for the definition) under insertions and

deletions of pseudo-lines, such that for a point 𝑥0 ∈ R, the point on ℒ (𝐸) with 𝑥-coordinate 𝑥0 can be reported quickly.

Related work. Arrangements of pseudo-lines have been studied extensively in discrete and computational geometry;

see, e.g., the classic monograph by Grünbaum [18] and recent surveys [17, 20] for a review of combinatorial bounds and

2



105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Maintaining the Union of Unit Discs under Insertions with Near-Optimal Overhead Woodstock ’18, June 03–05, 2018, Woodstock, NY

algorithms involving arrangements of pseudo-lines. For the case of lines (rather than pseudo-lines), the celebrated result

by Overmars and van Leeuwen [27] can maintain the lower envelope in 𝑂 (log2 𝑛) time under insertion and deletion of

lines. This bound has been improved over the last two decades [11–13, 21, 23]; these improvements are, however, not

directly applicable for pseudo-lines. If only insertions are performed, then the data structure by Preparata [28] can be

extended to maintain the lower envelope of a set of pseudo-lines in 𝑂 (log𝑛) time per update.

A series of papers have developed powerful general data structures for maintaining the lower envelopes of a set of

curves of bounded description complexity, based on shallow cuttings [4, 14, 22, 25]. Many of these data structures also

work in R3
. However, the power of these data structures comes at a significant cost: the algorithms are quite involved,

the performance guarantees are in the expected and amortized sense, and the operations have (comparatively) large

polylogarithmic running times. For pseudo-lines, Chan’s method [14], with improvements by Kaplan et al. [22], yields

𝑂 (log3 𝑛) amortized expected insertion time, 𝑂 (log5 𝑛) amortized expected deletion time, and 𝑂 (log2 𝑛) worst-case
query time. An interesting open question has been whether the Overmars-van-Leeuwen data structure can be extended

to maintaining the lower envelope of a set of pseudo-lines.

As mentioned above, a variety of applications have motivated the study of arrangements of unit discs. It is known

that the algorithms by Overmars-van-Leeuwen [27] and by Preparata [28] for maintaining the intersection of halfplanes

can be extended to maintaining the intersection of unit discs within the same time bound. In contrast, maintaining

the union of a set of unit discs is more involved and much less is known about this problem. The partial rebuilding

technique by Bentley and Saxe [8] leads to a linear-size semidynamic data structure for maintaining the union of unit

discs under insertions that can determine in 𝑂 (log2 𝑛) time whether a query point lies in their union; a unit disc can

be inserted in 𝑂 (log2 𝑛) time. Recently de Berg et al. [9] improved the update and query time to 𝑂 (log𝑛). However,
neither of these two approaches can be adapted to maintain the boundary of the union of unit discs in output-sensitive

manner or to maintain the area of the union under insertion of unit discs.

Chan [15] presented a data structure that can maintain the volume of the convex hull of a set of points in R3
in

sublinear time. Notwithstanding a close relationship between the union of discs in R2
and the convex hull of a point set

in R3
, it is not clear how to extend his data structure for maintaining the area of the union of unit discs in sublinear

time, even if we only perform insertions.

We conclude this discussion by noting that there has been extensive work on a variety of intersection-searching

problems, in which we wish to preprocess a set of geometric objects into a data structure so that all objects intersected by

a query object can be reported efficiently. These data structures typically reduce the problem to simplex or semialgebraic

range searching and are based on multi-level partition trees; see, e.g., the recent survey by Agarwal [1] for a review; see

also [5, 6, 19].

Our results. This paper contains the following three main results:

Lower envelope of pseudo-lines. Our first result is a fully dynamic linear-size data structure for maintaining the

lower envelope of a set of 𝑥-monotone pseudo-lines with 𝑂 (log2 𝑛) update time and 𝑂 (log𝑛) query time. Additionally,

it can also report all 𝑘 pseudo-lines lying below a query point in𝑂 (log𝑛+𝑘 log2 𝑛) time. An adaptation of the Overmars-

van-Leeuwen data structure [27], it is more efficient and considerably simpler than the existing dynamic data structures

for maintaining lower envelopes of pseudo-lines. The key innovation is a new procedure for finding the intersection

between two lower envelopes of planar pseudo-lines in 𝑂 (log𝑛) time, using tentative binary search, where each

pseudo-line in one envelope is “smaller” than every pseudo-line in the other envelope, in a sense to be made precise

below.
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Union of unit discs. Our second result, which is the main result of the paper, is a linear-size data structure for

updating 𝜕𝑈 , the boundary of the union of unit discs, in 𝑂 ((𝑘 + 1) log2 𝑛) time, per insertion of a disc, where 𝑘 is the

combinatorial complexity of the structural change to 𝜕𝑈 due to the insertion (see Section 3). We use this data structure

to compute the change in the area of the union in additional 𝑂 ((𝑘 + 1) log𝑛) time, after having computed the changes

in 𝜕𝑈 . At the heart of our data structure is a semi-dynamic data structure for reporting all 𝑘 edges of 𝜕𝑈 that intersect a

query unit disc in 𝑂 (log𝑛 + 𝑘 log2 𝑛) time. Roughly speaking, we draw a uniform grid of diameter 1. For each grid cell

𝐶 , we clip the edges of 𝜕𝑈 within𝐶 . Let 𝐸𝐶 be the set of (clipped) edges of 𝜕𝑈 lying inside𝐶 . For an edge 𝑒 ∈ 𝐸𝐶 , let 𝐾𝑒
be the Minkowski sum of 𝑒 with 𝐷 (𝑜), where 𝑜 is the origin, i.e., 𝐾𝑒 is the region such that a unit disc 𝐷 (𝑞) intersects 𝑒
if and only if 𝑞 ∈ 𝐾𝑒 . The problem of reporting the arcs of 𝐸𝐶 intersected by a unit disc 𝐷 (𝑞) is equivalent to reporting

the regions of 𝐾 = {𝐾𝑒 | 𝑒 ∈ 𝐸𝐶 } that contain 𝑞. Exploiting the property that the arcs of 𝐸𝐶 lie inside a grid cell of

diameter 1, we show that our pseudo-line data structure can be used for reporting the regions of 𝐾 that contain a query

point.

Circular-arc intersection searching. Our final result is a data structure for the intersection-searching problem in

which the input objects are arbitrary unit-radius circular arcs rather than arcs forming the boundary of the union of

the unit discs, and the query is a unit disc. We present a linear-size data structure with 𝑂 (𝑛 log𝑛) preprocessing time,

𝑂 (𝑛1/2+𝜀 +𝑘) query time and𝑂 (log2 𝑛) amortized update time, where 𝑘 is the size of the output and 𝜀 > 0 is an arbitrarily

small, but fixed, constant. This result follows the same approach as earlier data structures for intersection [6, 19] and

constructs a two-level partition tree. Our main contribution is a simpler characterization of the condition of a unit disc

intersecting a unit-radius circular arc.
1

Road map of the paper. The paper is organized as follows: We begin in Section 2 by describing the dynamic data

structure for maintaining the lower envelope of pseudo-lines. Next, we present in Section 3 the data structure for

maintaining the union of unit discs under insertions. Section 4 presents the dynamic data structure for unit-arc

intersection searching. Finally, we conclude in Section 5 by mentioning a few open problems.

2 MAINTAINING LOWER ENVELOPE OF PSEUDO-LINES

We describe a dynamic data structure to maintain the lower envelope of a set of 𝑥-monotone pseudo-lines in R2
under

insertions and deletions, which also works for a more general class of planar curves; see below.

2.1 Preliminaries

Let 𝐸 be a family of 𝑥-monotone pseudo-lines in R2
; a vertical line crosses each pseudo-line in exactly one point. Let ℓ

be a vertical line strictly to the left of the first intersection point in 𝐸. It defines a total order ≤ on the pseudo-lines in 𝐸,

namely, for 𝑒1, 𝑒2 ∈ 𝐸, we have 𝑒1 ≤ 𝑒2 if and only if 𝑒1 intersects ℓ below 𝑒2. Since each pair of pseudo-lines in 𝐸 cross

exactly once, it follows that if we consider a vertical line ℓ ′ strictly to the right of the last intersection point in 𝐸, the

order of the intersection points between ℓ ′ and 𝐸, from bottom to top, is reversed.

The lower envelope ℒ (𝐸) of 𝐸 is the 𝑥-monotone curve obtained by taking the pointwise minimum of the pseudo-lines

in 𝐸, i.e., if we regard each pseudo-line of 𝐸 as the graph of a univariate function 𝑒 (𝑥), then the lower envelope ℒ (𝐸) is
the graph of the function min𝑒∈𝐸 𝑒 (𝑥), 𝑥 ∈ R. A breakpoint of ℒ (𝐸) is an intersection point of two pseudo-lines that

appears on ℒ (𝐸), and an arc or segment of ℒ (𝐸) is the maximal contiguous portion of a pseudo-line of 𝐸 that appears

on ℒ (𝐸) (between two consecutive breakpoints). Combinatorially, ℒ (𝐸) can be represented by the sequence of its

1
We believe the update time can be made worst case by using the lazy reconstruction method [26].
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breakpoints and arcs in the increasing 𝑥-order; the first and the last arcs of ℒ (𝐸) are unbounded. The upper envelope
𝒰 (𝐸) of 𝐸 is similarly the 𝑥-monotone curve obtained by taking the pointwise maximum of the pseudo-lines in 𝐸.

In this section, we focus on ℒ (𝐸). The following two properties of ℒ (𝐸) are crucial for our data structure:

(A) every pseudo-line contributes at most one segment to ℒ (𝐸); and
(B) the order of these segments from left to right corresponds exactly to the order ≤ on 𝐸 defined above.

We assume a computational model in which primitive operations on pseudo-lines, such as computing the intersection

point of two pseudo-lines or determining the intersection point of a pseudo-line with a vertical line, can be performed

in constant time.

2.2 Data structure and operations

The tree structure. Our primary data structure for maintaining ℒ (𝐸) is a balanced binary search tree (e.g., a red-black

tree [31]) Ξ, which supports insertion and deletion operations in𝑂 (log𝑛) time. The leaves of Ξ contain the pseudo-lines,

sorted from left to right according to the order defined above. An internal node 𝑣 ∈ Ξ represents the lower envelope

of the pseudo-lines contained in the subtree rooted at 𝑣 . More precisely, every leaf 𝑣 of Ξ stores a single pseudo-line

𝑣 .𝑒 ∈ 𝐸. For a node 𝑣 of Ξ, we write 𝑣 .𝐸 for the set of pseudo-lines in the subtree rooted at 𝑣 . We denote the lower

envelope of 𝑣 .𝐸 by 𝑣 .ℒ . Let𝑤 (resp. 𝑧) be the left (resp. right) child of 𝑣 . Then𝑤.ℒ and 𝑧.ℒ intersect at one point 𝑣 .𝜒 ,

and 𝑣 .ℒ consists of the prefix (resp. suffix) of𝑤.ℒ until 𝑣 .𝜒 (resp. of 𝑧.ℒ from 𝑣 .𝜒); see Figure 2.

z.L w.L

v.χ

Fig. 2. Constructing the lower envelope 𝑣.ℒ (purple) from 𝑤.ℒ (red) and 𝑧.ℒ (blue).

