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Abstract— We present several results about Delaunay triangu-
lations (DTs) and convex hulls in transdichotomous and hereditary
settings: (i) the DT of a planar point set can be computed in
expected time O(sort(n)) on a word RAM, where sort(n) is the
time to sort n numbers. We assume that the word RAM supports
the shuffle-operation in constant time; (ii) if we know the ordering
of a planar point set in z- and in y-direction, its DT can be found by
a randomized algebraic computation tree of expected linear depth;
(iii) given a universe U of points in the plane, we construct a
data structure D for Delaunay queries: for any P C U, D can
find the DT of P in time O(|P|loglog |U|); (iv) given a universe
U of points in 3-space in general convex position, there is a data
structure D for convex hull queries: for any P C U, D can find the
convex hull of P in time O(|P|(loglog|U|)?); (v) given a convex
polytope in 3-space with n vertices which are colored with x > 2
colors, we can split it into the convex hulls of the individual color
classes in time O(n(loglogn)?). The results (i)-(iii) generalize
to higher dimensions. We need a wide range of techniques. Most
prominently, we describe a reduction from DTs to nearest-neighbor
graphs that relies on a new variant of randomized incremental
constructions using dependent sampling.

1. INTRODUCTION

Everyone knows that it takes 2(nlogn) time to sort n
numbers—and yet this lower bound can often be beaten.
Under the right assumptions, radix sort and bucket sort run in
linear time [25]. Using van Emde Boas (VEB) trees [43], we
can sort n elements from a universe U in O(nloglog|U|)
time on a pointer machine. In a transdichotomous model,
we can surpass the sorting lower bound with fusion trees,
achieving O(n+/log n) time. Fusion trees were introduced in
1990 by Fredman and Willard [30] and triggered off a devel-
opment that culminated in the O(n+/loglogn) time sorting
algorithm by Han and Thorup [31]. For small (O(logn)) and
large (Q(log®"™® n)) word sizes, we can even sort in linear
time (via radix sort [25], resp. signature sort [6]).

In computational geometry, there have been many results
that use VEB trees or similar structures to surpass tradi-
tional lower bounds (eg, [5], [21], [27], [32], [33], [40]).
However, these results assume that the input is rectilinear or
can be efficiently approximated by a rectilinear structure,
like, for example, a quadtree. In this sense, the above
results are all orthogonal. Similarly, Willard [45] applied
fusion trees to achieve better bounds for orthogonal range
searching, axis-parallel rectangle intersection, and others.
Again, his results are all orthogonal, and he asked whether
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improved bounds can be attained for Voronoi diagrams. The
breakthrough came in 2006, when Chan and Pétragcu [16]
discovered transdichotomous algorithms for point location
in non-orthogonal planar subdivisions. This led to better
bounds for many classical computational geometry prob-
lems. In a follow-up paper [17], they considered off-line
planar point location and thereby improved the running time
for Delaunay triangulations, three-dimensional convex hulls,
and other problems. The running time is a rather unusual
n20(Vleglogn) "which raises the question whether the result
is optimal. More generally, Chan and Pétragcu asked if
the approach via point location is inherent, or if there
are more direct algorithms for convex hulls or Delaunay
triangulations. Finally, they also briefly discussed [16, Sec-
tion 3] the merits of various approaches to transdichotomous
algorithms and why fusion trees seemed most feasible for
planar point location. In particular, this leaves the question
open whether the VEB approach can provide any benefits for
computational geometry, apart from the orthogonal results
mentioned above.

Let us compare the respective properties of the VEB and
the fusion method. The latter is more recent and makes
stronger use of the transdichotomous model. The main idea
is to “fuse” (parts of) several data items into one word and
then use constant time bit-operations for parallel processing.
Unfortunately, since results based on fusion trees need all the
transdichotomous power, they usually do not generalize to
other models of computation. The VEB method, on the other
hand, is the older one and is essentially based on hashing:
the data is organized as a tree of high degree, and the higher-
order bits of a data item are used to locate the appropriate
child at each step. Thus, they apply in any model in which
the hashing step can be performed in constant time, for
example a pointer machine [36]. This becomes particularly
useful for hereditary results [20], where we would like to
preprocess a large universe U in order to quickly answer
queries about subsets of U. In this setting, VEB trees show
that it suffices to sort a big set once in order to sort any
large enough subset of U faster than in ©(nlogn) time.

Our results. We begin with a randomized reduction from
Delaunay triangulations (DTs) to nearest-neighbor graphs
(NNGs). Our method uses a new variant of the classic



randomized incremental construction (RIC) paradigm [4],
[24], [39] that relies on dependent sampling for faster
conflict location. If NNGs can be computed in linear time,
the running time of our reduction is proportional to the
structural change of a standard RIC, which is always linear
for planar point sets and also in many other cases, eg,
point sets suitably sampled from a (d — 1)-dimensional
polyhedron in R? [3], [8].! The algorithm is relatively simple
and works in any dimension, but the analysis turns out
to be rather subtle. It is a well-known fact that given a
quadtree for a point set, its nearest-neighbor graph can
be computed in linear time [13], [15], [22]. This leads
to our main discovery: Given a quadtree for a point set
P C RY we can compute the Delaunay triangulation of
P, DT(P), in time proportional to the expected structural
change of a RIC. This may be surprising, since even though
DTs appear to be inherently non-orthogonal, we actually
need only the information encoded in quadtrees, a highly
orthogonal structure.

