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Abstract
A family of k point sets in d dimensions is well-separated if the convex hulls of any two disjoint
subfamilies can be separated by a hyperplane. This notion is instrumental in showing that certain
generalized ham-sandwich cuts exist. But how hard is it to check whether a given family of high-
dimensional point sets has this property? Starting from this question, we study several algorithmic
aspects of the existence of high-dimensional transversals and separations.

1 Introduction

Given a family of k sets S1, . . . , Sk in Rd, we say that the family is well-separated if for
any proper index set I ⊂ [k], with I 6= ∅ and I 6= [k], the convex hulls of SI and S[k]\I
can be separated by a hyperplane, where we define SJ = ∪j∈JSj , for any proper index
set J ⊂ [k]. Well-separation is equivalent to the fact that for any proper index set I, the
convex hulls of SI and S[k]\I do not intersect. A hyperplane h is a transversal if Si ∩ h 6= ∅
for all i ∈ [k]. More generally, an m-flat (i.e., an affine subspace of dimension m) is an
m-transversal if it intersects all the sets of the family. It turns out that well-separation is
intimately related to transversals: a family of sets S1, . . . , Sk is well-separated if and only
if there is no (k − 2)-transversal of the convex hulls of S1, . . . , Sk. Observe that for any
family of k ≤ d sets, there always exists a (k − 1)-transversal. Indeed choose a point from
each of the k sets, and consider a (k − 1)-flat that contains these k points. Furthermore
due to Radon’s theorem a family of d + 2 sets in dimension d cannot be well-separated.
Radon’s theorem states that any set of d+ 2 points in dimension d can be partitioned into
two sets with intersecting convex hulls. Questions related to transversals have been studied
extensively, mostly from a combinatorial, but also from a computational perspective. For
more background, we refer the interested readers to the relevant surveys [2, 10,11].
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Well-separation is a strong assumption on set-families, and it should not be a surprise
that for many problems, it leads to stronger results and faster algorithms compared to the
general case. One such example concerns Ham-Sandwich cuts. Given d point sets P1, . . . , Pd

in Rd, a Ham-Sandwich cut is a hyperplane that simultaneously bisects each point set. While
Ham-Sandwich cuts exist for any family of d point sets [16], computing a Ham-Sandwich cut
is PPA-complete when the dimension is not fixed [9], meaning that it is unlikely to allow an
algorithm that runs in polynomial time in the dimension d. On the other hand, if P1, . . . , Pd

are well-separated, not only do there exist bisecting hyperplanes, but the Ham-Sandwich
theorem can be generalized to hyperplanes cutting off arbitrary given fractions from each
point set [5,15]. Moreover, the problem of finding such hyperplanes lies in the complexity class
UEOPL [8], a subclass of PPA which is believed to allow for significantly faster algorithms.

From an algorithmic perspective, the main focus of work has been on line transversals in
dimensions 2 and 3, see, e.g., [1, 4, 14]. To the authors’ knowledge, in higher dimensions only
hyperplane transversals have been studied, where the best known algorithm for deciding
whether a set of n polyhedra with m edges has a hyperplane transversal, runs in time
O(nmd−1) [3]. In particular, there is an exponential dependence in the dimension d. This
curse of dimensionality appears in many geometric problems. For several problems, it has
been shown that there is probably no hope to get rid of the exponential dependence in the
dimension. As an example, we mention a result for Ham-sandwich cuts, due to Knauer,
Tiwary and Werner [12]: Given d point sets P1, . . . , Pd in Rd and a point p ∈ Rd, where
d is part of the input, it is W [1]-hard (and thus NP-hard) to decide whether there is a
Ham-sandwich cut passing through p.

Our Results. A family of k sets in Rd is well-separated, if and only if their convex hulls
have no (k − 2)-transversal. This fact seems to be well-known, but we could only find some
references without proofs, and some proofs of only one direction, for similar definitions of
well-separation [6, 7]. Therefore, we present a short proof for sake of completeness in the full
version. This immediately implies that testing well-separation is in coNP.

In [8], the authors ask what is the complexity of determining whether a family of point
sets is well-separated, when d is not fixed. We present several hardness results for finding
(k − 2)-transversals in a family of k sets in Rd. We consider two cases: a) the sets are finite
point sets, and b) the sets are convex.

I Theorem 1.1. Given a family of k > d point sets in Rd, each consisting of at most two
points, it is strongly NP-hard to check whether there is a (d − 1)-transversal, even in the
special case k = d+ 1.

