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    PRINCE 

modern password guessing algorithm 



FUTURE OF PASSWORD HASHES 
 

Why do we need a new attack-mode? 
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Future of modern password hashes 

 
Feature 

• High iteration count  

• Salted  

• Memory-intensive  

• Configurable parameters 

• Anti-Parallelization 

• … 

Effect 

• Slow 

• Rainbow-Tables resistance 

• GPU resistance 

• Slow 

• Slow 
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Algorithms used for password hashing,  
by performance* 

Name Speed 

NTLM, MD5, SHA1-512, Raw-Hashes 1 BH/s - 10 BH/s 

Custom (Salt): VBull, IPB, MyBB 100 MH/s - 1 BH/s 

DEScrypt 10 MH/s - 100 Mh/s 

MD5crypt 1 MH - 10 MH/s 

TrueCrypt, WPA/WPA2 (PBKDF2)  100kH/s - 1 MH/s 

SHA512crypt, Bcrypt (Linux/Unix) 10kH/s - 100 kH/s 

Custom (Iteration): Office, PDF, OSX 1kH/s - 10 kH/s 

Scrypt  (RAM intensive): Android 4.4+ FDE < 1 kH/s 

* Performance oclHashcat v1.32 
   Single GPU 
   Default settings for configurable algorithms 
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Effects of modern password hashes 

• Obsolete attack-modes: 

– Brute-Force-attack 

– Rainbow-Tables 
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REMAINING ATTACK VECTORS 
So, what can the attacker do? 
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Remaining attack vectors 

• Hardware (FPGA/ASIC) 

• Extract keys from RAM 

• Efficiency 
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Remaining attack vectors 

• Hardware (FPGA/ASIC) 

• Extract keys from RAM 

• Efficiency 

 

• Easier to cool 

• Lower power 
consumption 

• Easier to cluster 

• Clustering only linear 

• Expensive development 

• Unflexible? 
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Remaining attack vectors 

• Hardware (FPGA/ASIC) 

• Extract keys from RAM 

• Efficiency 

 

• Highest chance of 
success 

• Requires physical access 
to the System 

• System must run 
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Remaining attack vectors 

• Hardware (FPGA/ASIC) 

• Extract keys from RAM 

• Efficiency 

 

• Exploit human 
weakness: 

– Psychology aspects 

– Password reuse 

– Pattern 

• Limited keyspace 

• Using rules: 

– Limited pattern 

– Takes time to develop 
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PRINCE ATTACK 
Features and advantages compared to previous attack modes 
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Advantages over other Attack-Modes 

• Simple to use, by design 

• Smooth transition 

• Makes use of unused 
optimizations: 

– Time works for attacker 

– Personal aspects 
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Advantages over other Attack-Modes 

• Simple to use, by design 

• Smooth transition 

• Makes use of unused 
optimizations: 

– Time works for attacker 

– Personal aspects 

 

 

 

 

 

• No monitoring required 

• No extension required 

• No syntax required 
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Advantages over other Attack-Modes 

• Simple to use, by design 

• Smooth transition 

• Makes use of unused 
optimizations: 

– Time works for attacker 

– Personal aspects 

 

 

 

 

 

• Primary goal of the 
algorithm 

• Starts with highest 
efficiency 

– Wordlist  

– Hybrid 

– Keyboard walks / 
Passphrases 

– Brute-Force + Markov 

• Not a scripted batch 
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Advantages over other Attack-Modes 

• Simple to use, by design 

• Smooth transition 

• Makes use of unused 
optimizations: 

– Time works for attacker 

– Personal aspects 

 

 

 

 

 

• Does not run out of 
(good) wordlists 

– Time-consuming 
monitoring 

• Does not need ideas 

– Time-consuming 
extension 
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Advantages over other Attack-Modes 

• Simple to use, by design 

• Smooth transition 

• Makes use of unused 
optimizations: 

– Time works for attacker 

– Personal aspects 

 

 

 

 

 

• Personal Aspects 

– Religion 

– Political wing 

– Red car 

• Not hobbies, friends, 
dates, … 

– Already covered with 
Wordlist-Attack 

– Common knowledge not 
to use them 
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PRINCE ATTACK 
Algorithm details 
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PRINCE-attack 

• PRobability 

• INfinite 

• Chained 

• Elements 
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Attack basic components 

• Element 

 

 

• Chain 

 

 

• Keyspace 
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Attack basic components 

• Element 

 

 

• Chain 

 

 

• Keyspace 

• Smallest entity 

• An unmodified line 
(word) of your wordlist 

• No splitting / 
modification of the line 

• Sorted by their length 
into element database 
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Element example 

• 123456 

• password 

• 1 

• qwerty 

• ... 