Each node 𝑣 stores the following variables:

• 𝑓 , 𝑙 , 𝑟 : a pointer to the parent, the left child, and the right child of 𝑣 , respectively; 𝑙, 𝑟 are undefined for a leaf,

and 𝑓 is undefined for the root;

• max: the last pseudo-line in 𝑣 .𝐸 (according to the order defined in Section 2.1);

• 𝜒 : the intersection point of (𝑣 .𝑙) .ℒ and (𝑣 .𝑟 ) .ℒ , the lower envelopes of the left and right children of 𝑣 , if 𝑣 is

an internal node; 𝜒 is undefined for leaves;

• Λ: a balanced binary search tree (e.g., a red-black tree) that stores the prefix or the suffix of 𝑣 .ℒ , denoted by

ℒ , that is not on the lower envelope (𝑓 .𝑣) .ℒ ; the root of Ξ stores the entire envelope ℒ (𝐸). The leaves of Λ
represent the segments of ℒ sorted from left to right. Each node 𝜉 of Λ is associated with a contiguous portion

ℒ 𝜉 of ℒ . Each leaf 𝜉 stores the endpoints of ℒ 𝜉 , which consists of a single segment, and the pseudo-line

5
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of 𝑣 .𝐸 that supports ℒ 𝜉 . Each inner node 𝜉 of Λ, with left and right children 𝜁 and 𝜂, stores the common

endpoint 𝜉 .𝑝 of ℒ 𝜁 and ℒ 𝜂 . We note that the two pseudo-lines supporting the last segment of ℒ 𝜁 and the first

segment of ℒ 𝜂 intersect at 𝜉 .𝑝 and the lower envelope of these two pseudo-lines, denoted by 𝜉 .L, represents

the lower envelope 𝑣 .ℒ locally in the neighborhood of 𝜉 .𝑝 . We store these two pseudo-lines at 𝜉 . Since 𝜉 .L can

be computed in 𝑂 (1) time from the two pseudo-lines, for simplicity, we can assume that we also store 𝜉 .L at 𝜉 .

See Section 2.3 below for more details on Λ.

During our update procedure, we need to perform split and join operations on the secondary trees 𝑣 .Λ at various

nodes 𝑣 in Ξ. Each of these procedures can be implemented in𝑂 (log𝑛) time using the standard methods [31, Chapter 4].

Queries. We now describe the two query operations that we perform on Ξ.

Point-location query. Given a value 𝑥0 ∈ R, we report the pseudo-line 𝑒 ∈ 𝐸 that contains the point on ℒ (𝐸) with
𝑥-coordinate 𝑥0. Since the root 𝑢 of Ξ explicitly stores ℒ (𝐸) in a balanced binary search tree 𝑢.Λ, this query can be

answered in 𝑂 (log𝑛) time.

Lemma 2.1. For a given value 𝑥0 ∈ R, a point-location query can be answered in 𝑂 (log𝑛) time.

Ray-intersection query. Given a point 𝑞 ∈ R2
, we report all pseudo-lines of 𝐸 that lie vertically below 𝑞, i.e., report

all pseudo-lines that intersect the ray emanating from 𝑞 in the (−𝑦)-direction.
Let 𝑞𝑥 be the 𝑥-coordinate of 𝑞. We perform a point-location query with 𝑞𝑥 on Ξ and determine the pseudo-line 𝑒

that contains the point of ℒ (𝐸) with 𝑥-coordinate 𝑞𝑥 . If 𝑞 lies below 𝑒 , we are done. Otherwise, we store 𝑒 in the result

set and delete 𝑒 from Ξ. We repeat this step until either Ξ becomes empty or 𝑞 lies below the lower envelope of the

remaining set. Finally, we re-insert all elements from the result set to restore the original set of pseudo-lines. Overall,

we need 𝑘 + 1 point-location queries, 𝑘 deletions, and 𝑘 insertions. By Lemma 2.1, each point-location query needs

𝑂 (log𝑛) time, and below we show that one update operation requires 𝑂 (log2 𝑛) time. Hence, we obtain the following.

Lemma 2.2. Let 𝑞 ∈ R2. All 𝑘 pseudo-lines in 𝐸 that lie below 𝑞 ∈ R2 can be reported in time 𝑂 (log𝑛 + 𝑘 log2 𝑛).

Updates. To insert or delete a pseudo-line 𝑒 in Ξ, we follow the method of Overmars and van Leeuwen [27]. We delete

or insert a leaf 𝑧 for 𝑒 in Ξ using the standard techniques for balanced binary search trees (the 𝑣 .max pointers guide

the search in Ξ) [31]. We update the secondary structure stored at the nodes of Ξ, as follows. Let 𝜋 be the path in Ξ

from the root to 𝑧. As we go down along 𝜋 , for each node 𝑣 ∈ 𝜋 and its sibling 𝑤 , we construct 𝑣 .ℒ and 𝑤.ℒ from

(𝑣 .𝑓 ) .ℒ , stored as a balanced binary tree. If 𝑣 is the root, then 𝑣 already stores 𝑣 .ℒ , so assume 𝑣 is not the root and

inductively we have (𝑣 .𝑓 ).ℒ at our disposal. We split (𝑣 .𝑓 ) .ℒ at (𝑣 .𝑓 ).𝜒 , and let Λ− (resp. Λ+) be the prefix (resp.

suffix) of (𝑣 .𝑓 ).ℒ . If 𝑣 is the left child of 𝑣 .𝑓 , then 𝑣 .ℒ (resp.𝑤.ℒ ) is obtained by merging Λ− with 𝑣 .Λ (𝑤.Λ with Λ+).

If 𝑣 is the right child, then the roles of 𝑣 and𝑤 are reversed. When we reach the leaf, we have the lower envelope at the

siblings of all non-root nodes in 𝜋 .

After having inserted or deleted 𝑧, we trace 𝜋 back in a bottom-up manner. When we reach a node 𝑣 , we have

computed (𝑣 .𝑙) .Λ, (𝑣 .𝑟 ) .Λ, and 𝑣 .ℒ . At the node 𝑣 , we first compute the unique intersection point (𝑣 .𝑓 ).𝜒 of 𝑣 .ℒ and

𝑤.ℒ , where 𝑤 is the sibling of 𝑣 , using the procedure described in the next subsection; recall that we already have

computed𝑤.ℒ . Suppose 𝑣 is the left child of its parent. We split 𝑣 .ℒ into two parts ℒ −𝑣 ,ℒ
+
𝑣 at (𝑣 .𝑓 ).𝜒 , with the former

lying to the left. Similarly, we split𝑤.ℒ into two parts ℒ −𝑤 ,ℒ
+
𝑤 at (𝑣 .𝑓 ) .𝜒 (note that 𝑣 .𝑓 = 𝑤.𝑓 ) with the former lying

to the left. We store ℒ +𝑣 ,ℒ
−
𝑤 as 𝑣 .Λ and𝑤.Λ, respectively. We also update 𝑣 .max and𝑤.max. We then merge ℒ −𝑣 and

ℒ +𝑤 to obtain (𝑣 .𝑓 ) .ℒ . We then move to 𝑣 .𝑓 . If we reach the root of Ξ, then we simply store the envelope at 𝑣 .𝑓 and

stop.
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Since the height of Ξ is 𝑂 (log𝑛), since each split/merge operations takes 𝑂 (log𝑛) time, and since, by Lemma 2.7

below, the intersection point of two envelopes at each node can be computed in 𝑂 (log𝑛) time, the update procedure

takes𝑂 (log2 𝑛) time. More details can be found, e.g., in the original paper by Overmars and van Leeuwen [27] or in the

book by Preparata and Shamos [29].

Lemma 2.3. An insert/delete operation in Ξ takes 𝑂 (log2 𝑛) time.

2.3 Finding the intersection point of two lower envelopes

Given two lower envelopes ℒ𝑙 and ℒ𝑟 , such that all pseudo-lines in ℒ𝑙 are smaller than all pseudo-lines in ℒ𝑟 and

each envelope is stored in a balanced binary tree as described above, we give a procedure to compute the (unique)

intersection point 𝑞 between ℒ𝑙 and ℒ𝑟 in 𝑂 (log𝑛) time. In our algorithm, ℒ𝑙 and ℒ𝑟 are stored as balanced binary

search trees Λ𝑙 and Λ𝑟 .

The leaves of Λ𝑙 and Λ𝑟 represent the segments on the lower envelopes ℒ𝑙 and ℒ𝑟 , sorted from left to right. To

ensure that every point on ℒ𝑙 and ℒ𝑟 is associated with exactly one leaf of Λ𝑙 and Λ𝑟 , we use the convention that the

segments in the leaves are semi-open, containing their right, but not their left, endpoint in Λ𝑙 and their left, but not

their right, endpoint in Λ𝑟 . Recall that we store both endpoints of a segment as well as the pseudo-line supporting the

segment at each leaf of Λ𝑙 and Λ𝑟 , but the segments are interpreted as relatively semi-open sets, where the precise

endpoint to be included depends on the role that the tree plays in the intersection algorithm. More concretely, the

intersection algorithm uses two items stored at a leaf 𝑣 of Λ𝑙 or Λ𝑟 :

(i) the pseudo-line 𝑣 .ℒ that supports the segment represented by 𝑣 ; and

(ii) an endpoint 𝑣 .𝑝 of the segment, namely the left endpoint if 𝑣 is a leaf of Λ𝑙 , and the right endpoint if 𝑣 is a leaf

of Λ𝑟 .
2
Note that this is exactly the endpoint of the associated segment that is not included in the semi-open

segment represented by 𝑣 . This choice is made to ensure a uniform handling of inner nodes and leaves in the

intersection algorithm.

Consider an inner node 𝑣 of Λ𝑙 or Λ𝑟 . The intersection algorithm uses the two items stored at 𝑣 :

(i) the lower envelope 𝑣 .L of the last (maximum) pseudo-line in the left subtree 𝑣 .𝑙 of 𝑣 and the first (minimum)

pseudo-line in the right subtree 𝑣 .𝑟 of 𝑣 ; and

(ii) the intersection point 𝑣 .𝑝 of these two pseudo-lines, which is the only breakpoint of 𝑣 .L.

As discussed above, the leaf 𝑢∗ of Λ𝑙 and the leaf 𝑣∗ of Λ𝑟 whose (half-open) segments contain the intersection

point 𝑞 between ℒ𝑙 and ℒ𝑟 are uniquely determined. Let 𝜋𝑙 be the path in Λ𝑙 from the root to 𝑢∗ and 𝜋𝑟 the path in

Λ𝑟 from the root to 𝑣∗. Our strategy is as follows: we simultaneously descend into Λ𝑙 and Λ𝑟 , following the paths 𝜋𝑙

and 𝜋𝑟 , starting from the respective roots. Let 𝑢 be the current node in 𝜋𝑙 and let 𝑣 be the current node in 𝜋𝑟 . At each

step, we perform a local test on 𝑢 and 𝑣 , comparing 𝑢.𝑝 with 𝑣 .L and 𝑣 .𝑝 with 𝑢.L, to decide how to proceed. The test

distinguishes among three possibilities:

(1) The point 𝑢.𝑝 lies on or above the (local) lower envelope 𝑣 .L. In this case, 𝑢.𝑝 lies on or above the envelope ℒ𝑟 .

