Part of Advances in Neural Information Processing Systems 18 (NIPS 2005)
Sridhar Mahadevan, Mauro Maggioni
We investigate the problem of automatically constructing efficient rep- resentations or basis functions for approximating value functions based on analyzing the structure and topology of the state space. In particu- lar, two novel approaches to value function approximation are explored based on automatically constructing basis functions on state spaces that can be represented as graphs or manifolds: one approach uses the eigen- functions of the Laplacian, in effect performing a global Fourier analysis on the graph; the second approach is based on diffusion wavelets, which generalize classical wavelets to graphs using multiscale dilations induced by powers of a diffusion operator or random walk on the graph. Together, these approaches form the foundation of a new generation of methods for solving large Markov decision processes, in which the underlying repre- sentation and policies are simultaneously learned.