Our reduction has many consequences. First, we answer
Willard’s seventeen-year-old open question by showing that
planar DTs, and hence planar Voronoi diagrams and related
structures like Euclidean minimum spanning trees, can be
computed in time O(sort(n)) on a word RAM. Our
algorithm requires one non-standard, but AC’, operation,
the shuffle. However, we believe that it should be straight-
forward to adapt existing integer sorting algorithms so that
our result also holds on a more standard word RAM. In
Appendix A, we demonstrate this for the (comparatively
simple) O(nloglogn) sorting algorithm by Andersson et
al [6]. Since our reduction works in a traditional model, we
also get pointer machine algorithms for hereditary DTs: we
can preprocess a point set U such that for any subset P C U,
it takes O(| P|loglog |U|4+C(P)) time to find DT(P). Here,
C(P) denotes the expected structural change of a RIC on
P. Since a planar quadtree can be computed by an algebraic
computation tree (ACT) of linear depth once the points are
sorted according to the x- and y-direction, we find that after
presorting in two orthogonal directions, a planar DT can be
computed by an ACT of expected linear depth. This should
be compared with the fact that there is an Q(nlogn) lower
bound when the points are sorted in one direction [28],
and also for convex hulls in R3 when the points are sorted
in any constant number of directions [42]. This problem
has appeared in the literature for at least twenty years [1],
[21], [28], and our result seems to mark the first non-trivial
progress on this question. However, we do not know if a
quadtree for presorted points can be constructed in linear
time, since the algorithms we know still need an Q(n logn)

IThe bound in the references is only proved for the complexity of the
final DT, but we believe that it can be extended to the structural change of
a RIC.

overhead for data handling.?

In the second part, we extend the result about hereditary
DTs to 3-polytopes and describe a VEB-like data structure
for this problem: preprocess a point set U C R? in general
convex position such that the convex hull of any P C U
can be found in time O(|P|(loglog|U|)?). These queries
are called convex hull queries. We use a relatively recent
technique [20], [23], [44] which we call scaffolding: in order
to find many related structures quickly, we first compute
a “typical” instance—the scaffold S—in a preprocessing
phase. To answer a query, we insert the input points into
S and use a fast hereditary algorithm [20] to remove the
scaffold. We also need a carefully balanced recursion and
a bootstrapping method similar to the one by Chan and
Pétragcu [17]. This also improves a recent algorithm for
splitting a 3-polytope whose vertices are colored with x > 2
colors into its monochromatic parts [20, Theorem 4.1]. All
our algorithms are randomized, and it is an interesting open
problem to derandomize them. In particular, it would be
very interesting to find a deterministic algorithm for splitting
DTs [18] or, more generally, convex polytopes [20].

Computational models. We use two different models
of computation, a word RAM and a pointer machine. The
former represents data as a sequence of w-bit words, where
w = Q(logn). Data can be accessed randomly, and standard
operations (ie, Boolean operations, addition, or multiplica-
tion) take constant time. We need one nonstandard operation:
given a point p € R¢ with w-bit coordinates Plw - - - P12P115
Dow - -D21s -+ Ddw---Pd1, the result of shuffle(p)
is the dw-bit word p1,pow - - - Pdw - - - P12 + - - Pd2P11 - - - Pd1-
Clearly, shuffle is in ACO, and we assume that it takes
constant time on our RAM. In Appendix A, we indicate how
this assumption can be dropped.

On a pointer machine, the data structure is modeled as a
directed graph G with bounded out-degree. Each node in G
represents a record, with a bounded number of pointers to
other records and a bounded number of (real or integer)
data items. For each point in the universe U there is a
record storing its coordinates, and the input sets are provided
as a linked list of records, each pointing to the record
for the corresponding input. The output is provided as a
DCEL [26, Chapter 2.2]. The algorithm can access data
only by following pointers from the inputs (and a bounded
number of global entry records); random access is not
possible. The data can be manipulated through the usual
real RAM operations, such as addition, multiplication, or
square-root. However, we assume that the floor function
is not supported, to prevent our computational model from
becoming too powerful [41].

2It would be interesting to see if there is a connection to the notorious
SORTING X + Y problem [29], which seems to exhibit a similar behavior.



2. FROM NNGs 10 DTS

We now describe our reduction from nearest-neighbor
graphs (NNGs) to Delaunay triangulations (DTs). This is
done by a randomized algorithm which we call BrioDC, for
Biased Random Insertion Order with Dependent Choices:

Algorithm BrioDC(P)

1) If |P| = O(1), compute DT(P) directly and return.

2) Compute NN(P).

3) Let .S C P be a random sample such that (i) S meets
every connected component of NN(P) and (ii) Pr[p €
S]=1/2, for all p € P.

4) Call BrioDC(S) to compute DT(S).

5) Compute DT(P) by inserting the points in P\ .S into
DT(S), using NN(P) as a guide.

Algorithm 1: The reduction from DTs to NNGs.

To find S in Step 3, we define a partial matching M (P) on
P by pairing up two arbitrary points in each component
of NN(P), the nearest-neighbor graph of P. Then, S is
obtained by picking one random point from each pair in
M(P) and sampling the points in P\ M(P) independently
with probability 1/2 (although they could also be paired up).
In Step 5, we successively insert the points from P\ S as
follows: pick a point p € P\ S that has not been inserted
yet and is adjacent in NN(P) to a point ¢ in the current
DT. Such a point always exists by the definition of .S. Walk
along the edge qp to locate p in the current DT, and insert
it. Repeat until all of P has been processed.

Theorem 2.1. Suppose the nearest-neighbor graph of an
m-point set can be found in f(m) time, where f(m)/m
is increasing. Let P C R% be an n-point set. The expected
running time of BrioDC is O(C(P)+ f(n)), where C(P) is
the expected structural change of a RIC on P. The constant
in the O-notation depends exponentially on d.