Note that this problem is trivial if k ≤ d, as the answer is always yes. Our result shows
that the problem becomes NP-hard for the first value of k for which the problem is non-trivial.
We use Theorem 1.1 to show the following:

I Theorem 1.2. Given a set of k > d line segments in Rd, it is strongly NP-hard to check
whether there is a (d− 1)-transversal, even in the special case k = d+ 1.

Theorem 1.2 implies that testing well-separation is coNP-complete even in the case of
d+ 1 segments in Rd, answering the question from [8].

As a positive result, we can show the existence of the following approximation algorithm.
This can be seen as the special case where each point set consists of a single point.

I Theorem 1.3. Given a set P of k points in Rd, it is possible to compute in polynomial
time in d and k a hyperplane that contains Ω( OPT log k

k log log k ) points of P , where OPT denotes the
maximum number of points in P that a hyperplane can contain.
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In Section 3, we study the problem through the lens of parametrized complexity. We
show a significant difference depending on whether we consider convex sets or finite point
sets.

I Theorem 1.4. Checking whether a family of k ≤ d+ 1 convex hulls of point sets in Rd

has a (k − 2)-transversal (or equivalently, whether the point sets are well-separated) is FPT
with respect to d.

I Theorem 1.5. Given a set of k > d point sets in Rd, it is W[1]-hard with respect to d to
check whether there is a (d− 1)-transversal, even in the special case k = d+ 1.

Observe that for finite point sets (and more generally for any sets that are not convex),
having no (k − 2)-transversal does not a priori imply well-separation.

2 Hyperplane Transversals in High Dimensions

Let S1, . . . , Sk ⊂ Rd be k sets in d dimensions, where d is not fixed. Note that we do not
assume the sets to be convex. In particular, the sets can even be finite. We consider the
decision problem HypTrans: Given sets S1, . . . , Sk, decide if there is a (d− 1)-transversal
for them. We consider the finite case and the case of line segments. We also consider the
optimisation formulation of HypTrans, that we name MaxHyp: Given the sets S1, . . . , Sk,
find a hyperplane that intersects as many of these sets as possible.

We begin with the case that all Si are finite point sets. We first assume that every Si

contains a single point, for i = 1, . . . , k. Note that in this situation, HypTrans can be solved
greedily. We denote by P the point set that is the union of all Si. Let us denote by OPT
the maximum number of points in P that a hyperplane may contain.

I Theorem 1.3. Given a set P of k points in Rd, it is possible to compute in polynomial
time in d and k a hyperplane that contains Ω( OPT log k

k log log k ) points of P , where OPT denotes the
maximum number of points in P that a hyperplane can contain.

Proof. If k ≤ d, we just output a hyperplane that contains all points of P . Otherwise, let
f(k) = log k/ log log k. If f(k) < d, we pick d points from P , and we output a hyperplane
through these points. If f(k) ≥ d, we partition P into disjoint groups of size f(k). In each
group, we compute all hyperplanes that go through some d points from the group. Among
all hyperplanes for all groups, we output the hyperplane that contains the most points in P .
For each group, we have O(f(k)d) = O(f(k)f(k)) = O(k) hyperplanes to consider. Thus, the
algorithm runs in polynomial time in d and k.

We now analyze the approximation guarantee. If f(k) < d, then we output a hyperplane
with at least d > f(k) ≥ f(k)OPT/k points, since OPT ≤ k. If f(k) ≥ d, we let h be an
optimal hyperplane. If h contains at least d points in a single group, then we output an
optimal solution. Otherwise, h contains less than d points in each group, so OPT ≤ d(k/f(k)).
This means that d ≥ f(k)OPT/k, and the claim follows from the fact that our solution
contains at least d points. J

We now restrict ourselves to the situation that every Si contains at most two points, for
i = 1, . . . , k. We will prove that already in this case HypTrans is strongly NP-hard, by
reducing from BinPacking. Our reduction will pass through two intermediate problems
EqualBinPacking and FlatTrans. We start by defining all the involved problems.

In BinPacking, we are given as input a set of items I = {I1, . . . , In} with weights
w(Ii) := w(i) ∈ Z+, and a set B = {B1, . . . , Bk} of bins, all with the same capacity b ∈ Z+.

EuroCG’22
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The goal is to decide whether there is a partition of the items into the bins such that in each
bin the total weight of the items does not exceed the capacity. In EqualBinPacking, we
are given the same input, but now the goal is to decide whether there exists a partition of
the items into the bins such that in each bin the total weight of the items equals exactly the
capacity. Note that BinPacking can easily be reduced to EqualBinPacking by adding
the appropriate number of elements of weight 1, so EqualBinPacking is strongly NP-hard
as well.