 

• Table: 6 

• Table: 8 

• Table: 1 

• Table: 6 

• ... 
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Attack basic components 

• Element 

 

 

• Chain 

 

 

• Keyspace 

• Sum of all elements 
lengths in a chain = 
chain output length 

• Fixed output length 

• Best view on this is in 
reverse order, eg. a 
chain of length 8 can 
not hold an element of 
length 9 
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Chains example, general 

• Chains of output length 8 consists of the 
elements 

• 8 

• 2 + 6 

• 3 + 5 

• … 

• 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 

• Number of chains per length = 2 ^ (length - 1) 

Jens Steube - PRINCE algorithm 08.12.2014 23 



Attack basic components 

• Element 

 

 

• Chain 

 

 

• Keyspace 

• Number of candidates 
that is getting 
produced, per chain 

• Different for each chain 

• The product of the 
count of the elements 
which build the chain 
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Element example (rockyou) 

• length 1: 45 

• length 2: 335 

• length 3: 2461 

• length 4: 17899 

• … 
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Keyspaces of chains of length 4 
(rockyou) 

Chain Elements Keyspace 

4 17,899 17,899 

1 + 1 + 1 + 1 45 *  45 *  45 *  45 4,100,625 

1 + 1 + 2       45 *  45 * 335 678,375 

1 + 2 + 1 45 * 335 *  45 678,375 

1 + 3 45 * 335 15,075 

2 + 1 + 1 335 *  45 *  45 678,375 

2 + 2      335 * 335 112,225 

3 + 1  335 *  45 15,075 
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Keyspaces of chains of length 4 
(rockyou) 

Chain Elements Keyspace 

3 + 1            335 *  45 15,075 

1 + 3             45 * 335 15,075 

4               17,899 17,899 

2 + 2            335 * 335 112,225 

2 + 1 + 1      335 *  45 *  45 678,375 

1 + 2 + 1       45 * 335 *  45 678,375 

1 + 1 + 2       45 *  45 * 335 678,375 

1 + 1 + 1 + 1 45 *  45 *  45 *  45 4,100,625 
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Keyspace selection, general 

• Sorting by lowest keyspace creates the 
floating effect inside the prince attack-mode: 

– Wordlist  

– Hybrid 

– Keyboard walks / Passphrases 

– Brute-Force + Markov 
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Candidate output length selection 

• The Algorithm has to 
chose the order of the 
output length for 
candidates 

• Word-length 
distribution in a 
wordlist is a known 
structure   

• The algorithm recreates 
its own stats from the 
input wordlist 

 

 

 

 

 

 

 
 

http://blog.erratasec.com/ 
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Personal aspects 

• To make use of this feature, you need a 
specific wordlist 

– Use a tool like wordhound to compile such a 
wordlist (grabs data from URL, twitter, reddit, etc) 

• Cookbook phase: 

– Decide yourself if you want to use the raw list or 

• Preprocess the wordlist with some rules applied 

• Mix in like top 10k from rockyou 

• Mix in some single chars for late BF 
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Problems of the attack 

• Elements in the wordlist 
requires all lengths 

• Chain-count for long 
outputs 

• Generated dupes 
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Problems of the attack 

• Elements in the wordlist 
requires all lengths 

• Chain-count for long 
outputs 

• Generated dupes 

 

• For calculation length 
distribution 
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Problems of the attack 

• Elements in the wordlist 
requires all lengths 

• Chain-count for long 
outputs 

• Generated dupes 

 

• Can be suppressed with 
divisor parameter 
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Problems of the attack 

• Elements in the wordlist 
requires all lengths 

• Chain-count for long 
outputs 

• Generated dupes 
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Princeprocessor internal 

• Load words from wordlist 

• Store words in memory 

• Generate element chains for each password length 
– Reject chains that does include an element which points to 

a non-existing password length 

• Sort chained-elements by keyspace of the chain 

• Iterate through keyspace (mainloop) 
– Select the next chain of that password length 

– Generate password with chain 

– Print 
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PRINCE ATTACK 
Usage 
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How to use it from users view 

• Download princeprocessor 

• Choose an input wordlist which could be: 

– One of your favourite wordlist (rockyou, etc…) 

– Target-specific optimized wordlist 

• Pipe princeprocessor to your cracker 

– ./pp64 < wordlist.txt | ./oclHashcat hash.txt 
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How to use it from users view 

• Optionally  

– Choose password min / max length 

– Choose character classes to pass / filter 

– Choose start / stop range -> Distributed 

– Choose minimum element length 

– Choose output file, otherwise written to STDOUT 
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LIVE DEMO 1 

• Wordlist 

– Top 100k of rockyou.txt 

• Hashlist 

– Public leak „stratfor“, 822k raw MD5 hashes 

• Preparation 

– Removing raw dictionary hits first 
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LIVE DEMO 2 

• Wordlist 

– Generated by scraping stratfor site 

• Hashlist 

– Public leak „stratfor“, 822k raw MD5 hashes 

• Preparation 

– Removing raw dictionary hits first 
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PRINCEPROCESSOR V0.10 RELEASE 

Download from: https://hashcat.net/tools/princeprocessor/ 

 - Linux 

 - Windows 

 - OSX 
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THANKS! QUESTIONS? 