Let P =5y 2 --- 25y be the sequence of samples. Fix
a set u of d + 1 distinct points in P. Let A be the simplex
spanned by u, and let L, C P denote the points inside A’s
circumsphere. We call u the trigger set and L, the stopper
set for A. Consider the event A, that A occurs during
the construction of DT(S,) from DT(S,41), for some o.
Clearly, A, can only happen if u C S, and LyNSy 1 = 0.
To prove Theorem 2.1, we bound Pr[4,].

Lemma 2.2. We have

PT[AQ] < 62d+2 27(d+1)a (1 _ 270171)‘Lu| ]

We visualize the sampling process as follows [38, Chap-
ter 1.4]: imagine a particle that moves at discrete time
steps on the nonnegative z-axis and always occupies integer
points. The particle starts at position |L,|, and after 3 steps,
it is at position |Sg N Ly|, the number of stoppers in the

current sample. The goal is to bound the probability of
reaching 0 in v+ 1 steps, retaining all the triggers. However,
the random choices in a step not only depend on the current
position, but also on the matching M (S). Even worse, the
probability distribution in the current position may depend
on the previous positions of the particle. We avoid these
issues through appropriate conditioning and show that the
random walk essentially behaves like a Markov process that
in each round eliminates d + 1 stoppers and samples the
remaining stoppers independently. The elimination is due to
trigger-stopper pairs in M(S), since we want all triggers
to survive. The remaining stoppers are not necessarily inde-
pendent, but dependencies can only help, because in each
stopper-stopper pair one stopper is guaranteed to survive.
Eliminating d + 1 stoppers in the ith step has a similar
effect as starting with about (d+1)2¢ fewer stoppers: though
a given trigger can be matched with only one stopper per
round, these pairings can vary for different instances of
the walk, and since a given stopper survives a round with
probability roughly 1/2, the “amount” of stoppers eliminated
by one trigger in all instances roughly doubles per round.
Proof of Lemma 2.2: For a subset S C P, de-
fine the matching profile for S as the triple (a,b,c)
that counts the number of trigger-stopper, stopper-stopper,
and trigger-trigger pairs in M(S). We consider p, ) =
maxp, Pr[A, | Xk, Pr](x), where X, ={u C So_¢} N
{|Lu N Sq_k| = s} is the event that the sample S,_; con-
tains all triggers and exactly s stoppers. The maximum
in (*) is taken over all possible sequences Pr = my,
vy Mg_g_1,Y, ..., Yo_r_1 of matching profiles m;
for S; and events Y; of the form X, ,_; for some t;.
Since Pr[A,] = p|1,|,a- it suffices to upperbound p; . We
describe a recursion for p, 5. For that, let T, = {u C So_x}
be the event that S,_j contains all the triggers, and let
Uki = {|LuNSa—i| =i} denote the event that S,_j
contains exactly ¢ stoppers.

Proposition 2.3. We have

Psk < mn?ILXPI"[Tk_1 | Xs.k,m]:

S

Z Pik—1 Pr[Ug-1,
i=0

kalaXs,krvm]a
where the maximum is over all possible matching profiles
m = (a,b,c) for So_.

Proof: Fix a sequence Py, as in (*). Then, by distin-
guishing how many stoppers are present in S, 1,

PI[AOL | XS,}C,P]C] =

ZPI“[Xi,kfl | Xo .k, Pi] Pr[Aa | Xik—1, Xsk: Prl-
i=0

Now if we condition on a matching profile m for S,_, we



get

PriX; k-1 | Xsk, Pr,m] =
PI‘[Tk_l | XSJC,m] PI“[Uk_lﬂ‘ I Tk._l,Xs,k,m],

since the distribution of triggers and stoppers in S,_j+1
becomes independent of P, once we know the matching
profile and the number of triggers and stoppers in S,_.
Furthermore,

PrlAq | Xik—1,m, Xg i, Pr]

<maxPr[Ay | Xi k-1, Pit+1] = Pik—1-
Pr+1
The claim follows by taking the maximum over m. ]

We use Proposition 2.3 to bound p, x: if m = (a,b,c)
pairs up two triggers, we get u € S, _gy1 and Pr[Ty_; |
Xs,x,m] = 0. Hence we can assume ¢ = 0 and therefore
Pr[Ty_1 | Xsx,m] = 1/2%+1 since all triggers are sampled
independently. Furthermore, none of the a stoppers paired
with a trigger and half of the 2b stoppers paired with a
stopper end up in Sy k41, wWhile the remaining ¢y = s—a—
2b stoppers are sampled independently. Thus, Proposition 2.3
gives

s—a—b

Pik-1p, [B*m — i b], (1)

Ps i < max od+1 1/2

c=0 i=b
where Bi‘"2 denotes a binomial distribution with ¢, trials
and success probability 1/2.

Proposition 2.4. We have

pep < 27 (DR (1-279)

||’:]w

Proof: The proof is by induction on k. For k = 0,
we have pso < (1—1/2)", since we require that none
of the s stoppers in S, be present in S,11, and this can
only happen if they are sampled independently of each other.
Furthermore, by (1),

s—a—b
Dik "
Ps,k+1 < Max Z ﬁ Pr [33/2 —i_ b]
=0 i=b
1 m 4
— - m )
- I?Ea;( 9d+1+im ZZ:% ( ; )pz+b,k- Q)

Using the inductive hypothesis and the binomial theorem,

we bound the sum as

tm t
Z i Pi+b,k

=0
im () (127 o a1
= o 2(d+1)k H 1-277
j=1
_ 9—k—1)\!m k
_(2 2(?1+1)k) 2k1)bH 1-279) —d-1
j=1
1 — 2 k=2)t b T a1
:7( 2(d+1)k7t2 Q-2 J[a-27)""".

