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Abstract

Let S be a planar n-point set. Classically, one can
find the Voronoi diagram VD(S) for S in O(n log n)
time and O(n) space. We study the situation when
the available workspace is limited: for s ∈ {1, . . . , n},
an s-workspace algorithm has read-only access to an
input array with the points from S in arbitrary order,
and it may use only O(s) additional words of Θ(log n)
bits for reading and writing intermediate data. We
describe a randomized s-workspace algorithm for
finding VD(S) in expected time O((n2/s) log s +
n log s log∗ s). This almost matches the optimal run-
ning times for both constant and linear workspace and
provides a continuous trade-off between them.

1 Introduction

Since the beginning of computer science, there has
been interest in algorithms that can deal with strong
memory constraints. This started in the early 70’s [10]
when memory was expensive, but now it is motivated
by the proliferation of small embedded devices where
a lot of memory is neither feasible nor desirable.

Even when space is not an issue, one might want to
limit the number of write operations: even though one
can read flash memory very fast, writing (or even re-
ordering) data is slow and reduces the lifetime; write-
access to removable memory is sometimes limited for
technical or security reasons; similar problems occur
when concurrent algorithms need to access the same
data and create concurrency problems. A way to deal
with this is to consider algorithms that do not modify
the input, and use as few variables as possible.

The exact setting may vary, but there is a common
theme: the input resides in a read-only data struc-
ture, the output must be written to some write-only
structure, and we can use O(s) additional variables to
compute the solution (for a given parameter s). Our
aim is to design algorithms whose running time de-
creases as s grows, giving a time-space trade-off [11].

One of the initial problems considered in this model
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is sorting [7, 8]. It is known that the time-space
product of any sorting algorithm is Ω(n2) [5], and
matching upper bounds for the case b ∈ Ω(log n) ∩
O(n/ log n) were obtained by Pagter and Rauhe [9] (b
denotes the size of the workspace, in bits). Since the
sorted list cannot be stored explicitly in memory, we
must report the values one by one in order.

The concept of memory constrained algorithms was
introduced to computational geometry by Asano et
al. [2]. They show how to compute many classic ge-
ometric structures with O(1) workspace. Afterwards,
several time-space trade-off algorithms have been de-
signed for classic problems within a simple polygon,
such as shortest path computation [1], visibility [4],
or computing the convex hull of a simple polygon [3].

Problem Setting. We are given a list S of n points
in the plane. We assume that the points are in some
structure (say, an array) that allows random access to
any point. We would like to design an algorithm that
computes the Voronoi diagram of S, VD(S). Since the
diagram itself cannot be explicitly stored in memory,
the aim is to report its vertices one by one in a write-
only data structure in no particular order. In addition
to the input, the algorithm can use O(s) variables (for
some parameter s ≤ n). We assume that each variable
or pointer contains a data word of Θ(log n) bits.

Our aim is an algorithm whose running time de-
creases as s grows. Ideally, we would like that the
trade-off is continuous and that the running times
for both extremes of s match with the currently
best known algorithms for these cases (O(n2) and
O(n log n) time for s = 1 and s = n, respectively).
As we will see below, we can almost achieve this goal.

2 Voronoi Diagrams Through Random Sampling

Given a planar n-point set S, we would like to find the
vertices of VD(S). Let K = {p1, p2, p3} be a triangle
with S ⊆ conv(K) so that all vertices of VD(S) are
vertices of VD(S ∪K). We use random sampling to
divide the problem of computing VD(S∪K) into O(s)
subproblems of size O(n/s). First, we show how to
take a random sample from S with small workspace.

Lemma 1 We can sample a uniform random subset
R ⊆ S of size s in time O(n+ s log s) and space O(s).
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Proof. We sample a random sequence I of s distinct
numbers from {1, . . . , n}. This is done in s rounds.
At the beginning of round k, for k = 1, . . . , s, we have
a sequence I of k − 1 numbers from {1, . . . , n}. We
store I in a binary search tree T . We maintain the
invariant that each node in T with value in {1, . . . , n−
k + 1} stores a pointer to a unique number in {n −
k+2, . . . , n} that is not in I. In round k, we sample a
random number x from {1, . . . , n−k+1}, and we check
in T whether x ∈ I. If not, we add x to I. Otherwise,
we add to I the number that x points to. Let y be
the new element. We add y to T . Then we update
the pointers: if x = n − k + 1, we do nothing. Now
suppose x < n−k+1. Then, if n−k+1 6∈ I, we put a
pointer from x to n−k+1. Otherwise, if n−k+1 ∈ I,
we let x point to the element that n−k+ 1 points to.
This keeps the invariant and takes O(log s) time and
O(s) space. We continue for s rounds. Any sequence
of s distinct numbers in {1, . . . , n} is sampled with
equal probability.