Therefore, the intersection point 𝑞 between ℒ𝑙 and ℒ𝑟 must be equal to or to the left of 𝑢.𝑝 ; see Figure 3. If 𝑢 is

an inner node, then the desired leaf 𝑢∗ cannot lie in the right subtree 𝑢 (recall that the half-open segments in

the leaves of Λ𝑙 are considered to be open to the left). If 𝑢 is a leaf, then 𝑢∗ lies strictly to the left of 𝑢 (recall

2
If the segment is unbounded, the endpoint might not exist. In this case, we use a symbolic endpoint at infinity that lies below every other pseudo-line.
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q

v.p

u.p u.L

v.L

Fig. 3. An example of Case 1: The pseudo-lines in Λ𝑙 are shown blue, the pseudo-lines in Λ𝑟 are shown red.

q2

v.pu.pq1 q3

Fig. 4. An example of Case 3: The pseudo-lines in Λ𝑙 (resp. Λ𝑟 ) are shown blue (resp. red). The solid pseudo-lines are fixed. The dashed
pseudo-lines are optional, meaning that either none or exactly one of the dashed pseudo-lines is present. The current vertices of the
binary search are 𝑢.𝑝 and 𝑣.𝑝 , and Case 3 applies. Irrespective of the local situation at 𝑢 and 𝑣, the intersection point 𝑞 of ℒ𝑙 and ℒ𝑟

might be to the left of 𝑢.𝑝 (e.g., 𝑞1 in the figure), between 𝑢.𝑝 and 𝑣.𝑝 (e.g., 𝑞2 in the figure), or to the right of 𝑣.𝑝 (e.g., 𝑞3 in the
figure), depending on which one of the dashed pseudo-lines is present.

that in this case, 𝑢.𝑝 is the left endpoint of the segment stored in 𝑢, so 𝑢.𝑝 does not belong to the half-open

segment in 𝑢 but to the half-open segment in the predecessor-leaf).

(2) The point 𝑣 .𝑝 lies on or above the (local) lower envelope 𝑢.L. In this case, 𝑣 .𝑝 lies on or above the entire envelope

ℒ𝑙 , therefore the intersection point 𝑞 between ℒ𝑙 and ℒ𝑟 is equal to or to the right of 𝑣 .𝑝; this situation is

symmetric to the one depicted in Figure 3. If 𝑣 is an inner node, then 𝑣∗ cannot lie in the left subtree 𝑣 (recall

that the segments in the leaves of Λ𝑟 are considered to be open to the right). If 𝑣 is a leaf, then 𝑣∗ lies strictly to

the right of 𝑣 (recall that in this case, 𝑣 .𝑝 is the right endpoint of the segment stored in 𝑣 , so 𝑣 .𝑝 does not belong

to the half-open segment in 𝑣 , but to the half-open segment in the successor-leaf).

(3) The point 𝑢.𝑝 lies below the (local) lower envelope 𝑣 .L and the point 𝑣 .𝑝 lies below the (local) lower envelope 𝑢.L:

in this case, the point 𝑢.𝑝 must lie strictly to the left of the point 𝑣 .𝑝 . This claim follows from property (B) of

pseudo-lines because all pseudo-lines in Λ𝑙 are smaller than all pseudo-lines in Λ𝑟 ; see Figure 4. Thus, it follows

8



417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Maintaining the Union of Unit Discs under Insertions with Near-Optimal Overhead Woodstock ’18, June 03–05, 2018, Woodstock, NY

u

v
Case 3

u

v

Λl Λr Λ` Λr

Fig. 5. Comparing 𝑢 to 𝑣: in Case 3, we know that 𝑢∗ is in 𝑢.𝑟 or 𝑣∗ is in 𝑣.𝑙 ; we go to 𝑢.𝑟 and to 𝑣.ℓ .

that the intersection point 𝑞 is strictly to the right of 𝑢.𝑝 or strictly to the left of 𝑣 .𝑝 (both situations can occur

simultaneously, if 𝑞 lies between 𝑢.𝑝 and 𝑣 .𝑝). In the former case, if 𝑢 is an inner node, then 𝑢∗ lies in 𝑢.𝑟 or to

the right of all leaves in 𝑢.𝑟 , and if 𝑢 is a leaf, then either 𝑢∗ = 𝑢 or 𝑢∗ is a leaf to the right of 𝑢. In the latter case,

if 𝑣 is an inner node, then 𝑣∗ lies in 𝑣 .𝑙 or to the left of all leaves in 𝑣 .𝑙 , and if 𝑣 is a leaf, then 𝑣∗ = 𝑣 or 𝑣∗ is a

leaf to the left of 𝑣 .

In the first two cases, it is easy to perform the next step in the binary search. In the third case, however, it is not

immediately obvious what to do. The correct choice might be either to go to 𝑢.𝑟 or to 𝑣 .𝑙 . For the straight-line case,

Overmars and van Leeuwen resolve this ambiguity by comparing the slopes of the relevant lines. For pseudo-lines,

however, there is no notion of slope. Even worse, it seems that there is no local test to resolve this situation. For an

example, refer to Figure 4, where the local situation at 𝑢 and 𝑣 does not help to determine the position of the intersection

point 𝑞. We present an alternative strategy, which also applies for pseudo-lines.

Throughout the search, we maintain the invariant that the subtree at the current node 𝑢 of Λ𝑙 contains the desired

leaf 𝑢∗ or the subtree at the current node 𝑣 of Λ𝑟 contains the desired node 𝑣
∗
(or both). In Case 3, as explained above, it

holds that 𝑢∗ must be in 𝑢.𝑟 or 𝑣∗ must be in 𝑣 .𝑙 (or both); see Figure 5. Thus, we will move 𝑢 to 𝑢.𝑟 and 𝑣 to 𝑣 .𝑙 . One of

these moves must be correct, but the other move might be mistaken: we might go to 𝑢.𝑟 even though 𝑢∗ is in 𝑢.𝑙 ; or to

𝑣 .𝑙 even though 𝑣∗ is in 𝑣 .𝑟 . To account for this possible mistake, we remember the current node 𝑢 in a stack uStack and

the current node 𝑣 in a stack vStack. Then, if it becomes necessary, we can backtrack and revisit the other subtree 𝑢.𝑙

or 𝑣 .𝑟 . This approach leads to the general situation shown in Figure 6: The desired leaf 𝑢∗ is in the subtree of 𝑢 or in a

left subtree of a node on uStack, while the desired leaf 𝑣∗ is in the subtree of 𝑣 or in a right subtree of a node on vStack,

and at least one of 𝑢∗ or 𝑣∗ must be in the subtree of 𝑢 or of 𝑣 , respectively. Now, if Case 1 occurs when comparing 𝑢 to

𝑣 , we can exclude the possibility that 𝑢∗ is in 𝑢.𝑟 . Thus, 𝑢∗ might be in 𝑢.𝑙 , or in the left subtree of a node in uStack; see

Figure 7. To make progress, we now compare 𝑢 ′, the top of uStack, with 𝑣 . Again, one of the three cases occurs:

(i) In Case 1, we can deduce that going to 𝑢 ′.𝑟 was mistaken, and we move 𝑢 to 𝑢 ′.𝑙 , while 𝑣 does not move.

(ii) In the other cases, we cannot rule out that 𝑢∗ is to the right of 𝑢 ′, and we move 𝑢 to 𝑢.𝑙 , keeping the invariant

that𝑢∗ is either below𝑢 or in the left subtree of a node on uStack. However, to ensure that the search progresses,

we now must also move 𝑣 :

– In Case 2, we can rule out that 𝑣∗ lies in 𝑣 .𝑙 , and we move 𝑣 to 𝑣 .𝑟 .

– In Case 3, we move 𝑣 to 𝑣 .𝑙 .

In this way, we keep the invariant and always make progress: in each step, we either discover at least one new node

on either of the two correct search paths, or we pop one erroneous move from one of the two stacks. Since the total

length of the correct search paths is𝑂 (log𝑛), and since we push a new element onto the stack only when discovering a
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new node on either of the correct search paths, the total search time is 𝑂 (log𝑛); see Figures 18 and 19 and Table 1 in

Appendix for an example run of the algorithm.

The following pseudo-code gives the details of our algorithm, including all corner cases.

oneStep(𝑢, 𝑣)

do compare(𝑢, 𝑣):

Case 3:

if 𝑢 is not a leaf then
uStack.push(𝑢); 𝑢 ← 𝑢.𝑟

end

if 𝑣 is not a leaf then
vStack.push(𝑣); 𝑣 ← 𝑣 .𝑙

end

if 𝑢 and 𝑣 are leaves then
return 𝑢 = 𝑢∗ and 𝑣 = 𝑣∗

end
Case 1:

if uStack is empty then
𝑢 ← 𝑢.𝑙 ;

else if 𝑢 is a leaf then
𝑢 ← uStack.pop().𝑙

else
𝑢 ′ ← uStack.top()

do compare(𝑢 ′, 𝑣)

Case 1:

uStack.pop(); 𝑢 ← 𝑢 ′.𝑙 ;

Case 2:

𝑢 ← 𝑢.𝑙

if 𝑣 is not a leaf then
𝑣 .← 𝑣 .𝑟

end
Case 3:

𝑢 ← 𝑢.𝑙

if 𝑣 is not a leaf then
vStack.push(𝑣); 𝑣 ← 𝑣 .𝑙

end

end
Case 2:

symmetric

We will show that the search procedure maintains the following invariant:

Invariant 2.4. The leaves in all subtrees 𝑢 ′.𝑙 , for 𝑢 ′ ∈ uStack, together with the leaves under 𝑢 constitute a prefix of the

leaves in Λ𝑙 . This prefix contains 𝑢∗. Similarly, the leaves in all subtrees 𝑣 ′.𝑟 , 𝑣 ′ ∈ vStack, together with the leaves under 𝑣

constitute a contiguous suffix of the leaves of Λ𝑟 . This suffix contains 𝑣∗. Furthermore, we have 𝑢 ∈ 𝜋𝑙 or 𝑣 ∈ 𝜋𝑟 (or both).
10
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u

v

Λl Λr

Fig. 6. The invariant: the current search nodes are 𝑢 and 𝑣. uStack contains all nodes on the path from the root to 𝑢 where the
path goes to a right child (orange squares), vStack contains all nodes from the root to 𝑣 where the path goes to a left child (orange
squares). The final leaves 𝑢∗ and 𝑣∗ are in one of the gray subtrees; and at least one of them is under 𝑢 or under 𝑣.

u

v

u

vu′

Case 1

Case 1 Case 2 Case 3

Λl Λr

Λl Λr

u
vu′

Λl Λr

u

u′
v

Λl Λr

u

u′
v

Λl Λr

Fig. 7. Comparing 𝑢 to 𝑣: in Case 1, we know that 𝑢∗ cannot be in 𝑢.𝑟 . We compare 𝑢′ and 𝑣 to decide how to proceed: in Case 1, we
know that 𝑢∗ cannot be in 𝑢′.𝑟 ; we go to 𝑢′.𝑙 ; in Case 2, we know that 𝑢∗ cannot be in 𝑢.𝑟 and that 𝑣∗ cannot be in 𝑣.𝑙 ; we go to
𝑢.𝑙 and to 𝑣.𝑟 ; in Case 3, we know that 𝑢∗ is in 𝑢′.𝑟 (and hence in 𝑢.𝑙 ) or in 𝑣.𝑙 ; we go to 𝑢.𝑙 and to 𝑣.𝑙 . Case 2 is not shown, as it is
symmetric.
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Invariant 2.4 holds at the beginning, when both stacks are empty, 𝑢 is the root of Λ𝑙 and 𝑣 is the root of Λ𝑟 . To show

that the invariant is maintained, we first consider the special case when one of the two searches has already discovered

the correct leaf. Recall that 𝜋𝑙 , 𝜋𝑟 are the root-to-leaf paths to 𝑢
∗
, 𝑣∗ in Λ𝑙 and Λ𝑟 , respectively.

Lemma 2.5. Suppose that Invariant 2.4 holds and that Case 3 occurs when comparing 𝑢 to 𝑣 . If 𝑢 = 𝑢∗, then 𝑣 ∈ 𝜋𝑟 and, if
𝑣 is not a leaf, then 𝑣 .𝑙 ∈ 𝜋𝑟 . Similarly, if 𝑣 = 𝑣∗, then 𝑢 ∈ 𝜋𝑙 and, if 𝑢 is not a leaf, then 𝑢.𝑟 ∈ 𝜋𝑙 .