Email: jens.steube@gmail.com 

IRC: freenode #hashcat 
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Universal 2nd Factor

2014-12-08 Trondheim Norway
Passwords 2014
Simon Josefsson





FOSS and open protocol friendly - see 
developers.yubico.com

https://developers.yubico.com/
https://developers.yubico.com/






Pre-History of U2F: Gnubby

Yubico designed a precursor to U2F with 
Google and NXP.  Deployed to Google staff 
around the world.
To reach mass market, standardization and 
multiple vendors are needed. During 2012 the 
FIDO Alliance started working on U2F.



Over 150 Members



U2F: Doing 2FA the Easy Way

Username & Password Insert Device - Touch button Done



Core Idea: Standard Public Key Cryptography:

• User's device mints new key pair, gives public key and “keyhandle” to server

• Server asks user's device to sign data to verify the user

• One device, many services - “Bring Your Own Authenticator”

Design Considerations:
• Privacy: Site Specific Keys, No unique ID per device

• Security: No phishing, Man-In-The-Middle

• Trust: User decides what authenticator to use

• Pragmatics: Affordable today

• Usability: No delays, Fast crypto on device

What is this U2F Protocol?



Driverless Smartcard re-designed for the 

Modern Consumer Web

THINK:



Relying Party
User Side

U2F Code
USB (HID) API

U2F JS API
Secure U2F 

Element

Transport
USB (HID)

Web Application

U2F Library

Public Key + 
KeyHandle

U2F Entities

User Action

Browser
FIDO Client

U2F Authenticator

 



USB today, the world tomorrow...

NFC



• Registration

○ User binds U2F device to her account

○ Server gets a device certificate

○ Server stores public key and keyhandle for the user

• Authentication

○ Normal username+password process - retrieve keyhandle

○ User uses already registered U2F device to login

○ Server gets signed blob and compares with public key

U2F Concepts



U2F Device
Browser - 

FIDO Client
Relying 
Party

app id, challenge

a; challenge, origin, channel id, etc.

c

acheck
app id

generate:
key kpub  
key kpriv
handle h kpub, h, attestation cert, signature(a,c,kpub,h)

c, kpub, h, attestation cert, s

store:
key kpub  
handle h
for user

s
cookie

Registration



U2F Register JavaScript API

navigator.handleRegistrationRequest({ 
‘challenge’: ‘KSDJsdASAS-AIS_AsS’,
‘app_id’: ‘https://www.acme.com/facets.json’

       }, callback);

callback = function(response) {
      sendToServer( 

response[‘clientData’], 
response[‘registrationData’]);

};



USB HID Register



U2F Device
Browser - 

FIDO Client
Relying 
Party

handle, app id, challenge

h, a; challenge, origin, channel id, etc.

c

acheck
app id

retrieve:
key kpriv 
from
handle h;
counter++

counter, signature(a,c,counter)

counter, c, s
check:
signature
using
key kpub

s

h

retrieve:
key kpub 
from
handle h

set cookie

Authentication



U2F Sign (Authenticate) JavaScript API

navigator.handleAuthenticationRequest({ 
‘challenge’: ‘KSDJsdASAS-AIS_AsS’,
‘app_id’: ‘https://www.acme.com/facets.json’,

      ‘key_handle’: ‘JkjhdsfkjSDFKJ_ld-sadsAJDKLSAD’
       }, callback);

callback = function(response) {
      sendToServer( 

response[‘clientData’], 
response[‘signatureData’]);

};



USB HID Authenticate



DEMO



So many keys...

● Authentication public/private key
○ Unique for every RP
○ Generated during U2F Registration
○ Public key sent to RP during Registration
○ Keyhandle can be used to derive private key

■ Unlimited number of RPs on small device
○ Hard coded to ECDSA using NIST P.256 curve



So many keys...