Finally, we scan through S to obtain the elements
whose positions correspond to the numbers in I. This
requires O(n) time and O(s) space. �

We use Lemma 1 to find a random sample R ⊆ S
of size s. We compute VD(R ∪ K), triangulate the
bounded cells and construct a planar point location
structure for the triangulation. This takes O(s log s)
time and O(s) space. Given a vertex v ∈ VD(R∪K),
the conflict circle of v is the largest circle with center
v and no point from R∪K in its interior. The conflict
set Bv of v contains all points from S that lie in the
conflict circle of v, and the conflict size bv of v is the
number of points in Bv. We scan through S to find
the conflict size bv for each vertex v ∈ VD(R ∪ K):
every Voronoi vertex has a counter that is initially 0.
For each p ∈ S \ (R ∪K), we use the point location
structure to find the triangle ∆ of VD(R ∪ K) that
contains it. At least one vertex v of ∆ is in conflict
with p. Starting from v, we walk along the edges of
VD(R∪K) to find all Voronoi vertices in conflict with
p. We increment the counters of all these vertices.
This may take a long time in the worst case, so we im-
pose an upper bound on the total work. For this, we
choose a threshold M . When the sum of the conflict
counters exceeds M , we start over with a new sample
R. The total time for one attempt is O(n log s+M),
and below we prove that for M = Θ(n) the success
probability is at least 3/4. Next, we pick another
threshold T , and we compute for each vertex v of
VD(R ∪K) the excess tv = bvs/n. The excess mea-
sures how far the vertex deviates from the desired con-
flict size n/s. We check if

∑
v∈VD(R∪K) tv log tv ≤ T .

If not, we start over with a new sample. Below, we
prove that for T = Θ(s), the success probability is
at least 3/4. The total success probability is 1/2,
and the expected number of attempts is 2. Thus,

in expected time O(n log s + s log s), we can find a
sample R ⊆ S with

∑
v∈VD(R∪K) bv = O(n) and∑

v∈VD(R∪K) tv log tv = O(s).
We now analyze the success probabilities, using the

classic Clarkson-Shor method. We begin with the fol-
lowing version of the Chazelle-Friedman bound [6].

Lemma 2 Let X be a planar point set of size o, and
let Y ⊂ R2 with |Y | ≤ 3. For fixed p ∈ (0, 1], let
R ⊆ X be a random subset of size po and let R′ ⊆ X
be a random subset of size p′o, for p′ = p/2. Suppose
that p′o ≥ 4. Fix u ∈ X3, and let vu be the Voronoi
vertex defined by u. Let bu be the number of points
from X in the largest circle with center vu and with
no points from R in its interior. Then,

Pr[vu ∈ VD(R∪Y )] ≤ 64e−pbu/2 Pr[vu ∈ VD(R′∪Y )].

Proof. Let σ = Pr[vu ∈ VD(R ∪ Y )] and σ′ =
Pr[vu ∈ DT(R′ ∪ Y )]. The vertex vu is in VD(R∪ Y )
precisely if u ⊆ R ∪ Y and Bu ∩ (R ∪ Y ) = ∅, where
Bu are the points from X in the conflict circle of vu.
If Y ∩Bu 6= ∅, then σ = σ′ = 0, and the lemma holds.
Thus, assume that Y ∩Bu = ∅. Let du = |u \ Y |, the
number of points in u not in Y . There are

(
o−bu−du
po−du

)
ways to choose a po-subset from X that avoids all
points in Bu and contains all points of u ∩X, so

σ =

(
o− bu − du
po− du

)/(
o

po

)
=

∏po−du−1
j=0 (o− bu − du − j)∏po−du−1
j=0 (po− du − j)

/ ∏po−1
j=0 (o− j)∏po−1
j=0 (po− j)

=

du−1∏
j=0

po− j
o− j

·
po−du−1∏
j=0

o− bu − du − j
o− du − j

≤ pdu
po−du−1∏
j=0

(
1− bu

o− du − j

)
.

Similarly, we get

σ′ =

du−1∏
i=0

p′o− i
o− i

p′o−du−1∏
j=0

(
1− bu

o− du − j

)
,

and since p′o ≥ 4 and i ≤ 2, it follows that

σ′ ≥
(
p′

2

)du p′o−du−1∏
j=0

(
1− bu

o− du − j

)
.