Proof. We consider the case 𝑢 = 𝑢∗; the other case is symmetric. Let 𝑒𝑢 be the segment of ℒ𝑙 stored in 𝑢. By Case 3,

the point 𝑢.𝑝 is strictly to the left of the point 𝑣 .𝑝 . Furthermore, since 𝑢 = 𝑢∗, the intersection point 𝑞 lies on 𝑒𝑢 . Thus,

𝑞 cannot be to the right of 𝑣 .𝑝 , because otherwise 𝑣 .𝑝 would be a point on ℒ𝑟 that lies below 𝑒𝑢 and to the left of 𝑞,

which is impossible. Since 𝑞 is strictly to the left of 𝑣 .𝑝 , Invariant 2.4 shows that if 𝑣 is an inner node, then 𝑣∗ must be in

𝑣 .𝑙 (and hence both 𝑣 and 𝑣 .𝑙 lie on 𝜋𝑟 ), and if 𝑣 is a leaf, then 𝑣 = 𝑣∗. □

We can now show that the invariant is maintained.

Lemma 2.6. Procedure oneStep either correctly reports the desired leaves 𝑢∗ and 𝑣∗, or maintains Invariant 2.4. In the

latter case, either it pops an element from one of the two stacks, or it discovers a new node on 𝜋ℓ or 𝜋𝑟 .

Proof. First, suppose Case 3 occurs. The invariant that uStack and 𝑢 cover a prefix of ℒ𝑙 and that vStack and 𝑣

cover a suffix of ℒ𝑟 is maintained. Furthermore, if both 𝑢 and 𝑣 are inner nodes, Case 3 ensures that 𝑢∗ is in 𝑢.𝑟 or to

the right of 𝑢, or that 𝑣∗ is in 𝑣 .𝑙 or to the left of 𝑣 . Suppose the former case holds. Then, Invariant 2.4 implies that 𝑢∗

must be in 𝑢.𝑟 , and hence 𝑢 and 𝑢.𝑟 lie on 𝜋𝑙 . Similarly, in the second case, Invariant 2.4 gives that 𝑣 and 𝑣 .𝑙 lie on 𝜋𝑟 .

Thus, Invariant 2.4 is maintained and we discover a new node on 𝜋𝑙 or on 𝜋𝑟 . Now, assume 𝑢 is a leaf and 𝑣 is an inner

node. If 𝑢 ≠ 𝑢∗, then as above, Invariant 2.4 and Case 3 imply that 𝑣 ∈ 𝜋𝑟 and 𝑣 .𝑙 ∈ 𝜋𝑟 , and the lemma holds. If 𝑢 = 𝑢∗,

the lemma follows from Lemma 2.5. The case that 𝑢 is an inner node and 𝑣 a leaf is symmetric. If both 𝑢 and 𝑣 are leaves,

Lemma 2.5 implies that oneStep correctly reports 𝑢∗ and 𝑣∗.

Second, suppose Case 1 occurs. Then, 𝑢∗ cannot be in 𝑢.𝑟 , if 𝑢 is an inner node, or 𝑢∗ must be to the left of a segment

left of 𝑢, if 𝑢 is a leaf. Now, if uStack is empty, Invariant 2.4 and Case 1 imply that 𝑢 cannot be a leaf (because 𝑢∗

must be in the subtree of 𝑢) and that 𝑢.𝑙 is a new node on 𝜋𝑙 . Thus, the lemma holds in this case. Next, if 𝑢 is a leaf,

Invariant 2.4 and Case 1 imply that 𝑣 ∈ 𝜋𝑟 . Thus, we pop uStack and maintain the invariant; the lemma holds. Now,

assume that uStack is not empty and that 𝑢 is not a leaf. Let 𝑢 ′ be the top of uStack. First, if the comparison between

𝑢 ′ and 𝑣 results in Case 1, then 𝑢∗ cannot be in 𝑢 ′.𝑟 , and in particular, 𝑢 ∉ 𝜋𝑙 . Invariant 2.4 shows that 𝑣 ∈ 𝜋𝑟 , and we

pop an element from uStack, so the lemma holds. Second, if the comparison between 𝑢 ′ and 𝑣 results in Case 2, then 𝑣∗

cannot be in 𝑣 .𝑙 , if 𝑣 is an inner node. Also, if 𝑢 ∈ 𝜋𝑙 , then necessarily also 𝑢.𝑙 ∈ 𝜋𝑙 , since Case 1 occurred between 𝑢

and 𝑣 . If 𝑣 ∈ 𝜋𝑟 , since Case 2 occurred between 𝑢 ′ and 𝑣 , the node 𝑣 cannot be a leaf and 𝑣 .𝑟 ∈ 𝜋𝑟 . Thus, in either case

the invariant is maintained and we discover a new node on 𝜋𝑙 or on 𝜋𝑟 . Third, assume the comparison between 𝑢 ′ and

𝑣 results in Case 3. If 𝑢 ∈ 𝜋𝑙 , then also 𝑢.𝑙 ∈ 𝜋𝑙 , because 𝑢.𝑟 ∈ 𝜋𝑙 was excluded by the comparison between 𝑢 and 𝑣 . In

this case, the lemma holds. If 𝑢 ∉ 𝜋𝑙 , then also 𝑢 ′.𝑟 ∉ 𝜋𝑙 , so the fact that Case 3 occurred between 𝑢 ′ and 𝑣 implies that

𝑣 .𝑙 must be on 𝜋𝑟 (in this case, 𝑣 cannot be a leaf, since otherwise we would have 𝑣∗ = 𝑣 and Lemma 2.5 would give

𝑢 ′.𝑟 ∈ 𝜋𝑙 , which we have already ruled out). The argument for Case 2 is symmetric. □

The following lemma finally shows that our intersection procedure finds the desired point in logarithmic time.

Lemma 2.7. The intersection point 𝑞 between ℒ𝑙 and ℒ𝑟 can be computed in 𝑂 (log𝑛) time.
12
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Proof. In each step, we either discover a new node of 𝜋𝑙 or of 𝜋𝑟 , or we pop an element from uStack or vStack.

Elements are pushed only when at least one new node on 𝜋𝑙 or 𝜋𝑟 is discovered. As 𝜋𝑙 and 𝜋𝑟 are each a path from the

root to a leaf in a balanced binary tree, we need 𝑂 (log𝑛) steps. □

Putting everything together, we obtain the following:

Theorem 2.8. A set 𝐸 of𝑛 pseudo-lines can be maintained in a data structure so that (i) a pseudo-line can be inserted/deleted

in 𝑂 (log2 𝑛) time; (ii) for a query value 𝑥0 ∈ R, the point of ℒ (𝐸) with the 𝑥-coordinate 𝑥0 and the input pseudo-line

containing this point can be computed in 𝑂 (log𝑛) time; and (iii) all 𝑘 pseudo-lines of 𝐸 lying below a query point 𝑞 ∈ R2

can be reported in 𝑂 (log𝑛 + 𝑘 log2 𝑛) time.

3 MAINTAINING THE UNION OF UNIT DISCS UNDER INSERTIONS

Let 𝑆 be a set of 𝑛 points in R2
, and let𝑈 := 𝑈 (𝑆) = ⋃

𝑝∈𝑆 𝐷 (𝑝) be the union of the unit discs centered at the points of

𝑆 . In this section, we describe a data structure that maintains ℰ , the set of edges of 𝜕𝑈 . After the insertion of a new

point to 𝑆 , it updates ℰ in 𝑂 (log𝑛 + 𝑘 log2 𝑛) time, where 𝑘 is the number of changes (insertions plus deletions) in the

set ℰ . It can also report, within the same time bound, the area of𝑈 , denoted Area𝑈 , after the insertion of each point.

This section is organized as follows. Section 3.1 gives a high-level description of the overall data structure and of the

update procedure. Section 3.2 describes the data structure for reporting the set of edges in ℰ that intersect a unit disc,

which relies on the data structure described in the previous section. Finally, Section 3.3 proves a few key properties of

ℰ that are crucial for our data structure.

3.1 Overview of the data structure

The overall data structure consists of two parts. Let G be a uniform grid in R2
such that the diameter of each grid cell is

1. We call a grid cell of G active if it intersects𝑈 . Let 𝒢 ⊂ G be the set of active grid cells. Each unit disc intersects𝑂 (1)
grid cells, so |𝒢 | = 𝑂 (𝑛). We define the key of a grid cell to be the 𝑥- and 𝑦-coordinates of its bottom left corner, and we

induce a total ordering on the grid cells by using the lexicographic ordering on their keys. Using this total ordering, we

store 𝒢 in a balanced binary search tree (e.g. red-black tree) Ω. A membership query and an update operation on 𝒢 can

be performed in 𝑂 (log𝑛) time [31].

c1 c2

c3

Fig. 8. The grid imposed over the union of unit discs. The active cells are highlighted in pale red.

We overlay𝑈 with G. If an edge of 𝜕𝑈 intersects more than one grid cell, then we split it at the boundaries of the

cells that it crosses (see Figure 8). We can therefore assume that each edge of ℰ lies within a single cell. For each cell
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𝐶 ∈ 𝒢 , let ℰ𝐶 ⊆ ℰ denote the set of edges that lie inside 𝐶 . We maintain ℰ𝐶 in a dynamic data structure Ψ𝐶 , described

in Section 3.2, that

(i) for a query point 𝑞, reports, in 𝑂 (log𝑛 + 𝑘𝐶 log
2 𝑛) time, the subset ℰ𝑞,𝐶 ⊆ ℰ𝐶 of edges that intersect 𝐷 (𝑞),

where 𝑘𝐶 = |ℰ𝑞,𝐶 |; and
(ii) can handle insertion or deletion of an edge in ℰ𝐶 in 𝑂 (log2 𝑛) time.

See Lemma 3.7 below.

Using Ω and Ψ𝐶 , for all grid cells 𝐶 ∈ 𝒢 , the insertion of a point 𝑞 into 𝑆 is handled as follows. To avoid confusion,

we use𝑈 (resp.𝑈 new
) to denote𝑈 (𝑆) immediately before (resp. after) the insertion of 𝑞.

(1) Compute the set G𝑞 of 𝑂 (1) grid cells that the new disc 𝐷 (𝑞) intersects.
(2) Find the subset 𝒢𝑞 = G𝑞 ∩ 𝒢 of active cells (before the insertion of 𝑞) that intersect 𝐷 (𝑞).
(3) For each cell𝐶 ∈ 𝒢𝑞 , using the data structure Ψ𝐶 , report the subset ℰ𝑞,𝐶 ⊆ ℰ𝐶 of edges that 𝐷 (𝑞) intersects. Set

ℰ𝑞 =
⋃
𝐶∈𝒢𝑞

ℰ𝑞,𝐶 and 𝑘 = |ℰ𝑞 |.
(4) Compute the set 𝐼𝑞 of new edges on 𝑈 new

. We split the edges of 𝐼𝑞 at the grid boundaries so that each edge lies

within one grid cell. For each cell 𝐶 ∈ G𝑞 , let 𝐼𝑞,𝐶 ⊆ 𝐼𝑞 be the set of edges that lie inside 𝐶 .

(5) For each cell 𝐶 ∈ G𝑞 , delete the edges of ℰ𝑞,𝐶 from Ψ𝐶 and insert the edges of 𝐼𝑞,𝐶 into Ψ𝐶 . If 𝐶 ∉ 𝒢 , insert 𝐶

into Ω.

(6) Compute Area𝑈 new
.