● Device-unique symmetric secret
○ Unwrap/derive per-RP ECDSA key from keyhandle
○ Unique random key for every device
○ Yubico derives private key using HMAC-SHA256



Yubico’s U2F KeyHandle

● Keyhandle is nonce+MAC 
instead of encrypted

● Device can derive ECDSA 
private key from nonce and 
symmetric device secret

● MAC detects
invalid
keyhandle or
malicious RP



So many keys...

● ECDSA attestation key (unique per batch)
○ Linked with device attestation certificate
○ Signs U2F Registration blobs



U2F Attestation
● Proves what U2F device the user used
● X.509 Certificate with batch-unique key
● Why batch-unique and not device-unique?

○ Privacy: device-unique key permits conspiring RPs 
to link a physical key to particular user

○ Common batch size could be 10k-100k (could be 1 - 
breaking the privacy aspects)



What if… I want to support U2F?
• Server/Browser: Call Javascript APIs

o Send KeyHandle in HTML/JavaScript to browser
• Server: Implement registration flow

o decide how to handle attestation certificates
o verify registration response
o store public key, key handle with user account

• Server: Implement login flow
o check username/password, look up key handle
o verify authentication response (origin, signature, counter, …)

• Relying Party: Check your account recovery flow



Yubico U2F Software

Our idea is to publish host and server libraries 
in common languages as FOSS code
● C: libu2f-host & libu2f-server
● Java: java-u2flib-server
● PHP: php-u2flib-server
● Python: python-u2flib-host & python-u2flib-server



Resources

developers.yubico.com/U2F

fidoalliance.org/specifications

demo.yubico.com/u2f

Libraries, Plugins, Sample Code, Documentation

U2F Protocol Specification

Yubico U2F Demo Server - Test your U2F device here!

http://developers.yubico.com/U2F
http://developers.yubico.com/U2F
https://fidoalliance.org/specifications
https://fidoalliance.org/specifications
https://demo.yubico.com/u2f
https://demo.yubico.com/u2f


THANK YOU!
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Password-manager friendly (PMF):
Semantic annotations to improve the
effectiveness of password managers

Frank Stajano, Max Spencer, Graeme Jenkinson
{max.spencer, frank.stajano, graeme.jenkinson}@cl.cam.ac.uk

University of Cambridge Computer Laboratory
15 JJ Thomson Avenue, Cambridge, CB3 0FD, United Kingdom

Abstract. Subtle and sometimes baffling variations in the implementa-
tion of password-based authentication are widespread on the web. De-
spite being imperceptible to end users, such variations often require that
password managers implement complex heuristics in order to act on the
user’s behalf. These heuristics are inherently brittle. As a result, pass-
word managers are unnecessarily complex and yet they still occasionally
fail to work properly on some websites. In this paper we propose PMF,
a simple set of semantic labels for password-related web forms. These
semantic labels allow a software agent such as a password manager to
extract meaning, such as which site the login form is for and what field
in the form corresponds to the username. They also allow it to generate a
strong password on the user’s behalf. PMF reduces a password manager’s
dependency on complex heuristics, making its operation more effective
and dependable and bringing usability and security advantages to users
and website operators.

1 Introduction

We don’t have to explain to this audience that, on the web, we are asked to
remember way too many passwords. One reasonable way of coping with this
burden is with a password manager—a piece of software that remembers pass-
words on the user’s behalf and submits them automatically when required. All
modern browsers such as Chrome, Firefox and Internet Explorer provide an inte-
grated password manager. Because websites frequently have slight differences in
the way they handle asking the user to type a password (or to define a new one),
every password manager must implement complex heuristics in order to parse,
auto-fill and submit the password-requesting web pages. Such code is inherently
fragile and requires continuous maintenance as login web pages evolve and be-
come fancier. As a result, some websites don’t work seamlessly with password
managers.

Password managers would be simpler and more dependable if websites adopted
a set of semantic labels for HTML forms that allowed unambiguous registration
and submission of passwords by programs acting on the user’s behalf. In this

Pre-proceedings version. Do not circulate.
Final version to appear in Proceedings of Passwords 2014, Springer LNCS.
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paper we offer two main contributions. First, we document the many ways in
which websites ask for passwords and the many subtle ways in which the heuris-
tics commonly employed by password managers can break, demonstrating how
such code requires extensive maintenance to be reliable. Second, and most im-
portant, we propose PMF, a practical set of semantic labels that websites may
immediately adopt. We also very briefly discuss incentives and benefits for the
various parties involved.