Therefore, since p′ = p/2,

σ

σ′
≤
(

2p

p′

)du po−du−1∏
j=p′o−du

(
1− bu

o− du − j

)

≤ 64

(
1− bu

o

)po/2
≤ 64 epbu/2.

�
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We can now bound the total expected conflict size.

Lemma 3 We have E
[∑

v∈VD(R∪K) bv

]
= O(n).

Proof. By expanding the expectation, we get

E

 ∑
v∈VD(R∪K)

bv

 =
∑
u∈S3

Pr[vu ∈ VD(R ∪K)]bu,

vu being the Voronoi vertex of u and bu its conflict
size. By Lemma 2 with X = S, Y = K and p = s/n,

≤
∑
u∈S3

64e−pbu/2 Pr[vu ∈ VD(R′ ∪K)]bu,

where R′ ⊆ S is a sample of size s/2. We estimate

≤
∞∑
t=0

∑
u∈S3

bu∈[ t
p ,

t+1
p )

64e−t/2(t+ 1)

p
Pr[vu ∈ VD(R′ ∪K)]

≤ 1

p

∑
u∈S3

Pr[vu ∈ VD(R′ ∪K)]

∞∑
t=0

64e−t/2(t+ 1)

= O(s/p) = O(n),

since
∑

u∈S3 Pr[vu ∈ VD(R′ ∪K)] = O(s) is the size

of VD(R′ ∪K) and
∑∞
t=0 e

−t/2(t+ 1) = O(1). �

By Lemma 3 and Markov’s inequality, there is anM =
Θ(n) with Pr[

∑
v∈VD(R∪K) bv > M ] ≤ 1/4.

Lemma 4 E
[∑

v∈VD(R∪K) tv log tv

]
= O(s).

Proof. By Lem. 2 with X = S, Y = K, and p = s/n,

E

 ∑
v∈VD(R∪K)

tv log tv


=
∑
u∈S3

Pr[vu ∈ VD(R ∪K)] tu log tu

≤
∑
u∈S3

64e−pbu/2 Pr[vu ∈ VD(R′ ∪K)]tu log tu

≤
∞∑
t=0

∑
u∈S3

bu∈[ t
p ,

t+1
p )

64e−
t
2 (t+ 1)2 Pr[vu ∈ VD(R′ ∪K)]

≤
∞∑
t=0

64e−t/2(t+ 1)2
∑
u∈S3

Pr[vu ∈ VD(R′ ∪K)]

= O(s).

�

By Markov’s inequality and Lemma 4, there is a T =
Θ(s) with Pr[

∑
v∈VD(R∪K) tv log tv ≥ T ] ≤ 1/4. This

finishes the first phase of the sampling.
Let α > 0 be a sufficiently large constant. The

next goal is to sample for each vertex v with tv ≥ 2 a
random subset Rv ⊆ Bv of size αtv log tv (recall that
Bv is the conflict set of v).

Lemma 5 In total time O(n log s), we can sample
for each vertex v ∈ VD(R∪K) with tv ≥ 2 a random
subset Rv ⊆ Bv of size αtv log tv.

Proof. First, we perform O(s) rounds to sample for
each vertex v with tv ≥ 2 a sequence Iv of αtv log tv
distinct numbers from {1, . . . , bv}. For this, we use the
algorithm from Lemma 1 in parallel for each relevant
vertex from VD(R ∪ K). Since

∑
v tv log tv = O(s),

this takes total time O(s log s) and total space O(s).
After that, we scan through S. For each vertex v,

we have a counter cv, initialized to 0. For each p ∈ S,
we find the conflict vertices of p, and for each conflict
vertex v, we increment cv. If cv appears in the corre-
sponding set Iv, we add p to Rv. The total running
time is O(n log s), as we do one point location for each
input point and the total conflict size is O(n). �

We next show that for a fixed vertex v ∈ VD(R∪K),
with constant probability, all vertices in VD(Rv) have
conflict size n/s with respect to Bv.

Lemma 6 Let v ∈ VD(R ∪K) with tv ≥ 2, and let
Rv ⊆ Bv be the sample for v. The expected number
of vertices v′ in VD(Rv) with at least n/s points from
Bv in their conflict circle is at most 1/2.