J=1

Now, since tjy = s —a —2b>s—d —1— 2b and since
(1—2-+-1)° 1—2-h-1 ’
= <1
(1 _ 27k71 +22k4) —

(1—2-k-2)%
it follows that
1 —9—k=2)% kil de
) H (1 _ 2_]) d 17

tm
t
E (I-n>pi+b,k < (
i o

d+1)k—ty
— 2(d+1)

and hence (2) gives

1—27k-2)" A

_iy—d—1
9(d+1)(k+1) H (1-27) ’
j=1

Pskt+1 <

which finishes the induction. ]
Now, since 1 — z > exp(x/(x -1)) for x < 1 we have

H?=1(1 _ o)l < 2d+1) Y07 e2(d+) | g0
Pr[A,] < piry)e < 2322701 — 2=a=1)lll which
proves Lemma 2.2. [ ]

Proof of Theorem 2.1: Since f(m)/m increases, the

expected cost to compute the NNGs for all the samples is
O(n). Furthermore, the cost of tracing an edge pg of NN(P),
where p is in the current DT and ¢ will be inserted next
consists of (a) the cost of finding the starting simplex at p
and (b) the cost of walking through the DT. Part (a) can be
bounded by the degree of p in the current DT. In total, any
simplex appears at most as often as the total degree of its
vertices in NN(P), which is constant [37, Corollary 3.2.3].
Hence, (a) is proportional to the structural change. The same
holds for (b), since every traversed simplex will be destroyed
when the next point is inserted.

It is now sufficient to show that the probability that the
simplex spanned by u C P occurs in BrioDC is asymptot-
ically upperbounded by the corresponding probability in a
RIC. In the case of BrioDC, this probability is bounded by
o o Pr[A4]. Let p denote the corresponding probability in
aRIC and let p,, = 2~ (¢+De(1—2-a~1)lLul(1-2-4=1) We
have Pr[A4,] < exp(2d + 2)(1 — 279 1)~1p,. Now, from
an analysis of RIC con BRIO [12, Lemma 3.8] we have,
> o Pa < 24 1p thus, Y07 Pr[A,] < 2¢Tlexp(2d +
2)(1 —27971)"1p, as desired. [



Remark. The reduction also shows that it takes Q(nlogn)
time to compute NNGs and well-separated pair decomposi-
tions, even if the input is sorted along one direction [28].
Remark. The dependent sampling has more advantages than
just allowing for fast point location. For instance, if P
samples a region, eg, a surface [8], in the sense that for
any point in the region there is a point in P at distance
at most ¢, then similar guarantees with increasing e still
hold for S = 51, 55, . ... Furthermore, Lemma 2.2 directly
generalizes to the more general setting of configuration
spaces [39] by replacing d + 1 by the degree bound, ie, the
maximum number of triggers. Thus, our dependent sampling
scheme can be used in the incremental construction of a
wide range of structures, and may be useful in further
applications.

Remark. Finally, we note that if P is planar, the proof of
Theorem 2.1 can be simplified considerably:

A simple proof of Theorem 2.1 for d = 2: As we argued
at the beginning of the proof of Theorem 2.1, it suffices to
bound the structural change. For this, we compare it to the
structural change of the last round of a RIC con BRIO [4].
Let ps be the probability that a given triangle with s conflicts
appears in the last round of such a construction. We have
ps = ¢/2° for a suitable constant c. The probability p/, that
this triangle appears in BrioDC while constructing DT (P)
from DT(S) is also bounded by 1/2%: either the stoppers
of the triangle are sampled independently of each other
(then we directly get this bound), or not (then S includes a
stopper and the simplex cannot occur). Thus, the expected
structural change is asymptotically as for RIC con BRIO
and therefore linear [4], [12]. Now, the expected size of
S is |P|/2, and we can apply the argument above to the
construction of DT'(S), and so on. Overall this yields the
desired running time. Note that this argument does not apply
in higher dimensions, because the sample S is biased and so
without further argument we cannot exclude the possibility
that the complexity of DT(S) is large, even if C'(P) is small.

|

3. DELAUNAY TRIANGULATIONS

Let P C R? be an n-point set whose coordinates are
w-bit words. The shuffle-order of P is obtained by taking
shuffle(p) for every p € P, as described above, and
sorting the resulting numbers in the usual order. The shuffle
order is intimately related to quadtrees [11], [15].

Lemma 3.1. Suppose our computational model is a word
RAM. Let P C R% pe given in shuffle-order. Then, a
compressed quadtree for P can be computed in O(|P|) time.

Proof: Our argument mostly follows Chan’s presenta-
tion [15, Step 2]. We define a hierarchy H of quadtree-boxes,
by taking the hypercube [0,2% — 1] as the root box and by
letting the children of a box b be the hypercubes that divide
b into 2¢ equal axis-parallel parts. For two points p, g, let

box(p, q) be the smallest quadtree box that contains p and
q, and let |box(p, q)| be the side-length of this box. Both
can be found by examining the most significant bits in which
the coordinates of p and q differ. A compressed quadtree for
a point set P is the subtree of H induced by the leaves in H
that correspond to P. The crucial observation that connects
compressed quadtrees with the shuffle order is that if the
children of each node in H are ordered lexicographically,
then the leaves of H are sorted according to the shuffle
order. The quadtree is constructed by BuildQuadTree
(Algorithm 2). Correctness and running time follow just

Algorithm BuildQuadTree
1) qo.box = R%, gg.children = (py), k =0
2) fort=2,...,n
a) while [box(p;—1,p;)| > |qr.box| do k =k — 1
b) if |gx.box| = |box(p;—1,p;)|, let p; be the
next child of ¢x; otherwise, create qx41 with
qr+1-box = box(p;—1,p;), and move the last
child of gy, to the first child of g1, make p; the
second child of gx1, and gg41 the last child of
qr. Set k =k + 1.