2 Inconsistencies in password-based login on the web

Ignoring issues of style and presentation, password-based authentication on the
web presents a fairly consistent interface to the user. To log in, users first find the
login form, enter their username and password for that site into the appropriate
boxes, and then press return or click the submit button. And, to a first approx-
imation, the behaviour of the browser and the website is consistent across sites
as well: the username and password entered into the form are sent to the server
in an HTTPS POST request and a session cookie is returned. However, when we
look in more detail, we notice a huge range of variations, some subtle and some
baffling. Whilst these variations are imperceptible to the user, they present dif-
ficulties for a software agent parsing or automatically submitting the login form.
This is because sub-tasks like entering the right username and password “into
the appropriate boxes” are non-trivial and must rely on heuristics.

What are, then, the variations commonly exhibited by popular websites? A
significant one is the modification of the static HTML login form by JavaScript.
Some sites, such as Pinterest [1], use JavaScript to dynamically insert the login
form into the page. Besides being annoying for users who browse with JavaScript
disabled for security reasons, this practice also complicates the task of a password
manager. Instead of parsing the HTML document just once at load-time to find
any login forms, it must also monitor all changes made to the Document Object
Model (DOM) by JavaScript thereafter.

The sins of JavaScript don’t end there, though. Many sites use JavaScript to
actually submit the form, thereby confusing utilities such as password managers
that commonly intercept submission of the form to save the credentials. Forgoing
a simple “submit” input adds little benefit and obfuscates the login process. Fur-
thermore, to mitigate Cross-Site Request Forgery (CSRF) attacks [2], JavaScript
is sometimes used to automatically insert values (nonces/challenges associated
with the session) into hidden fields within the login form. For example, the follow-
ing is added to the form on the Vimeo login page (https://vimeo.com/log_in)
using JavaScript:

<input type="hidden" name="token" value="8113..." />

Attempts to log in to Vimeo with JavaScript disabled fail. Programs that parse
or submit a login form must be compatible with such approaches, without being
explicitly aware of what they achieve or even that they are being used.

https://vimeo.com/log_in
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Another problem facing a software agent such as a password manager is
extracting the meaning (semantics) from the HTML login form. In the first in-
stance, we’d like to determine what site the login form is for. The continued
prevalence of phishing attacks demonstrates that reliably determining the web-
site of a login page is too difficult for many humans. Software agents should
have an advantage here. Indexing the username and password by the site’s URL
ensures that, provided HTTPS is used, the username and password are only
submitted to correct site. Unfortunately, things are rarely this simple. Some
websites have login forms on multiple pages—for example Facebook has one on
its main landing page (www.facebook.com) and one on a dedicated login page
(www.facebook.com/login.php). Should these login forms be considered as be-
ing for the same service? In the case of Facebook, both URLs are in the same
second level domain facebook.com, so the answer is probably yes. But what
about in a corporate intranet, where diverse services such as for submitting ex-
penses and time sheets are all likely to be under the same second level domain?

It might be argued that services should only be considered the same if they
have exactly the same URL. But what about the query string? Does that have
to match as well? What about the order of the query parameters? What about
dynamic URLs that provide alternative but equivalent encodings of the URL’s
query component? Any heuristic trying to shed light on this morass is likely to
get things wrong (at least some of the time). Should users really have to accept
that the computer doesn’t even know what service is being logged in to?

Whilst it’s obvious to a human whether a login to Facebook or Gmail suc-
ceeded, it’s actually pretty hard for a software agent to know what happened.
Whether or not the submitted username and password were correct, a HTTP
200 OK response is returned, indicating that a page was successfully served in
response to the request (possibly after a sequence of redirects—in the case of
Gmail rather a lot of redirects). Password managers can not reliably differentiate
between these outcomes and, as a result, they often ask users to save passwords
that are mistyped or just plain wrong. This seems needlessly annoying.

3 Incentives

Our proposal offers obvious advantages to users in terms of usability (you don’t
have to remember or type the passwords any more) and security1 (you can use
strong, distinct passwords). The advantages for password manager writers are
even clearer (without guesswork, code becomes simpler, more reliable and much
easier to maintain). Let’s thus spend a few words on the incentives for website
operators.

We believe it is in the best interests of website operators to support password
managers: the website users will gain in usability and security. If users, thanks to
1 Users of password managers are still exposed to malware; we are not claiming that
the security offered by password managers is absolute (see section 5). Besides, our
proposal implicitly also supports higher-security password managers running on ded-
icated hardware.

www.facebook.com
www.facebook.com/login.php
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password managers, adopted strong unique random passwords, website operators
would have much less to worry about confidentiality compromises of their hashed
password file.