Steps 1 and 2 are straightforward and can be implemented in𝑂 (log𝑛) time using Ω. Steps 3 and 5 can be implemented

using the procedures described in Section 3.2. By Lemma 3.7, the total time spent in these two steps
3
is 𝑂 (log𝑛 + (𝑘 +

|𝐼𝑞 |) log2 𝑛) = 𝑂 ((𝑘 + 1) log2 𝑛) because as we will see below, |𝐼𝑞 | = 𝑂 (𝑘 + 1). We now describe how to compute the set

𝐼𝑞 of new edges (Step 4) and Area𝑈 new
(Step 6).

Updating the boundary of the union. First, consider the case when 𝑘 = 0, then either 𝐷 (𝑞) ⊂ 𝑈 or 𝐷 (𝑞) ∩𝑈 = ∅.
Since the diameter of each grid cell in G is 1, at least one of the grid cells, denoted by 𝜔 , is fully contained in 𝐷 (𝑞). If
𝜔 ∈ 𝒢𝑞 , then 𝜔 ⊂ 𝑈 (because 𝜔 ∩𝑈 ≠ ∅ but 𝜔 ∩ 𝜕𝑈 = ∅ since ℰ𝑞 = ∅) and therefore 𝐷 (𝑞) ⊂ 𝑈 ; otherwise 𝐷 (𝑞) ∩𝑈 = ∅.
If 𝐷 (𝑞) ⊂ 𝑈 , then 𝜕𝑈 new = 𝜕𝑈 , and there is nothing to do. On the other hand, if 𝐷 (𝑞) ∩𝑈 = ∅, then the entire 𝜕𝐷 (𝑞)
appears on 𝜕𝑈 new

. We split 𝜕𝐷 (𝑞) at the boundary of the grid cells, and 𝐼𝑞 is the resulting set of edges.

We now assume that 𝑘 > 0. The set 𝐼𝑞 contains two types of edges:

(i) The edges that lie on the boundaries of older discs. These edges are the portions of the edges of ℰ𝑞 that lie

outside 𝐷 (𝑞).
(ii) The edges that lie on 𝜕𝐷 (𝑞). These edges are (maximal) connected arcs of 𝜕𝐷 (𝑞) \𝑈 .

To compute the first type of edges, for each edge 𝑒 ∈ ℰ𝑞 , we compute the intersection points of 𝑒 ∩ 𝜕𝐷 (𝑞). If 𝑒 ⊄ 𝐷 (𝑞)
then we compute 𝑒 \ 𝐷 (𝑞), which comprises one or two arcs, and which we add to 𝐼𝑞 .

Let 𝑉 be the set of intersection points of 𝜕𝐷 (𝑞) and the edges of ℰ𝑞 . We sort 𝑉 along 𝜕𝐷 (𝑞). These intersection
points partition 𝜕𝐷 (𝑞) into arcs. Each such arc 𝛾 either lies inside𝑈 or outside𝑈 , and we can detect it in𝑂 (1) time. If 𝛾

lies outside𝑈 , we add 𝛾 to 𝐼𝑞 .

It follows from the above discussion that |𝐼𝑞 | = 𝑂 (𝑘 + 1) and that the total time spent in computing 𝐼 (𝑞) is
𝑂 ((𝑘 + 1) log𝑛).

3
Wherever we describe a certain data structure, the parameter 𝑘 pertains to the output size of a query in that specific data structure.
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D(q)

C

I

H

B D

E

F
G

A

Fig. 9. Arrangement 𝒜 and its vertical decomposition 𝒜 ∇ ; shaded pseudo-trapezoids do not lie in𝑈 .

Computing the area of the union. We now describe how we extend the procedure for computing 𝐼𝑞 to compute

Δ𝐴 = Area𝑈 new − Area𝑈 . If 𝑘 = 0, then as described above, we determine whether 𝐷 (𝑞) ⊂ 𝑈 or 𝐷 (𝑞) ∩𝑈 = ∅. We

have Δ𝐴 = 0 in the former case, and Δ𝐴 = Area𝐷 (𝑞) = 𝜋 in the latter case. We now focus on the case 𝑘 > 0.

Let ℰ in

𝑞 = {𝑒 ∩ 𝐷 (𝑞) | 𝑒 ∈ ℰ𝑞} be the portions of edges in ℰ𝑞 clipped within 𝐷 (𝑞). ℰ in

𝑞 can be computed, in 𝑂 (𝑘)
time, by adapting the procedure for computing 𝐼𝑞 . We note that the relative interiors of edges in ℰ in

𝑞 are pairwise

disjoint. Let 𝒜 be the arrangement of ℰ in

𝑞 ∪ 𝜕𝐷 (𝑞) within 𝐷 (𝑞), i.e., the decomposition of 𝐷 (𝑞) induced by these

arcs (see [20] for further details on geometric arrangements). Let 𝒜 ∇ be the vertical decomposition of 𝒜 , i.e., the

refinement of 𝒜 obtained by drawing vertical rays in both +𝑦- and −𝑦-directions from each vertex of 𝒜 or a point of

vertical tangency on an arc of ℰ in

𝑞 , within 𝐷 (𝑞), until it meets another edge of 𝒜 . 𝒜 ∇ partitions the faces of 𝒜 into

pseudo-trapezoids, each bounded by at most two vertical segments and by two circular arcs at top and bottom. See

Figure 9. Each pseudo-trapezoid 𝜏 ∈ 𝒜 ∇ is either contained in 𝑈 or disjoint from 𝑈 . Let ℱ be the set of faces of 𝒜 ∇

that do not lie in𝑈 . Then Δ𝐴 =
∑
𝜏 ∈ℱ Area𝜏 .

𝒜 ∇ can be computed in 𝑂 (𝑘 log𝑘) time using a sweep-line algorithm [10] (recall that 𝑘 > 0 here). The sweep-line

algorithm can be adapted in a straight-forward manner to compute ℱ within the same time bound. For each face 𝜏 ∈ ℱ ,

we compute Area𝜏 in𝑂 (1) time and then add them up to compute Δ𝐴. Finally, we set Area𝑈 new = Area𝑈 + Δ𝐴. After
having computed the edges of𝑈 new

, the total time spent in computing Area𝑈 new
is 𝑂 (𝑘 log𝑘).

Putting everything together, we obtain the following.

Theorem 3.1. (i) The boundary edges of the union of a set of 𝑛 unit discs can be maintained under insertion in a data

structure of 𝑂 (𝑛) size so that a new disc can be inserted in 𝑂 ((𝑘 + 1) log2 𝑛) time, where 𝑘 is the total number of changes

on the boundary of the union.

(ii) The same data structure can also report the area of the union after the insertion of each disc in 𝑂 ((𝑘 + 1) log2 𝑛)
time, where 𝑘 , as above, is the total number of changes on the boundary of the union.
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3.2 Edge intersection data structure

Let 𝐶 be an axis-parallel square with diameter 1, representing a grid cell of G, and let ℰ𝐶 be the set of edges of 𝜕𝑈 that

lie in 𝐶 . We describe a dynamic data structure Ψ𝐶 to report the edges of ℰ𝐶 intersected by a unit disc. It can quickly

insert or delete an edge of ℰ𝐶 .

`1 `2

C

Fig. 10. An example of 𝜕𝑈 ∩𝐶 with four types of edges 𝐸𝑡 (red), 𝐸𝑏 (blue), 𝐸𝑙 (magenta), and 𝐸𝑟 (green).

Let ℓ1 and ℓ2 be the lines that support the diagonals of𝐶 . The lines ℓ1 and ℓ2 divide the plane into four quadrants: the

top quadrant 𝑄𝑡 , the right quadrant 𝑄𝑟 , the bottom quadrant 𝑄𝑏 , and the left quadrant 𝑄𝑙 . We partition the edges of ℰ𝐶

into four sets 𝐸𝑡 , 𝐸𝑟 , 𝐸𝑏 , and 𝐸𝑙 , depending on which quadrant 𝑄𝑡 , 𝑄𝑟 , 𝑄𝑏 , or 𝑄𝑙 contains the center of the respective

disc; see Figure 10. If a disc center lies on a dividing line ℓ1, ℓ2, then the tie is broken in favor of 𝐸𝑡 or of 𝐸𝑏 (in that

order). We focus on the edges of 𝐸𝑡 ; analogous statements hold also for the other three edge sets.
4
Before describing the

data structure, we prove a few key properties of 𝐸𝑡 .

Lemma 3.2. Each edge in 𝐸𝑡 is a portion of a lower semi-circle.

Proof. Let 𝑒 ∈ 𝐸𝑡 , and let 𝑐 ∈ 𝑄𝑡 be the center of the unit disc whose boundary contains 𝑒 . Since the cell 𝐶 has unit

diameter, 𝑐 lies outside 𝐶 and above the line that supports the top side of 𝐶 . Thus, 𝑒 , which lies inside 𝐶 , is a portion of

the open lower semi-circle of 𝐷 (𝑐). □

Lemma 3.3. The 𝑥-projections of the (relative interiors of the) edges in 𝐸𝑡 are pairwise disjoint.

Proof. Let 𝑒𝑖 and 𝑒 𝑗 be two distinct edges of 𝐸𝑡 . Suppose that there is a vertical line ℓ that intersects both 𝑒𝑖 and 𝑒 𝑗 ,

in points 𝑝𝑖 and 𝑝 𝑗 , respectively. For concreteness, assume that 𝑝𝑖 lies below 𝑝 𝑗 . By Lemma 3.2, the point 𝑝𝑖 lies on the

lower semi-circle of a disc 𝐷𝑖 whose center is above the upper side of 𝐶 . This means that the vertical segment that

connects 𝑝𝑖 to the upper side of 𝐶 is fully contained in 𝐷𝑖 . But then, 𝑝 𝑗 cannot be on the boundary 𝜕𝑈 of𝑈 . Thus, the

vertical line ℓ cannot exist, and the 𝑥-projections of the edges in 𝐸𝑡 have pairwise disjoint interiors. □

4
The algorithm in De Berg et al. [9] also draws a uniform grid so the diameter of each grid cell is 1. For each grid cell, they build data structures for the

unit discs whose centers lie in that cell. In contrast, for each grid cell, we build data structures on union arcs that lie in that cell.
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By Lemma 3.3, the edges in 𝐸𝑡 can be ordered from left to right, according to their 𝑥-projections. We number them

as 𝑒1, . . . , 𝑒𝑚 , according to this order.

rili

c

x

D(x)

D(p)D(q)

ei

p q

γ−i

γi+

Fig. 11. An arc 𝑒𝑖 of 𝐸𝑡 with endpoints 𝑝 and 𝑞, its Minkowski sum with a unit disc, and its upper (blue) and lower arcs (red) 𝛾+ and
𝛾− respectively. A unit disc 𝐷 (𝑞) intersects 𝑒𝑖 if and only if 𝑞 lies above 𝛾−

𝑖
and below 𝛾+

𝑖
.

For an edge 𝑒𝑖 ∈ 𝐸𝑡 , let 𝐾𝑖 = 𝑒𝑖 ⊕ 𝐷 (0) be the Minkowski sum of 𝑒𝑖 with the unit disc centered at the origin, i.e.,

𝐾𝑖 = {𝑎 ∈ R2 | ∃𝑏 ∈ 𝑒𝑖 ∥𝑎 − 𝑏∥ ≤ 1}.

It is easily seen that a unit disc 𝐷 (𝑞) intersects 𝑒𝑖 if and only if 𝑞 ∈ 𝐾𝑖 . See Figure 11. We divide 𝜕𝐾𝑖 at its leftmost and

rightmost points 𝑙𝑖 , 𝑟𝑖 into an upper arc 𝛾+
𝑖
and a lower arc 𝛾−

𝑖
. We say that a point 𝑥 lies above (resp. below) an arc if

the vertical ray emanating from 𝑥 in +𝑦-direction (resp. −𝑦-direction) intersects the arc. The following observation is

straightforward:

Lemma 3.4. (i) The unit disc 𝐷 (𝑞) intersects 𝑒𝑖 if and only if 𝑞 lies below 𝛾+
𝑖
and above 𝛾−

𝑖
.