Algorithm 2: Building a compressed quadtree.

as in Chan’s paper, if our model supports the msb (most
significant bit) operation in constant time, where msb is the
index of the first nonzero bit in a word.

With some more effort, we can avoid the msb-operation.
First, note that box-sizes can be compared without msb,
by using (4) as in Appendix A. Then BuildQuadTree
finds the combinatorial structure of the compressed quadtree
T for P. Using a post-order traversal of T, we can find
for each node b in 7" a minimum bounding box for the
points under b, in linear time. This information suffices to
apply Lemma 3.2, as we can see by inspecting the proof of
Callahan and Kosaraju [13]. |
Via well-separated pair decompositions, we can go from
quadtrees to NNGs in linear time [13], [15], [22].

Lemma 3.2. Let P C RY. Given a compressed quadtree
for P, we can find NN(P) in O(|P|) time in a traditional
model (and also on a word RAM). O]

Combining Theorem 2.1 with Lemmas 3.1 and 3.2, we
derive the main result for this section.

Theorem 3.3. Suppose our computational model is a word
RAM with a constant-time shuffle operation. Let P C R be
an n-point set. Then DT(P) can be computed in expected
time O(sort(n) + C(P)), where C(P) denotes the expected
structural change of a RIC on P and sort(n) denotes the
time needed for sorting n numbers. [

Remark. For planar point sets, C'(P) is always linear, and
this also often holds in higher dimensions. Furthermore,




in the plane there is another approach to Theorem 3.3,
which we sketch here: we sort P in shuffle order and
compute a quadtree for P using Lemma 3.1. Then we use
the techniques of Bern et al [10], [11] to find a point set
P’ D P and DT(P’) in O(n) time, where |P’'| = O(n).
Finally, we extract DT(P) with a linear-time algorithm for
splitting Delaunay triangulations [18], [20].

Our reduction has a curious consequence about presorted
point sets, since quadtrees for such point sets can be found
by an algebraic computation tree [7, Chapter 14] of linear
depth.

Theorem 3.4. Let P C R? be an n-point set, such that
the order of P along each coordinate axis is known. Then
DT(P) can be computed by an algebraic computation
tree with expected depth O(sort(n) + C(P)), where C(P)
denotes the expected structural change of a RIC on P.

Proof (sketch): Build the quadtree in the standard
way [10], [13], but use simultaneous exponential searches
from both sides when partitioning the points in each box. In
each step of the search, we compare a coordinate of an input
point with the average of the corresponding coordinates of
two other input points. Then, we see that the number of
such comparisons obeys a recursion of the type T'(n) =
O(log(min(ni,n2)) +T'(n1) + T(ng), with ny,ny <n—1
and ny + ne = n, which solves to T'(n) = O(n). This
recursion holds only for nodes in which we are making
progress in splitting the point set, but in all other nodes
we perform only constantly many comparisons and there are
linearly many of them. Nonetheless, we still need O(n logn)
steps to split both the z- and the y-lists while building the
tree. ]
We can also use our reduction to get a VEB-like result for
planar Delaunay triangulations.

Theorem 3.5. Let U C R? be a u-point set. In O(ulogu)
time we can preprocess U into a data structure for the
following kind of queries: given P C U with n points, com-
pute DT(P). The time to answer a query is O(nloglogu+
C(P)). The algorithm runs on a traditional pointer machine.

Proof: Compute a compressed quadtree 7" for U in time
O(ulogu) [10]. We use T in order to find NNGs quickly.
Let S C U be a subset of size m. The induced subtree for
S, T, is the union of all paths from the root of T to a leaf
in S. It can be found in time O(m loglogu).

Claim 3.6. We can preprocess T into a data structure of
size O(uloglogu) such that for any subset S C U of
m points we can compute the induced subtree Ts in time
O(mloglogu).

Proof: Build a vEB tree [36], [43] A for U, and
preprocess 1" into a pointer-based data structure for least-
common-ancestor (Ica) queries [35]. Furthermore, for each
node of 7' compute its depth, and build a vEB priority

queue B for the depths in 7'. These data structures need
O(uloglogu) space. Given S, use the VEB tree A to sort
S according to the order of 7. Then use the Ica-structure
to compute T as follows: initialize a linked list ) with
S in sorted order. Insert the elements in S into VEB tree
B, using the depth of the corresponding leaves as the key.
Remove from B an element v with maximum depth, use )
to find v’s two neighbors, and perform two lca-queries, one
on v and its left neighbor, one on v and its right neighbor.
Replace v in () and B by the lower of the two ancestors (or
delete v, if the ancestor is already present). Since there are
O(m) queries to the VEB trees, and O(m) queries to the
Ica-structure, the whole process takes time O(m loglogu),
as claimed. [ ]

In order to find NN(S), use Claim 3.6 to compute T's and
then use Lemma 3.2. This takes O(m loglogm) time, and
now the claim follows from Theorem 2.1. [ ]
Remark. As is well known, once we have computed the
DT, we can find many other important geometric structures
in O(n) time, see the paper by Chan and Pétragcu [16].

4. SCAFFOLD TREES

We now extend Theorem 3.5 to three-dimensional convex
hulls and describe a data structure that allows us to quickly
find the convex hull of subsets of a large point set U C R3
in general and convex position (gcp). We call our data
structure the scaffold tree. Our description starts with a
simple structure that handles convex hull queries in time
O(n+/log uloglog u), which we then bootstrap for the final
result.