We understand that website operators don’t want to allow bots to register
thousands of accounts and we support this goal. Any techniques the websites
may wish to use to ensure the presence of a human registrant (from CAPTCHAs
to telephone callbacks and so forth) will continue to be available. We are only
concerned with helping the human registrant store the password in a password
manager instead of having to remember it in their brain. Only websites with
delusions of grandeur may still believe that, regardless of all other demands on
the user’s memory and patience, their password is so important that it must be
uncrackably strong and different from any others and never written down. They
should study the Compliance Budget model [3], manage risks more maturely
and cure their superiority complex.

4 The PMF semantic markup

4.1 Overview

We propose adding “password-manager friendly” (PMF) semantic markup to
forms related to creating, accessing and managing user accounts, to simplify the
following tasks:

– Finding forms and determining their purpose (login, registration, etc.).
– Finding the important inputs within the forms.
– Parsing password policies and generating valid new passwords.
– Detecting errors.

We adopt a simple and pragmatic approach used in other HTML microfor-
mats, of using semantic class names. A class attribute value can be specified for
any HTML element [4] and the use of semantic class names is supported by the
W3C [5]. We use the pmf prefix as a poor man’s namespace to avoid clashes with
programmer-defined class names. For example2, a login form is marked with the
pmf-login class:

<form action="/login" method="POST" class="pmf-login">

Although form inputs have other attributes such as name and type which may
often give sufficient semantic information, standardised class values can be used
to remove any ambiguity. For example, not all inputs with type="password"
are for long-term passwords: some are for one-time codes generated by hardware
tokens. Furthermore, as name attribute values are sometimes automatically gen-
erated by web frameworks or are specified by other standards such as OAuth
[6], use of these attributes could cause conflicts. In contrast, any HTML ele-
ment may have multiple classes [4], so our use of semantic class names ensures
interoperability.
2 In these examples, underlined text denotes PMF-related additions.
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4.2 Forms

Being able to reliably determine the type or purpose of a given form enables
a software agent like a password manager to offer a richer and/or more consis-
tent user experience. form elements should be marked with the semantic classes
specified in Table 1.

Table 1. Semantic classes for forms.

Form type Semantic class name
Login pmf-login
Registration pmf-registration
Change password pmf-change-password
Password reset pmf-reset-password

4.3 Inputs

Username Login and registration forms typically contain an input element
of type text or email for entering a username (which is often the user’s email
address). These inputs should be marked with the pmf-username class:

Username or email address:
<input type="text" name="user" class="pmf-username"/>

Password resets and changes are tricky for a password manager because the
software cannot tell—in the case where a user may have multiple accounts with
the same website—which password is being changed. For example, a simple
experiment using Firefox’s built-in password manager and two Google accounts
reveals that, in some cases, the password manager must prompt the user to ask
which account they are updating the password for, even though they are already
logged in.

We propose that site authors should include a hidden-type field in these
forms, marked with the pmf-username semantic class and with its value set to
the username of the relevant account:

<form action="/reset" method="POST" class="pmf-reset-password">
<input type="hidden" class="pmf-username" value="jimbojones"/>
...

</form>

Passwords Inputs for passwords typically appear in all four of the above form
types. Some password inputs, such as those in registration forms, are for new
passwords, while others are for existing passwords. These sub-types are unam-
biguously distinguished by the pmf-new-password and pmf-password semantic
classes respectively. It is useful to distinguish them because they appear together
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in “change password” forms. These typically contains three password-type in-
puts, one for the user’s current password and two for their desired new password
(one to confirm the other). All three will have a different name attribute values
but, using semantic class names, the purpose of each input is made clear:

<form action="/change" method="POST"
class="pmf-change-password">

<input type="password" name="current" class="pmf-password"/>
<input type="password" name="new" class="pmf-new-password"/>
<input type="password" name="confirm"

class="pmf-new-password"/>
</form>

Stay signed in Many login forms include a “stay signed in” check box which
allows the user to control whether their session with a website should persist
across multiple browser sessions. If present, this input should be marked with
the pmf-stay-signed-in class:

Stay signed in?
<input type="checkbox" name="persist"

class="pmf-stay-signed-in"/>

Annotating the “stay signed in” check box allows a software agent to apply a
global policy on staying signed in for the user, across all websites. Many websites
tick the “stay signed in” box by default and users accept this. But, if their
password manager could apply a “never stay signed in” policy for them, they
may be happy for it to do so and thereby gain a valuable security (and privacy)
boost by not being permanently signed-in to their online accounts.

Another scenario in which this feature might be useful is the cybercafé: for
the benefit of the patrons, the web browsers installed on the public cybercafé
machines might be configured to disable the “stay signed in” feature by default.

Hidden inputs Forms often contain hidden-type input elements which are not
visible when the HTML is rendered3. As human users are normally unaware of
and cannot interact with these inputs, it is not useful for a software agent acting
on the user’s behalf to be able to interact with them either and we don’t propose
any additional markup.