Proof. Recall that tv = bvs/n. We have

E

[ ∑
v′∈VD(Rv)
b′
v′≥n/s

1

]
=

∑
u∈B3

v

b′u≥n/s

Pr[v′u ∈ VD(Rv)],

where b′u is the conflict size of v′u with respect to
Bv. Using Lemma 2 with X = Bv, Y = ∅, and
p = (αtv log tv)/bv = α(s/n) log tv, this is

≤
∑
u∈B3

v

b′u≥n/s

64e−pb
′
u/2 Pr[v′u ∈ VD(R′v)]

≤ 64e−(α/2) log tv
∑
u∈B3

v

Pr[v′u ∈ VD(R′v)]

= O(t−α/2v tv log tv) ≤ 1/2,

for α large enough (remember that tv ≥ 2). �

By Lemma 6 and Markov’s inequality, the probabil-
ity that all vertices from VD(Rv) have at most 2n/s
points from Bv in their conflict circles is at least 1/2.
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If so, we call v good. Scanning through S, we can
identify the good vertices in time O(n log s) and space
O(s). The expected number of good vertices is s′/2,
where s′ is the size of VD(R∪K). For the remaining
vertices, we repeat the process with new random sam-
ples, but this time we take two samples per vertex, de-
creasing the failure probability to 1/4. We repeat the
process, taking in each round the maximum number
of samples that fit into the work space. In general, if
we have s′/ai active vertices in round i, we can take ai
samples per vertex, resulting in a failure probability
of 2−ai . Thus, the expected number of active vertices
in round i+ 1 is s′/ai+1 = s′/(ai2

ai). After O(log∗ s)
rounds, all vertices are good. To summarize:

Lemma 7 In total expected time O(n log s log∗ s)
and space O(s), we can find sets R ⊆ S and Rv ⊂ Bv
for each vertex v ∈ VD(R′ ∪K) such that (i) |R| = s:
(ii)

∑
v∈VD(R∪K) |Rv| = O(s); and (iii) for every Rv,

all vertices of VD(Rv) have at most 2n/s points from
Bv in their conflict circle.

We set R2 = R ∪
⋃
v∈VD(R∪K)Rv. By Lemma 7,

|R2| = O(s). We compute VD(R2 ∪K) and triangu-
late its bounded cells. For a triangle ∆ of the triangu-
lation, let r ∈ R2 ∪K be the site whose cell contains
∆, and v1, v2, v3 the vertices of ∆. We set B∆ =
{r} ∪

⋃3
i=1Bvi . One can show that |B∆| = O(n/s).

Lemma 8 For every triangle ∆ in the triangulation
of VD(R2∪K), we have VD(S∪K)∩∆ = VD(B∆)∩∆.

Proof. Let v1, v2, v3 be the vertices of ∆ and let r ∈
R2 ∪ K be the point whose cell contains ∆. Fix a
point x ∈ ∆, and let C be a circle with center x and
no points from B∆ in its interior. It suffices to show
that C contains no points from S \B∆ in its interior.
Suppose there exists a point p ∈ S \ B∆ that lies
inside of C. Consider the bisector B of p and r. Since
C contains p but not r, we have d(x, p) < d(x, r), so
x lies on the same side of B as p. Since x ∈ ∆, at
least one of v1, v2, v3, is on the same side of B as p;
say v1. This means that d(v1, p) < d(v1, r), so p lies
inside the circle around v1 with r on the boundary.
This is precisely the conflict circle of v1. �

Theorem 9 Let S be a planar n-point set. In ex-
pected time O((n2/s) log s + n log s log∗ s) and space
O(s), we can compute all Voronoi vertices of S.

Proof. We compute a set R2 as above. This takes
O(n log s log∗ s) time and space O(s). We triangu-
late the bounded cells of VD(R2 ∪ K) and compute
a point location structure for the result. Since there
are O(s) triangles, we can store the resulting triangu-
lation in the workspace. Now, the goal is to compute
simultaneously for all triangles ∆ the Voronoi diagram
VD(B∆) and to output all Voronoi vertices that lie in

∆ and are defined by points from S. By Lemma 8,
this gives all Voronoi vertices of VD(S).

Given a planar m-point set X, the algorithm by
Asano et al. finds all vertices of VD(X) in O(m) scans
over the input, with constant workspace [2]. We can
perform a simultaneous scan for all sets B∆ by deter-
mining for each point in S all sets B∆ that contain
it. This takes total time O(n log s), since we need one
point location for each p ∈ S and since the total size of
the B∆’s is O(n). We need O(max∆ |B∆|) = O(n/s)
such sweeps, so the second part of the algorithm needs
O((n2/s) log s) time. �
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