4.1. The basic structure

For a point set U C R3, let conv U denote the convex hull
of U, and let E[U], F[U] be the edges and facets of conv U.
Let S C U, and for a facet f € F[S5], let hlf denote the open
half-space whose bounding hyperplane is spanned by f and
which does not contain S. For a point p € U \ S and a facet
f € F[S], we say that p is in conflict with f if p € h;f. For
f € F[S], let By C U denote the points in conflict with f,
the conflict set of f. Similarly, for p € U, we let the conflict
set D, C F'[S] be the facets in conv S in conflict with p.
Furthermore, we set by = |By| and d,, = |D,|, the conflict
sizes of f and p. We will need a recent result about splitting
convex hulls [20, Theorem 2.1].

Theorem 4.1. Let U C R? be a u-point set in gcp, and let
P C U. There exists an algorithm SplitHull, that, given
conv U, computes conv P in expected time O(u). O

We will also need a sampling lemma for the recursive
construction of the tree [20, Lemma 4.2].

Lemma 4.2. Let U C R? be a u-point set in gcp, and
let « € {1,...,u}. Given convU, in O(u) time we can
compute subsets S,QQ C U and a partition Q1,...,Qg of
Q such that



D |S=qa = Q(u), max; |Q;| = O (Llog ).
2) Fori=1,...,0, there is a facet f; € F|S] such that
all points in Q; are in conflict with f;.
3) Every point in Q) conflicts with constantly many facets
of conv S.
4) The conflict sets for points p € Q;, q € Q;, 1 # j, are
disjoint and no conflict facet of p shares an edge with
a conflict facet of q.
We can compute conv S, conv(Qi, ... conv(Qg, and
conv (U \ (QUS)) in expected time O(u). O

Theorem 4.3. Let U C R3 be a u-point set in gcp. In
O(ulogu) time, we can construct a data structure of size
O(uy/logu) such that for any n-point set P C U we can
compute conv P in time O(n+/loguloglogu). If conv U is
given, the preprocessing time is O(uy/logu).

Proof: We describe the preprocessing phase. If needed,
we construct conv U in time O(ulogu). The scaffold tree is
computed through a recursive procedure BuildTree(U):

Algorithm Query(P)

D Ifn< 2\/@\/105; u, use a traditional algorithm to
find conv P and return.
2) Fori=1,...,/—1
a) Let P; = PN R; and determine the intersections
P,; of P; with the sets R\,
b) For all non-empty P;;, call Query(P;;) to com-
pute conv F;;.
c) Merge the conv P;; into conv S;.
d) Use SplitHull to extract conv P; from the
convex hull conv (P; U S;).
3) Let P, = Uy N P. If Py # (), call Query(F) for
conv Py.

4) Compute conv P by uniting conv P, ..., conv P,.

Algorithm BuildTree(U)
1) If |U| = O(1), store U and return, otherwise, let U; =
Uandi=1
2) While |U;| > u/2Vien,
a) Apply Lemma 4.2 to U; with o = 2V1°8 Uil o
obtain subsets S;, R; C U;, as well as a partition
P = (R?) of R;, and the hulls conv S;,

b /1<<B
conv jo ) described in the lemma.
b) Call BuildTree RE”) for j=1,....0.
c) Let Ui+1 =U; \ (Sz URZ) Use SplitHull to
compute conv U, 11, and increment 3.
3) Let £ =i and call BuildTree(Uy).

Algorithm 3: Building the basic scaffold tree.

By Lemma 4.2, the sizes of the sets U; decrease geometri-
cally, so we get £ = O(y/logu) and

L
SIS =0 (2\/1°g“\/10gu> . 3)
=1

By Lemma 4.2 and Theorem 4.1, the total time for Steps 2a
and 2c is O(u). Since the sets for the recursive calls in

Steps 2b and 3 have size O(uy/logu/2V!°8"), the expected
running time 7'(u) of BuildTree obeys the recursion

T(u) = O(u) + ZT(mi),

where

Zmz = (u\/logu/Q\/@).

Therefore, T'(u) = O(uy/logu). Queries are answered by a
recursive procedure called Query(P) (Algorithm 4). Step 1

) and max m; =

Algorithm 4: Querying the simple scaffold tree.

takes O (n\/log u) time [26]. With an appropriate pointer
structure that provides links for the points in U to the cor-
responding subsets (as in the pointer-based implementation
of VEB trees [36]), the total time for Step 2a is O(n). The
next claim handles Step 2c.

Claim 4.4. Step 2c takes O(|F;|) time.

Proof: Fix a j with P;; # (. We show how to insert
P,;; into conv S; in time O(|P;;|). This implies the claim,
since simple geometric arguments [20, Lemma 4.5] show
that there can be no edge between two points p € FP;;
and ¢ € P/, for j # j'. Furthermore, the only facets in
conv S; that are destroyed are facets in A = J, ep,; Dp
by definition of D,. By Lemma 4.2(2,3), the size of A
is constant, because all the D, have constant size, form
connected components in the dual of conv S; (a 3-regular
graph), and have one facet in common. Thus, all we need
to do is insert the constantly many points in S; incident to
a facet in A into conv P;;, which takes time O(|P;;|), as
claimed.
By Theorem 4.1, Step 2d needs O(|P;|+|S;|) time. Using an
algorithm for merging convex hulls [19], Step 4 can be done
in time O(nlog¢) = O(nloglogu). Thus, the total time for
Steps 2 to 4 is O(nlog logu+Zf:1 |Si]) = O(nloglogu),
by (3) and Step 1. Since there are O(y/logu) levels and
since the computation in Step 1 is executed only once for
each point in P, the result follows. |

4.2. Bootstrapping the tree

We now describe the bootstrapping step. The main idea
is to increase the degree in each node of the scaffold tree
and to use a more basic tree to combine the results from
the recursive calls quickly. However, if we are not careful,
we could lose a constant factor in each bootstrapping step,
which would not give the desired running time. To avoid
this, we need the following result, which is similar to the




simple proof of Theorem 2.1 and whose proof we omit from
this abstract.