(ii) Let 𝑐 be the center of the unit disc whose boundary contains 𝑒𝑖 , and let 𝑝 and 𝑞 be the endpoints of 𝑒𝑖 . The upper arc

𝛾+
𝑖
is the upper envelope of the upper semi-circles of 𝐷 (𝑝) and 𝐷 (𝑞). The lower arc 𝛾−

𝑖
consists of portions of the

lower semi-circles of 𝐷 (𝑝), 𝐷 (𝑞), and the disc of radius 2 centered at 𝑐 .

Set Γ+ = {𝛾+
𝑖
| 𝑒𝑖 ∈ 𝐸𝑡 } and Γ− = {𝛾−

𝑖
| 𝑒𝑖 ∈ 𝐸𝑡 }. The following lemma states three crucial properties of the arcs in

Γ+ and Γ−.

Lemma 3.5. The arcs in Γ+ and Γ− have the following properties.

(P1) Let 𝑒𝑖 , 𝑒 𝑗 ∈ 𝐸𝑡 be two distinct edges with 𝑖 < 𝑗 . Then the lower arcs 𝛾−
𝑖
and 𝛾−

𝑗
intersect and cross in exactly one

point, and 𝛾𝑖 (resp. 𝛾 𝑗 ) appears on ℒ ({𝛾−
𝑖
, 𝛾−

𝑗
}) only before (resp. after) their intersection point.

(P2) Let 𝑒𝑖 , 𝑒 𝑗 , and 𝑒ℎ be three edges in 𝐸𝑡 with 𝑖 < 𝑗 < ℎ, and let 𝑞 ∈ R2. If 𝑞 lies below 𝛾+
𝑖
and 𝛾+

ℎ
, then 𝑞 also lies

below 𝛾+
𝑗
. Furthermore, the upper semi-circle of the disc centered at every endpoint of an edge in 𝐸𝑡 appears on the

upper envelope 𝒰 (Γ+), and the order of arcs on 𝒰 (Γ+) corresponds to the 𝑥-order of the endpoints of the edges of
𝐸𝑡 .
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(P3) For every vertical line ℓ , all intersection points of ℓ with the arcs in Γ− lie below all intersection points of ℓ with

the arcs in Γ+.

Lemma 3.5 is proved in Section 3.3. In the remainder of this section, we describe the edge-intersection data structure

and the query procedure assuming Lemma 3.5 holds.

The data structure Ψ𝐶 for 𝐸𝑡 consists of two parts: Δ+ and Δ− that dynamically maintain the sets Γ+ and Γ−,

respectively. The purpose of Δ+ (resp. Δ−) is to efficiently answer the following query: given a point 𝑞 ∈ R2
, report the

upper (resp. lower) arcs that are above (resp. below) 𝑞. Additionally, Δ+ has the property that it returns the answer

incrementally, one arc at a time on demand. Both Δ+,Δ− support insertion/deletion of arcs.

q1

q2

`

ξ

Γ+

Γ−

Fig. 12. Illustration of the search procedure. There are four pairs of upper and lower arcs (each pair has a distinct color), and two
query points 𝑞1 and 𝑞2 lying on a vertical line ℓ ; 𝜉 is the intersection point of ℓ with 𝒰 (Γ−) . The point 𝑞1 (resp. 𝑞2) lies above (resp.
below) 𝜉 , so it suffices to search in Γ+ (resp. Γ−).

Answering an edge-intersection query. With Δ+,Δ− at our disposal, the edges of 𝐸𝑡 that intersect a unit disc 𝐷 (𝑞)
are reported as follows. By Lemma 3.4 (i), we wish to report the edges 𝑒𝑖 such that 𝛾−

𝑖
lies below 𝑞 and 𝛾+

𝑖
lies above 𝑞.

Here is the basic idea: Let ℓ be the vertical line passing through 𝑞. Assume, for the sake of exposition, that we know the

intersection point 𝜉 between ℓ and the upper envelope of Γ−. If 𝑞 lies above 𝜉 (e.g., 𝑞1 in Figure 12), then 𝑞 lies above all

the lower arcs that cross ℓ . Therefore it suffices to search the structure Δ+ to report the upper arcs 𝛾+
𝑖
that lie above

𝑞—in this case, 𝑒𝑖 intersects 𝐷 (𝑞) if and only if 𝛾+
𝑖
lies above 𝑞. On the other hand, if the center 𝑞 coincides with or lies

below 𝜉 (e.g., 𝑞2 in Figure 12), then by property (P3), 𝑞 lies below all upper arcs that ℓ intersects. We therefore search

Δ− to report the lower arcs that lie below 𝑞—in this case, 𝑒𝑖 intersects 𝐷 (𝑞) if and only if 𝛾−
𝑖
lies below 𝑞.

Unfortunately, we cannot easily maintain 𝒰 (Γ−) and thus cannot compute the point 𝜉 . Hence, the query procedure

is a bit more involved: We use Δ+ to return the upper arcs that lie above 𝑞 incrementally, one by one, on demand. For

each upper arc 𝛾+
𝑖
reported by Δ+, we check in 𝑂 (1) time whether 𝑒𝑖 intersects 𝐷 (𝑞). If so, we add 𝑒𝑖 to the output list

and ask Δ+ to report the next upper arc that lies above 𝑞. If all the upper arcs above 𝑞 turn out to be induced by edges

of 𝐸𝑡 that intersect 𝐷 (𝑞), we output this list of edges as the desired set ℰ𝑞 and stop. Indeed, if all the reported edges

from the query of Δ+ intersect 𝐷 (𝑞), then we can conclude that 𝑞 is above 𝜉 and this is the complete answer.
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On the other hand, if we detect that the edge 𝑒 𝑗 ∈ 𝐸𝑡 corresponding to an upper arc 𝛾+
𝑗
reported by Δ+ does not

intersect 𝐷 (𝑞), then by Lemma 3.4 (i), 𝑞 lies below 𝛾−
𝑖
and thus below 𝜉 . As argued above, in this case, we will obtain

the full result by querying Δ−. We note that an edge of 𝐸𝑡 intersecting 𝐷 (𝑞) is reported at most twice.

As we will see below, if |ℰ𝑞 | = 𝑘 then searching in Δ−,Δ+ takes𝑂 (log𝑛 +𝑘 log2 𝑛) and𝑂 (log𝑛 +𝑘) time, respectively.

Hence, the total query time is 𝑂 (log𝑛 + 𝑘 log2 𝑛). We now describe the data structures Δ− and Δ+.

Maintaining the lower arcs. We extend each lower arc 𝛾−
𝑖
into a bi-infinite curve 𝛾−𝑖 by adding a ray of very large

positive (resp. negative) slope in the +𝑦-direction from its right (resp. left) endpoint; see Figure 13. We choose the same

slope for all rays and their values are chosen infinitely large so that any query point 𝑞 lies below the extended curve if

and only if it lies below the original lower arc 𝛾−
𝑖
. (We should regard this extension as symbolic in the sense that we do

not choose any specific value of the slope of these rays.) Let Γ
−
denote the resulting set of bi-infinite curves.

γ−
j

γ−
i

σ1

σ2

γ−
i

γ−
j

Fig. 13. (a) Extending each lower arc to a bi-infinite curve. (b) Illustration of the proof of Lemma 3.6.

Lemma 3.6. Γ
−
is a set of pseudo-lines. Furthermore, ℒ (Γ−) is the same as ℒ (Γ−) except the two extension rays that

appear as unbounded segments at each end of the lower envelope.

Proof. Suppose there are two extended curves 𝛾−𝑖 , 𝛾
−
𝑗 ∈ Γ

−
, with 𝑖 < 𝑗 , that intersect at two points 𝜎1, 𝜎2. By (P1),

one of these intersection points, say, 𝜎1, is the intersection point of 𝛾−
𝑖
and 𝛾−

𝑗
, and 𝛾−

𝑗
appears below 𝛾−

𝑖
to the right of

𝜎1. Suppose 𝜎2 lies to the right of 𝜎1; see Figure 13. Then 𝜎2 is the intersection point of 𝛾−
𝑖
and the extension ray from

the right endpoint of 𝛾−
𝑗
. But this would imply that the lower arc 𝛾−

𝑖
extends beyond the right endpoint of the arc 𝛾−

𝑗

and thus 𝛾−
𝑖
appears on ℒ ({𝛾−

𝑖
, 𝛾−

𝑗
}) to the right of 𝜎1, contradicting (P1).

A similar contradiction arises if 𝜎2 lies to the left of 𝜎1. Hence, 𝛾
−
𝑖 , 𝛾
−
𝑗 intersect in exactly one point and the two arcs

cross at that point, which implies that Γ
−
is a set of pseudo-lines. The second part of the lemma now follows from the

fact that every pair of arcs in Γ− intersects. □

In view of Lemma 3.6, we can use the data structure described in Section 2 to report the lower arcs that lie below a query

point 𝑞 ∈ R2
. Recall that this data structure uses linear space, answers a ray-intersection query in 𝑂 (log𝑛 + 𝑘 log2 𝑛)

time, where 𝑘 is the output size, and handles insertion/deletion of a curve in 𝑂 (log2 𝑛) time.

Remark. After we insert a new unit disc, we update the set 𝐸𝑡 , which leads to deleting or inserting many lower arcs.

In order to ensure that Property (P1) hold at all times, we first delete all the old lower arcs from Δ− and then insert the

new ones.
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Maintaining the upper arcs. Let 𝑃 = ⟨𝑝1 <𝑥 𝑝2 <𝑥 · · · <𝑥 · · · <𝑥 𝑝𝑟 ⟩ be the sequence of endpoints of the edges of
𝐸𝑡 . To keep the structure simple, if two edges of 𝐸𝑡 meet at a single point, we keep only one copy of that point, but for

each point 𝑝𝑖 , we remember the upper arcs incident to 𝑝𝑖 , from left to right. For a point 𝑝𝑖 ∈ 𝑃 , let s+ (𝑝𝑖 ) denote the
upper semi-circle of 𝐷 (𝑝𝑖 ). By Lemma 3.4 (ii), 𝒰 (Γ+) is the upper envelope of {s+ (𝑝𝑖 ) | 1 ≤ 𝑖 ≤ 𝑟 }, and by property

(P2), each point in 𝑃 contributes an arc 𝑠𝑖 to 𝒰 (Γ+).
The arcs s+ (𝑝𝑖 ) can be extended to pseudo-lines (similar to lower arcs), and we can construct the pseudo-line data

structure of Section 2 to maintain 𝒰 (Γ+). Here, we describe a simpler and slightly more efficient data structure. The

data structure Δ+ is a red-black tree. The 𝑖th leftmost leaf stores the point 𝑝𝑖 of 𝑃 . For a leaf 𝑣 , we will use 𝑝𝑣 to denote

the point stored at 𝑣 . Each leaf also stores pointers rn and ln to the right and the left neighboring leaf, respectively, if

they exist. Each internal node stores a pointer lml to the leftmost leaf of its right subtree. Each subtree of Δ+ corresponds

to a contiguous portion of 𝒰 (Γ+). For each 𝑝𝑖 , we store the centers of the (at most two) unit discs whose boundaries

contain 𝑝𝑖 .