4.4 Password policies

Large-scale password leaks have shown that many users optimise for memorabil-
ity and convenience rather than security, choosing trivially-guessable passwords
3 The values of these hidden inputs are usually populated by the web server when
it generates the HTML of the page and then not changed on the client side. For
example web frameworks, such as Django [7], use them to implement Cross Site
Request Forgery protection.
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like 123456, qwerty or password. Password composition policies (“between 8
and 16 characters, of which at least one uppercase, one digit and one symbol”)
are an attempt to enforce selection of passwords that will be harder to guess.
Although we may not agree with the password policies that websites impose,4
we believe that their rules should be made available in machine-readable form
to allow password managers to generate strong compliant passwords.

In this section we therefore define a simple specification for a machine-
readable (JSON) description of a password composition policy. Our goals have
been to make it easy for the website developer to write their intended policy and
for the spec to be sufficiently expressive that most commonly observed policies
can be represented with it.5

A machine-readable password composition policy is included in an HTML
document as the value of a hidden-type input element6. This hidden input should
be marked with the pmf-policy semantic class and appear within a form with
the pmf-register semantic class. A library routine, written once and for all
as part of the standard, can then generate the corresponding human-readable
version and localize it to any language7:

<form action="/register" method="POST" class="pmf-register">
...
New password:
<input type="password" name="new" class="pmf-new-password"/>
<input type="hidden" class="pmf-policy" value=’

Machine-readable policy as a multiline string
according to the syntax described below.

’/>
Human-readable policy
...

4 The debate on whether they are effective would sidetrack us into a different discus-
sion; what we note here is that such policies may reject some otherwise very strong
passwords such as those that a software agent might generate. For example because
they exceed the maximum length, or because they fail to include a character from
one of the classes, or because they include a disallowed character, maybe outside
the ASCII range. Bonneau and Xu’s study [8] of non-ASCII passwords, or more
accurately of passwords from people whose native language doesn’t fit into ASCII,
is instructive.

5 We have strongly resisted the temptation to cover absolutely all cases and become
Turing-complete. Useful rules that our notation cannot express include blacklists of
known weak passwords and stateful checks such as “you can’t use your username or
a variation of it”. But such violations are very unlikely to occur if the password is
generated randomly.

6 Note that, to allow double quotes in the policy as required by the JSON syntax,
the whole policy must be enclosed in single quotes. The policy itself won’t normally
contain single quotes but, should it need to, those must be escaped.

7 The routine could even be embedded as JavaScript in the page itself. Alternatively,
the translation to human-readable form could be performed offline and the result
statically embedded in the page, as in this example.
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</form>

The policy optionally specifies a minimum and a (bleah)8 maximum length
as non-negative integer fields. It then specifies what classes of characters are
allowed and which classes the password must contain.

In the spirit of the 2014 Stanford password policy [9], we allow the rules to be
more strict for short passwords but more relaxed for long ones: this is achieved
in practice by defining multiple sub-policies that apply depending on the length
of the password.

Character class notation Several common character classes are predefined
in Table 2. Although many current password systems only work with ASCII
characters, for future-proofing we allow the definition of password policies that
allow arbitrary subsets of Unicode characters. Arbitrary character classes can
thus be defined by enumerating the Unicode characters they contain, in any
order, in a JSON list. For example, the symbol class could also be written as

["!", "@", "#", "$", "%", "&", "*", "-", "+", "/", "="]

or, using Unicode escape sequences,9 as

[
"\u0021", "\u0040", "\u0023", "\u0024", "\u0025",
"\u0026", "\u002a", "\u002d", "\u002b", "\u002f",
"\u003d"

]

As a shorthand, contiguous ranges of Unicode characters in the list can be spec-
ified by listing the first and last character with the string "..." between them.
For example, the digit class could be written as

["\u0030", "...", "\u0039"]

Table 2. Predefined character classes

String constant Class contents
"lower" the 26 lowercase ASCII letters
"upper" the 26 uppercase ASCII letters
"digit" the 10 ASCII digits
"symbol" the following 11 symbols10: ! @ # $ % & * - + / =
"base64" the 64 ASCII characters defined by the “base 64” encoding
"ascii" the 95 printable ASCII characters from 32 (space) to 126 (tilde)

8 We believe setting a maximum password length is a dumb idea but here we are
trying to allow websites to express their policy in machine-readable format rather
than compelling them to switch to a sensible policy.