Finally, in FlatTrans, we are given m sets S0, . . . , Sm−1 in Rd, where m and d are
both part of the input, and the goal is to decide whether there is an (m− 2)-transversal. In
other words, the question is whether there exists an (m− 2)-dimensional affine subspace h
such that for each i ∈ {0, . . . ,m− 1} we have that Si ∩ h 6= ∅. Note that HypTrans with
k = d+ 1 is the same as FlatTrans with m = d+ 1.

I Theorem 2.1. FlatTrans is strongly NP-hard even when S0 = {0} and any other Si

consists of at most two points.

Sketch of proof. We reduce from EqualBinPacking. Given an input I,B,w, b, where
|I| = n and |B| = k, to EqualBinPacking, we construct an instance of FlatTrans as
follows: First, we set the dimension d = k + n+ kn and the number of sets m = kn+ 2. For
any (i, j) ∈ [n]× [k] define the vectors

vi,j(x) :=


w(i), if x = j,

1, if x = k + i,

1, if x = k + n+ (i− 1)k + j,

0, else,

and ui,j(x) :=


0, if x = j,

0, if x = k + i,

1, if x = k + n+ (i− 1)k + j,

0, else.

Note that by x ∈ {1, . . . k + n + kn} we describe the entries of the vector. For example
the first entry of vi,j is described by vi,j(1). Further, define the vector c(x) whose entries
are −b for 1 ≤ x ≤ k and −1 everywhere else. Now set S0 = {0}, Sl = {vi,j , ui,j} for each
l = (i− 1)k + j (note that this choice of l just gives that the order of the l’s corresponds to
the lexicographic order of the (i, j)’s) and Skn+1 = {c}. Note that all of this can be done in
polynomial time.

In the full version, we show that there is a kn-transversal of the sets S0, . . . , Skn+1, if
and only if there is a valid partition for the EqualBinPacking instance. J

Now, there is only one reduction remaining:

I Theorem 2.2. Let S0 = {0} and let Si ⊂ Rd be finite for i = 1, . . . ,m − 1. Then we
can construct in polynomial time sets S′0, S′1, . . . , S′d+2 ⊂ Rd+2 which can be transversed by a
hyperplane if and only if S0, S1, . . . , Sm−1 ⊂ Rd have an (m− 2)-transversal.

Sketch of proof. We only show the construction of the sets here. For the complete proof, we
refer to the full version. First, for each point p in some set Si we define the point p′ = (p, 0, 0)
and place it in the set S′i. For m ≤ i ≤ d+ 2, define S′i as the set consisting only of the point
s′i = (0, . . . , 0, 1, i). Additionally, let S′0 := {0}. J

Theorem 1.1 now follows from combining Theorems 2.1 and 2.2.
Further, we can now show that deciding whether there is a hyperplane transversal for d

line segments and the origin in Rd, where d is not fixed, is NP-hard. We will reduce this to
the restricted version of HypTrans where the sets Si contain at most two points. This is
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s1 s2

s3

Figure 1 Every hyperplane transversal through s1, s2, s3 must choose an endpoint of s1 (and of
s2).

done with the help of a gadget that enforces that every hyperplane transversal must use one
of the two endpoints of a given line segment. The gadget is shown in Figure 1.

Given a collection of sets of size at most two, for each set we take the line segment formed
by its points as s1, the origin as point s3, and we construct the corresponding new segment
s2 using the gadget presented in Figure 1. This gives a family S of 2k line segments that all
lie in a k-dimensional space. In order to prove Theorem 1.2, we need to lift our construction
to R2k. This lifting is described in the full version.

3 From the viewpoint of parametrized complexity

Recall that our original motivation comes from determining whether d point sets in Rd are
well-separated. Let us consider those d sets, and let us denote by n the total number of
extreme vertices on their respective convex hulls. We say that n is the convex hull complexity
of the set family. We assume that we are given the extreme points of the convex hull of every
set and hence have a finite number of points for every set.

I Theorem 1.4. Checking whether a family of k ≤ d+ 1 convex hulls of point sets in Rd

has a (k − 2)-transversal (or equivalently, whether the point sets are well-separated) is FPT
with respect to d.

Sketch of proof. For the O(2d) choices of index sets I ⊂ [k], we check with an LP whether
the convex hulls of SI and S[k]\I intersect. J

On the other hand, using a framework similar to the one introduced by Marx [13], we
show in the full version that

I Theorem 3.1. FlatTrans is W [1]-hard with respect to the dimension.

Combining this with Theorem 2.2, we deduce Theorem 1.5.
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