Query. Let 𝑞 be a query point, and let ℓ be the vertical line passing through 𝑞. Recall that the structure Δ+ reports

the upper arcs lying above a query point 𝑞 incrementally, one arc at a time. Here is the outline of the query procedure:

We first find the arc 𝑠𝑞 of 𝒰 (Γ+) intersected by ℓ . If 𝑞 lies above 𝑠𝑞 , then 𝑞 does not lie below any upper arc in Γ+,

and we stop. So assume that 𝑞 lies below 𝑠𝑞 . Let 𝑝𝑖 ∈ 𝑃 be the point such that s+ (𝑝𝑖 ) contains 𝑠𝑞 . We report the upper

arc(s) corresponding to 𝑝𝑖 . Next, we traverse the sequence 𝑃 starting at 𝑝𝑖 , going both to the right and to the left, and

reporting the upper arcs corresponding to these points until we find a point 𝑝 𝑗 (in each direction) such that 𝑞 lies above

s+ (𝑝 𝑗 ). By (P2), if s+ (𝑝 𝑗 ) for 𝑗 > 𝑖 (resp. 𝑗 < 𝑖) lies below 𝑞 then so does s+ (𝑝ℎ) for all ℎ > 𝑗 (resp. ℎ < 𝑗 ), so we can

stop. We now describe how we perform these steps efficiently using Δ+.

By following a path from the root, we first find the leaf 𝑣 storing the point 𝑝𝑣 such that the 𝑠𝑞 lies on s+ (𝑝𝑣). The
search down the tree is carried out as follows: Suppose we are at an internal node 𝑢. We compute the breakpoint 𝜎𝑢 of

𝒰 (Γ+) that separates the portions of 𝒰 (Γ+) represented by the left and right subtrees of 𝑢: We use the pointer lml(𝑢)

to obtain𝑤 , the leftmost leaf in the right subtree of 𝑢. Using ln(𝑤 ), we find the predecessor of 𝑝𝑤 . The breakpoint 𝜎𝑢 is

the intersection point of s+ (𝑝𝑤) and s+ (𝑝ln(𝑤) ). If 𝑥 (𝜎𝑢 ) ≤ 𝑥 (𝑞), we visit the right child of 𝑢; otherwise we visit the

left child of 𝑢.

Once we reach the leaf 𝑣 such that the arc 𝑠𝑞 of 𝒰 (Γ+) lies on s+ (𝑝𝑣), we traverse the leaves of Δ+, starting at 𝑣

and going both to the right and to the left, say, we first go right and then left. Suppose we are going right and we are

at a leaf 𝑢. When we are asked to report an upper arc, we test whether 𝑞 lies below s+ (𝑝𝑢 ). If the answer is yes, then
we report the (at most two) arcs of Γ+ corresponding to 𝑝𝑢 , and move to the next leaf in the right direction. If 𝑢 was

the rightmost leaf or 𝑞 lies above s+ (𝑝𝑢 ), we start visiting left starting from ln(𝑣) and do the same as above. Once we

visited the leftmost leaf 𝑢 or detected that 𝑞 lies above s+ (𝑝𝑢 ), then we stop and declare that all upper arcs of Γ+ lying

above 𝑞 have been reported.

The correctness of the query procedure follows from property (P2) of upper arcs. If the procedure reported a total of

𝑘 arcs then the time taken by the procedure is 𝑂 (log𝑛 + 𝑘).
Update. An upper arc may be inserted into or deleted from Δ+ in 𝑂 (log𝑛) time by simply removing the endpoints

of the deleted arc and inserting the endpoints of the new arc into Δ+ and updating the auxiliary information stored at

the node of Δ+.

Building similar data structures for 𝐸𝑏 , 𝐸𝑙 , and 𝐸𝑟 and putting everything together, we obtain the main result of this

subsection.
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Lemma 3.7. The edges of 𝜕𝑈 lying inside a grid cell of G can be maintained in a linear-size data structure so that all

edges intersecting a unit disc can be reported in 𝑂 ((𝑘 + 1) log2 𝑛) time, where 𝑘 is the number of reported arcs. The data

structure can be updated in 𝑂 (log2 𝑛) time per insertion/deletion.

3.3 Proof of Lemma 3.5

We now prove properties (P1)–(P3) of upper and lower arcs stated in Lemma 3.5. We begin with Property (P1).

∂D(pi) ∂D(pj)

∂D(p−1 ) ∂D(p−2 )

σ+
1 σ+

2
pi pj

p−2p−1

ejei

Fig. 14. Illustration of the proof that 𝛾−
𝑖
and 𝛾−

𝑗
intersect exactly once (see Lemma 3.8).

Lemma 3.8. Let 𝑒𝑖 , 𝑒 𝑗 ∈ 𝐸𝑡 be two distinct edges with 𝑖 < 𝑗 . Then the lower arcs 𝛾−
𝑖
and 𝛾−

𝑗
intersect in exactly one point

and the two arcs cross at that point. Furthermore, 𝛾−
𝑖
(resp. 𝛾−

𝑗
) appears on ℒ ({𝛾−

𝑖
, 𝛾−

𝑗
}) only before (resp. after) their

intersection point.

Proof. First, we observe that if 𝑒𝑖 and 𝑒 𝑗 have a common endpoint 𝑞, then 𝑞 does not contribute to ℒ ({𝛾−
𝑖
, 𝛾−

𝑗
}),

i.e., the unit disc 𝐷 (𝑞) lies strictly above ℒ ({𝛾−
𝑖
, 𝛾−

𝑗
}). Indeed, assume for a contradiction that ℒ ({𝛾−

𝑖
, 𝛾−

𝑗
}) contains a

point 𝑟 with distance 1 from 𝑞. Then, the unit disc 𝐷 (𝑟 ) is tangent to 𝑒𝑖 and 𝑒 𝑗 at the point 𝑞. However, this is impossible,

since 𝑒𝑖 and 𝑒 𝑗 belong to the lower semi-circles of two distinct unit discs.

Next, notice that the arcs 𝛾−
𝑖
and 𝛾−

𝑗
intersect at least once since any two points in the grid cell 𝐶 have distance at

most 1. Suppose 𝑝−
1
is a point on 𝛾−

𝑗
and 𝑝−

2
a point on 𝛾−

𝑖
, with 𝑝−

1
<𝑥 𝑝

−
2
; refer to Figure 14. Assume for a contradiction

that both 𝑝−
1
and 𝑝−

2
appear on ℒ ({𝛾−

𝑖
, 𝛾−

𝑗
}). Consider the upper semi-circle 𝜎+

1
of 𝐷 (𝑝−

1
) and the upper semi-circle 𝜎+

2

of 𝐷 (𝑝−
2
). The upper semi-circle 𝜎+

1
touches 𝑒 𝑗 in a point 𝑝 𝑗 , and the upper semi-circle 𝜎+

2
touches 𝜕𝐷 (𝑝−

1
) in a point 𝑝𝑖 .

Since 𝑝1, 𝑝2 lie on the lower semicircles of 𝜕𝐷 (𝑝 𝑗 ), 𝜕𝐷 (𝑝𝑖 ), respectively, and ∥𝑝𝑖 − 𝑝 𝑗 ∥ ≤ 1, the upper semi-circles 𝜎+
1

and 𝜎+
2
intersect exactly once, and since 𝑝−

1
<𝑥 𝑝

−
2
, the semi-circle 𝜎+

1
appears to the left of 𝜎+

2
on the upper envelope

𝒰 of 𝜎+
1
and 𝜎+

2
. The point 𝑝𝑖 must be on 𝒰 , since otherwise 𝑝−

1
would be inside 𝐷 (𝑝𝑖 ), which contradicts the fact that

𝑝−
1
belongs to ℒ ({𝛾−

𝑖
, 𝛾−

𝑗
}); and similarly for 𝑝 𝑗 . This implies that 𝑝𝑖 ≥𝑥 𝑝 𝑗 . Now, recall that the common endpoint

of 𝑒𝑖 and 𝑒 𝑗 (if it exists) does not contribute to ℒ ({𝛾−
𝑖
, 𝛾−

𝑗
}), so we actually have 𝑝𝑖 >𝑥 𝑝 𝑗 , which contradicts the

assumption 𝑖 < 𝑗 . Thus, it follows that 𝛾−
𝑖
and 𝛾−

𝑗
intersect exactly once and that 𝛾−

𝑖
appears before 𝛾−

𝑗
on ℒ ({𝛾−

𝑖
, 𝛾−

𝑗
}).
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Furthermore, this argument also implies that 𝛾−
𝑖
lies above 𝛾−

𝑗
after their intersection point and vice-versa. We can

conclude that 𝛾−
𝑖
(resp., 𝛾−

𝑗
) appears on ℒ ({𝛾−

𝑖
, 𝛾−

𝑗
}) only before (resp., after) their intersection point. □

σ+
1

σ+
2 σ+

3

p+12
p+13

p+23
c

e
p1

p2 p3

Fig. 15. Illustration of the proof of Lemma 3.9.

Lemma 3.9. Let 𝑒𝑖 , 𝑒 𝑗 , and 𝑒ℎ , for 𝑖 < 𝑗 < ℎ, be three edges in 𝐸𝑡 , and let 𝑞 ∈ R2 be a point. If 𝑞 is below 𝛾+
𝑖
and 𝛾+

ℎ
then 𝑞

is also below 𝛾+
𝑗
. Furthermore, for every endpoint 𝑝 of every edge of 𝐸𝑡 , the upper semi-circle of 𝐷 (𝑝) appears on 𝒰 (Γ+).

The 𝑥-order of the arcs on 𝒰 (Γ+) corresponds to the 𝑥-order of the endpoints of the edges of 𝐸𝑡 .

Proof. Let 𝑝1, 𝑝2, and 𝑝3 be points on three distinct edges of 𝐸𝑡 , with 𝑝1 <𝑥 𝑝2 <𝑥 𝑝3; see Figure 15. Let 𝜎
+
1
, 𝜎+

2
,

and 𝜎+
3
be the upper semi-circles of 𝐷 (𝑝1), 𝐷 (𝑝2), and 𝐷 (𝑝3), respectively. Let 𝑝+

12
and 𝑝+

23
be the intersection points

𝜎+
1
∩ 𝜎+

2
and 𝜎+

2
∩ 𝜎+

3
, respectively. Note that these intersection points exist, since the distance between any two points

in the grid cell 𝐶 is at most 1. Since 𝑝1 <𝑥 𝑝2, we have that 𝜎
+
1
appears to the left of 𝜎+

2
on 𝒰 ({𝜎+

1
, 𝜎+

2
}). Let 𝑐 be

the center of the circle containing the edge 𝑒 of 𝐸𝑡 that contains 𝑝2. The point 𝑐 is on 𝜎
+
2
, since 𝑝2 belongs to a lower

semi-circle of radius 1. Moreover, 𝑐 is not below 𝜎+
1
, since otherwise we would have that 𝑝1 is in the interior of 𝐷 (𝑐),

contradicting the fact that 𝑝1 lies on an edge of 𝐸𝑡 . This means that 𝑝+
12
≤𝑥 𝑐 . The same argument implies that 𝑝+

23
≥𝑥 𝑐

and therefore 𝑝+
12
≤𝑥 𝑝+

23
. This in turn implies that the intersection point, 𝑝+

13
, between 𝜎+

1
and 𝜎+

3
is below or on 𝜎+

2

and therefore every point that lies below 𝜎+
1
and 𝜎+

3
also lies below 𝜎+

2
.

The lemma readily follows from the above observations. □

Next, we show that for any two distinct edges 𝑒𝑖 , 𝑒 𝑗 ∈ 𝐸𝑡 , the upper arc 𝛾+
𝑖
and the lower arc 𝛾−

𝑗
are disjoint.