Theorem 4.5. Let U C R? be in gcp, and let Let S =
Ule S; C U with |S| = m, such that |S;| < ¢ for
some constant ¢, and such that the subgraphs conv U |g, are
connected. Furthermore, let S’ C S be such that S’ contains
exactly one point from each S;, chosen uniformly at random,
and suppose conv(S') is available, and that we have a vEB
structure for the neighbors of each vertex in conv(U). Then
we can find conv(S) in expected time O(mloglogu). O

Theorem 4.6. Let k > 1 and U C R? be a u-point set in
gep, and let convU be given. Set I, = (1ogu)1/k. There
is a constant (3 with the following property: if Dy(U) is
a data structure for convex hull queries with preprocess-
ing time Py(u) = O(ukly) and query time Qp(n,u) <
Onkly loglog u, then there is a data structure Dy1(U) with
preprocessing time Pj11(u) = O(u(k + 1)l;41) and query
time Qr+1(n,u) < pn(k + 1)li41 loglogu. The constants
in the O-notation do not depend on k.

Proof: Since the function z +— xlogl/ ¥ u reaches
its minimum for x = In2loglogu, we may assume that
k < 0.7loglog u, since otherwise the theorem holds by as-
sumption. The preprocessing is very similar to Algorithm 3
with a few changes: (i) we iterate the loop in Step 2
while |U;| > u/2%+1; (ii) we apply Lemma 4.2 with a =
9(log Ui and (i) for each sample S; we compute a
data structure Dy (.S;) for convex hull queries, which exists
by assumption, for details, see Algorithm 5. Since the sizes

vEB trees in Step 2c. Since the sets jo ™ have size
O(ul,’j+1/21z+1), the number of levels is O ((k + 1)lj41).
The work at each level is O(u), therefore the total prepro-
cessing time is Pyi1(u) = O (u(k 4 1)lg+1). Queries are
answered by Queryy; (Algorithm 6).

Algorithm Queryy.((P)
1) Fori=1,...,/—1
a) Let P; = PN R; and determine the intersections
P;; of P; with the sets Rl(.J ),
b) For each non-empty P;;, if | P;;| < Bkly11, com-
pute conv P;; directly, else call Queryy, 1 (F;;).
c) For each nonempty P;;, determine the set S;;
of points adjacent to a conflict facet of P;;.
Compute conv (P;; U S;;).
d) Let S; be a set that contains one random point
from each S;;. Use Dy(.S;) to find conv S..
e) Use Theorem 4.5 in order to compute the convex
hull conv (P; U, Sij).
f) Use SplitHull to extract conv P; from the
convex hull conv (P; UJ; Sij).
2) Recursively compute conv Py, where Py = U, N P.
3) Compute conv P by taking the union of conv P, ...,
conv Py.

Algorithm BuildTreey1(U)
1) Let Uy =U and i =1
2) While |U;| > u/2%+1.
a) Apply Lemma 4.2 to U;, where we set a =
2(log [UiD™ "V This yields subsets S;, R; C Us,
a partition P; = (Rg'j)) of R;, and the

1<5<p
convex hulls conv S;, conv R;’
erties of Lemma 4.2. '

b) Execute BuildTreej g RZ(J) forj=1, ...,
(3 and compute a data structure Dy(.S;) for S;.

¢) Let Uir1 = U; \ (S; U R;). Compute conv U; 41
using SplitHull, and create a VEB structure
for the neighbors of each vertex. Increment 3.

3) Let £ =i and call BuildTreeg1(Up).

) with the prop-

Algorithm 5: Bootstrapping the scaffold tree.

of the U; decrease geometrically, we have { = © (l’,j +1)
and the total time for Step 2a is O(u). The total time to

construct the Dy (S;) in Step 2b is © (I}, ;) P (21113“) —
O ((tf.1) K2%3041) = o(u), and similarly for the

Algorithm 6: Querying the bootstrapped scaffold tree.

In the following, let ¢ denote a large enough constant. As
before, Step la takes time cn with an appropriate pointer
structure. In Step 1b, let n; denote the total number of
points for which we compute the convex hull directly, and
let no = n — ni. Then this step takes time cnq loglogu +

k
eng log 8 + Qr41

Ueta

2’]12+1
linear in the first and monotonic in the second component
(which holds by induction on the second component). Since
the conflict size of each P;; is constant, Step 1c takes time
cn, if we just insert the points in each S;; into conv P;;
one by one. Furthermore, since we select one point per
conflict set, the total size of the sets S/ in Step 1d is at
most ny + na/(Bklky1), so computing the convex hulls
conv S7,...,conv.S) takes time

Ng, CU , assuming that Qy41 is

%) 1k %)
ny + 2l ) < Bk (ng + = ) -
@ (o gy o) <o (o )
lk+1loglogu = (Bnikli+1 + n2)loglogu.

By Theorems 4.5 and 4.1, Steps le and 1f take time
O(nloglogu +n + 37, 15j|) < cnloglogu. Step 2 is
already accounted for by Step 1b. Finally, Step 3 requires
cnloglogw steps. By summing all the steps, we get the




following recursion for Qgy1(n,u):
Qr+1(n,u) < 5cenloglogu + cng log B+

lk
Briklys1loglogu + Qpit | no,cu—tL ) .

2l£+1
By induction, Qx41(n,u) < Bn(k + 1)lgy1loglogu. N

Corollary 4.7. Let U C R3 be a u-point set in gcp. In
O(ulogu) time, we can construct a data structure for convex
hull queries with expected query time O(n(loglogu)?). The
space needed is O(u(loglogu)?), and if conv U is available,
preprocessing can also be done in this time.

Proof: For k = L loglog u, we have (logu)'/* = O(1),
and the result follows from Theorems 4.3 and 4.6. [ |

Corollary 4.8. Let P C R? be an n-point set in gcp
and c: P — {1,...,x} a coloring of P. Given conv P,
we can find convct(1),...,convc () in expected time
O(n(loglogn)?). O
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APPENDIX A.
SHUFFLE-SORTING ON A WORD RAM

We show how to shuffle-sort a set of points P = {p1,...,pn} C
R? in expected time O(nloglogn) on a standard word RAM,
avoiding the shuffle operation. For this, we adapt a sorting algo-
rithm by Andersson et al [6]. Let w > logn be the word size and
b the bit size for the coordinates of the p; (ie, p; € [0, 20 — l]d).
We assume that w and b are known. First, we extend a result by
Albers and Hagerup [2] which concerns large word sizes.

Theorem A.l. Suppose b < [w/(dlognloglogn)] — 1. Then P
can be sorted according to the shuffle order in O(n) time.

Proof: We can fit 2k = w/(db+1) > log nloglogn fields in
one word, each containing a point and a testbit. For a word a, let
a[i] be its i-th field, and a[i].t, a[i].d its test bit and data. We need
a procedure for merging two sorted words quickly [2, Section 3].

Claim A.2. Given two words w1, wa containing two sorted
sequences (pi),(q:) of k points each, we can compute a word
w' containing the merged sequence (z;) in time O(logk).

Proof: We use a bitonic sorting network by Batcher [9], which
requires the following subroutine: given two words a and b, each
containing k points, compute in constant time a word z such

that® z[i].t = [a[i].d <, b[i].d] for each i. We use an algorithm

Algorithm BatchCompare

1) Create d copies ai,...,aq and b1, ...,bq of a and b.

2) Shift and mask the words a;,b; so that a;[i].d = p;; and
bj[i].d = qi; fori =1,... k, where p;; and g;; denote the
jth coordinates of p; and g;.

3) Create d words ci,...,cq with ¢;[i].d = a;[i].d ® b;[i].d
fori =1,...,k, where & means bitwise XOR.

4) Create words g, h such that g = ¢; and h = (1,...
the word with a 1 in the data item of each field.

5) Forj=2,...,d

a) Set the testbits in ¢; to ¢;[i].t = [g[i].d < ¢;]i].d] and
let M be a mask for the fields ¢ st ¢;[i].t = 1.

b) Letc; =c¢; & (g AND M).

) Set the testbits in ¢; to ¢;[i].t = [g[i].d < ¢;[i].d] and
compute a mask M’ for the fields ¢ with c;[i].t = 1
Let M =M AND M'.

d) Set ¢ = (g AND M) OR ((a; & b;) AND M),
where M " is the bitwise negation of M. Set h =
(h AND M)OR ((j,...,J)AND M).

6) Create a word z with z[i].t = [an[[i] < buy[2]]-

, 1), ie,

Algorithm 7: Comparing many points simultaneously.

BatchCompare, based on a technique by Chan [14]. For a b-
bit integer z, let |z| = |logz] for z # 0 and |0 = 1, ie,
|z| is the position of the most significant bit in = # 0. For
each i, BatchCompare finds the smallest coordinate h[i] that
has maximum \chm [{]|. Then, it determines whether p; <, ¢; by
comparing their coordinate h[é]. Correctness follows immediately
from the definition of the shuffle order. The main observation is
that a comparison |z| < |y| can be done as

lz| <yl = [(z <y) A (xz <z D Y)). “

BatchCompare runs in constant time, assuming that the con-

stants (1,...,1),...,(d,...,d) have been precomputed, which

takes O(log k) time. In particular, note that Step 6 takes constant

time since there are only constantly many possible indices h[i]. B

Given Claim A.2, the theorem follows using merge sort [2]. M
Next, we need to reduce the number of bits per point:

Theorem A.3. With expected linear time and space overhead, the
problem of shuffle-sorting n points with b-bit coordinates can be
reduced to sorting n points with b/2-bit coordinates.

Proof: The proof is verbatim as in Kirkpatrick and Reisch [34,
Section 4]: bucket the points by the upper b/2 bits of their
coordinates. By universal hashing, this takes linear expected time
and space. From each nonempty bucket b, select its maximum
me. Truncate each m; to the upper b/2 bits and store a flag with
its satellite data. The remaining points are truncated to the lower
b/2 bits, and the corresponding bucket is stored in the satellite
data. After sorting the resulting point set, we can establish (i) the
ordering of the buckets, using the my, and (ii) the ordering within
each bucket. The crucial fact is that the for any two points p, g,
we have p <, q precisely if (p' <o ¢)V (' =¢ Ap" <o ¢"),
where (p’,p"), (¢',q") are derived from p, ¢ by splitting each of
their coordinates into two blocks of b/2 bits. u

As in [6] combining Theorems A.3 and A.1, yields

Theorem A.4. An n-point set with b-bit coordinates can be shuffle-
sorted in expected time O(nloglogn) with O(n) space. O

3We use Iverson’s notation: [ X] = 1 if X is true and [X] = 0, otherwise.