Furthermore, we show that 𝛾+
𝑖
is above 𝛾−

𝑗
, hence proving Property (P3).

Lemma 3.10. Let 𝑒𝑖 and 𝑒 𝑗 be two distinct edges in 𝐸𝑡 , and let ℓ be a vertical line. If ℓ intersects with 𝛾+𝑖 and 𝛾−
𝑗
in the

points 𝑝 and 𝑞, respectively, then, 𝑝 >𝑦 𝑞.

Proof. First, we show that 𝛾−
𝑖
and 𝛾+

𝑗
do not intersect. Suppose for a contradiction that 𝛾−

𝑖
and 𝛾+

𝑗
intersect at a

point 𝑎. This means that 𝑎 is one of the intersection points of 𝜕𝐷 (𝑝𝑖 ) and 𝜕𝐷 (𝑝 𝑗 ), where 𝑝𝑖 ∈ 𝑒𝑖 and 𝑝 𝑗 ∈ 𝑒 𝑗 . Then
𝑎 ≤𝑦 𝑝𝑖 and 𝑎 ≥𝑦 𝑝 𝑗 , since 𝑎 lies on 𝛾−

𝑖
and on 𝛾+

𝑗
. The same argument applies to the second intersection point, 𝑏,

between 𝜕𝐷 (𝑝𝑖 ) and 𝜕𝐷 (𝑝 𝑗 ). Assume that 𝑎 <𝑥 𝑏, which implies that 𝑎 and 𝑏 belong to 𝑄𝑙 and 𝑄𝑟 , respectively. Let 𝑐 𝑗

be the center point of 𝑒 𝑗 . The point 𝑐 𝑗 lies on the upper semi-circle of 𝐷 (𝑝 𝑗 ), and it belongs to 𝑄𝑡 which means that

𝑐 𝑗 ∈ 𝐷 (𝑝𝑖 ). This means that 𝑝𝑖 ∈ 𝐷 (𝑐 𝑗 ) which contradicts the fact that 𝑒𝑖 belongs to 𝐸𝑡 ; see Figure 16.
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pi
b

pj
a

cj

∂D(pi)

∂D(pj)

∂D(cj)

Fig. 16. Illustration of the proof that 𝛾−
𝑖
and 𝛾+

𝑗
do not intersect (Lemma 3.10).

Since 𝛾+
𝑖
and 𝛾−

𝑗
do not intersect, it must be that that in the common 𝑥-interval of 𝛾+

𝑖
and 𝛾−

𝑗
, the arc 𝛾+

𝑖
is strictly

above or below 𝛾−
𝑗
. The edge 𝑒𝑖 is above 𝛾

−
𝑗
and therefore 𝛾+

𝑖
is above 𝛾−

𝑗
. □

4 INTERSECTION SEARCHING OF UNIT ARCS WITH A UNIT DISC

In this section, we address the following intersection-searching problem: Preprocess a collection 𝒞 of circular arcs

of unit radius into a data structure so that for a query point 𝑥 ∈ R2
, the arcs in 𝒞 intersecting the unit disc 𝐷 (𝑥) can

be reported efficiently. By splitting each arc of 𝒞 into at most three arcs, we can ensure that each arc of 𝒞 lies in the

lower or upper semi-circle of its supporting disc. We assume for simplicity that every arc in 𝒞 belongs to the lower

semi-circle of its supporting disc. A similar data structure can be constructed for arcs lying in upper semi-circles.

Let 𝑒 ∈ 𝒞 be a unit-radius circular arc whose center is at 𝑐 , and let 𝑝1 and 𝑝2 be its endpoints. A unit disc 𝐷 (𝑥)
intersects 𝑒 if and only if 𝑒 ⊕ 𝐷 (0), the Minkowski sum of 𝑒 with a unit disc at the origin, contains the center 𝑥 . Let

𝑧 = 𝐷 (𝑝1) ∪𝐷 (𝑝2), and let 𝐷+ (𝑐) be the disc of radius 2 centered at 𝑐 ; 𝑧 divides 𝐷+ (𝑐) into three regions (see Figure 17):
(i) 𝑧+, the portion of 𝐷+ (𝑐) \ 𝑧 above 𝑧, (ii) 𝑧 itself, and (iii) 𝑧−, the portion of 𝐷+ (𝑐) \ 𝑧 below 𝑧. It can be verified that

𝑒 ⊕ 𝐷 (0) = 𝑧 ∪ 𝑧−. We give an alternate characterization of 𝑧 ∪ 𝑧−, which will help in developing the data structure.

Let ℓ be a line that passes through the tangent points, 𝑝 ′
1
and 𝑝 ′

2
, of 𝐷 (𝑝1) and 𝐷 (𝑝2) with 𝐷+ (𝑐), respectively, and

let ℓ− be the halfplane below ℓ . Set 𝐿(𝑒) = 𝐷+ (𝑐) ∩ ℓ−.

Lemma 4.1. If 𝜕𝐷 (𝑝1) and 𝜕𝐷 (𝑝2) intersect at two points (one of which is always 𝑐), then ℓ passes through 𝑞 =

(𝜕𝐷 (𝑝1) ∩ 𝜕𝐷 (𝑝2)) \ {𝑐}. Otherwise, 𝑐 ∈ ℓ .

Proof. Assume that 𝑞 exists. The quadrilateral (𝑐, 𝑝1, 𝑞, 𝑝2) is a rhombus, since all its edges have length 1. Let 𝛼 be

the angle ∠𝑝1𝑞𝑝2 and 𝛽 be the angle ∠𝑐𝑝1𝑞. The angle ∠𝑞𝑝1𝑝
′
1
is equal to 𝛼 , since the segment (𝑐, 𝑝 ′

1
) is a diameter of

𝐷 (𝑝1). The angle ∠𝑝1𝑞𝑝 ′
1
is equal to

𝛽
2
, since △𝑝1𝑞𝑝 ′

1
is an isosceles triangle. The same arguments apply to the angle

∠𝑝2𝑞𝑝
′
2
, implying that the angle ∠𝑝 ′

1
𝑞𝑝 ′

2
is equal to 𝜋 .
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Assume now that 𝑞 does not exist. Then the segment (𝑝1, 𝑝2) is a diameter of 𝐷 (𝑐). The segment (𝑐, 𝑝 ′
1
) is a diameter

of 𝐷 (𝑝1). The segment (𝑝1, 𝑝2) coincides with (𝑐, 𝑝 ′
1
) at the segment (𝑐, 𝑝1). The same argument applies to the segment

(𝑐, 𝑝 ′
2
), implying that the angle ∠𝑝 ′

1
𝑞𝑝 ′

2
is equal to 𝜋 . □

c

D+(c)

z+

p1
p2

e

z

z−
p′1

p′2

` `−

c

D+(c)

p1
p2

e

p′1

p′2

`

D(c)

D(p1)

D(p2)

q

α

α
αβ

β

β/2

β/2

β/2 β/2

Fig. 17. (On the left) Partition of 𝐷+ (𝑐) into three regions: 𝑧+, 𝑧 and 𝑧−. (On the right) Illustration of Lemma 4.1.

The following corollary summarizes the criteria for the intersection of a unit circular arc with a unit disc.

Corollary 4.2. Let 𝑒 be a circular arc in 𝒞 with endpoints 𝑝1 and 𝑝2 and center 𝑐 . Then 𝑧 ∪ 𝑧− = 𝑧 ∪ 𝐿(𝑒). Furthermore, 𝑒

intersects a unit disc 𝐷 (𝑥) if and only if at least one of the following conditions is satisfied: (i) 𝑥 ∈ 𝐷 (𝑝1) (or 𝑝1 ∈ 𝐷 (𝑥)),
(ii) 𝑥 ∈ 𝐷 (𝑝2) (or 𝑝2 ∈ 𝐷 (𝑥)), and (iii) 𝑥 ∈ 𝐿(𝑒).

We thus construct three separate data structures. The first data structure preprocesses the left endpoints of the

arcs in 𝒞 for unit-disc range searching, the second data structure preprocesses the right endpoints of arcs in 𝒞 for

unit-disc range searching, and the third data structure preprocesses ℒ = {𝐿(𝑒) | 𝑒 ∈ 𝒞 } for inverse range searching,
i.e., reporting all regions in ℒ that contain a query point. Using standard disk range-searching data structures (see

e.g. [2, 3]), we can build these three data structures so that each of them takes 𝑂 (𝑛) space and answers a query in

𝑂 (𝑛1/2+𝜀 + 𝑘) time, where 𝑘 is the output size. Furthermore, these data structures can handle insertions/deletions in

𝑂 (log2 𝑛) time using the lazy-partial-rebuilding technique [26]. We conclude the following:

Theorem 4.3. Let 𝒞 be a set of 𝑛 unit-circle arcs in R2. Then, 𝒞 can be preprocessed into a data structure of linear size so

that for a query unit disc 𝐷 , all arcs of 𝒞 intersecting𝐷 can be reported in𝑂 (𝑛1/2+𝜀 +𝑘) time, where 𝜀 is an arbitrarily small

constant and 𝑘 is the output size. Furthermore the data structure can be updated under insertion/deletion of a unit-circle arc

in 𝑂 (log2 𝑛) amortized time.

5 CONCLUSION

In this paper, we presented linear-size dynamic data structures for maintaining the union of unit discs under insertions

and for maintaining the lower envelope of pseudo-lines in the plane under both insertions and deletions. We also

presented a linear-size structure for storing a set of circular arcs of unit radius (not necessarily on the boundary of

the union of the corresponding discs), so that all input arcs intersecting a query unit disc can be reported quickly. We

conclude by mentioning a few open problems:
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(i) Can the boundary of the union of unit discs be maintained in an output-sensitive manner when we allow both

insertions and deletions of discs? The challenge in extending our data structure to handle the deletion of a unit

disc 𝐷 is to quickly report the new edges of 𝒰 that lie in the interior of 𝐷 .

(ii) Can our data structure be extended to maintain the boundary of the union of discs of arbitrary radii? Although

the union boundary still has linear size, many of the structure properties of the union used by our data structure

no longer hold, e.g., two upper (or lower) arcs may intersect at two points and they cannot be treated as

pseudo-lines.

(iii) Can the area of the union of unit discs be maintained under insertions and deletions in sublinear time per update?

As mentioned in the introduction, it is not clear how to extend Chan’s data structure [15] for maintaining the

volume of the convex hull of a set of points in R3
to our setting.
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APPENDIX: AN EXAMPLE RUN OF THE ALGORITHM IN SECTION 2.3

In this appendix we illustrate the algorithm, described in Section 2.3, for computing the intersection point of the lower

envelopes of two sets of pseudo-lines such that all lines in one set are smaller than all in the other set.

2 3 4 5 6

7

1
2

3
4

5 6 71

Fig. 18. Two sets of pseudo-lines and their lower envelopes: (i) the blue and green pseudo-lines, (ii) the red and orange pseudo-lines.
The blue and the red dots represent the vertices on the lower envelopes.

Step 𝑢 𝑣 uStack vStack Procedure case

1 4 4 ∅ ∅ Case 3

2 6 2 4 4 Case 2→ Case 2

3 6 6 4 ∅ Case 3

4 7 5 4, 6 6 Case 1→ Case 3

5 7* 5* 4, 6 6, 5 Case 3→ End

Table 1. The progress of the search for the example in Figure 19.
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Fig. 19. Top: the two lower envelopes ℒ𝑙 and ℒ𝑟 for the pseudo-lines in Figure 18. Bottom: the corresponding trees Λ𝑙 and Λ𝑟 . The
labels 𝑢 (𝑖) and 𝑣 (𝑖) indicate the position of the pointers 𝑢 and 𝑣 at step 𝑖 , during the search.
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