9 "\u" followed by 4 hexadecimal digits (http://json.org/)

http://json.org/
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Simple policies Most of the policies observed in the wild are “simple” policies
that apply the same character class requirements to passwords of all lengths.
Simple policies are represented by a list of length one, containing a single sub-
policy object:

[
{

minLen: 8,
mustHave: ["upper", "lower", "digit"],
mayHave: ["base64", "␣"],

}
]

In the above example, the password must have a length of at least 8 characters
inclusive; it must contain at least one character from each of the three classes
listed on the mustHave line11; and it may also contain any character in any of
the two classes listed on the mayHave line.

For example the amazon.com policy, at the time of writing, simply requires
the password to be between 6 and 128 characters and can therefore be rendered
as follows.12

[
{

minLen: 6,
maxLen: 128,
mustHave: [],
mayHave: ["ascii"]

}
]

Complex policies A complex policy is one where, as in the Stanford policy
[9], the password composition rules depend on the length of the password. It
consists of a list of two or more sub-policies with non-overlapping length ranges.
If a certain password length is not included in any of the ranges, then passwords
of that length are not allowed. For example, Fig. 1 is a rendering of the Stanford
policy as written up in their poster.

4.5 Errors

As mentioned previously, determining whether a login attempt (or other action)
was successful or not is a difficult problem for software agents, because at the
HTTP layer a “200 OK” status code is returned in both cases. The user is in-
formed of any problems using prominent human-readable error messages within
11 Our notation cannot express more elaborate rules such as “must include characters

from at least 3 of these 5 classes”.
12 The mayHave line is just guesswork: we have not tested whether Amazon allows even

more characters—perhaps even non-ascii ones.

amazon.com
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[
{

minLen: 8,
maxLen: 11,
mustHave: ["upper", "lower", "digit", "\u0020",

"...", "\u002f"],
mayHave: "ascii";

},
{

minLen: 12,
maxLen: 15,
mustHave: ["upper", "lower", "digit"],
mayHave: "ascii";

},
{

minLen: 16,
maxLen: 19,
mustHave: ["upper", "lower"],
mayHave: "ascii";

},
{

minLen: 20,
mustHave: [],
mayHave: "ascii";

},
]

Fig. 1. Stanford password policy expressed in the PMF policy language.
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the returned HTML page, but we would like these messages to be just as easy
to find for machines.

We propose marking these error messages with the pmf-error semantic class
name to make them trivial for software agents to find:

<p class="pmf-error">Incorrect username and/or password </p>

5 Related work

Bonneau and Preibusch’s [10] comprehensive review of the authentication land-
scape on the web argues that some sites deploying passwords do so primarily
for psychological rather than security reasons. For example, they speculate that
password-protecting accounts serves as a justification for collecting marketing
data and as a way to build trusted relationships with customers. Whatever the
underlying reasons, it is apparent that the number of password-protected ac-
counts an average user manages has increased markedly since the advent of the
web. Florencio and Herley [11] report that the average user has 6.5 passwords,
each of which is shared across 3.9 different sites. Furthermore, each user has
about 25 accounts that require passwords. Without the reported level of pass-
word reuse, managing 25 separate accounts with unique random passwords is
barely imaginable for most users.

A password manager, either as a separate program such as PasswordSafe
[12] or integrated with or in the browser, is now a well established solution
for managing the increasing burden password-based authentication on the web.
Given the increasing reliance on password managers13, a recent thread of research
has investigated their security properties.

Gasti and Rasmussen [13] investigate the security properties of the password
database formats used in range of popular password managers. They define two
new games to analyse the security of password manager databases: indistin-
guishability of databases (IND-CDBA) game and chosen database (MAL-CDBA)
game; the indistinguishability of databases game models the capabilities of a re-
alistic passive adversary, and the chosen database game models the capabilities
of an active adversary able to both read and write the password database file.
Google Chrome stores plaintext username/passwords in the user’s profile direc-
tory. As a result, an attacker can trivially win both the IND-CDBA and MAL-
CDBA games with Chrome as the Challenger. Firefox also fails both games;
however, Firefox optionally allows users to encrypt the passwords stored in the
password managers database under a user-supplied master key. This option pro-
vides at least some security benefits over Google Chrome’s password manager,
even if the full benefits of indistinguishability under the IND-CDBA and MAL-
CDBA games aren’t afforded. Gasti and Rasmussen’s analysis concludes that,
among the systems they studied, only PasswordSafe v3 [12] is invulnerable to
attackers under the IND-CDBA and MAL-CDBA security models.
13 As an example, 1Password alone is estimated to have a install base of 2 to 3 million

users.
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Silver et al [14] identify a class of vulnerabilities exploitable when using
several popular passwords managers. The treat model they consider is a user
connecting to a network controlled by the attacker, such as a rogue WiFi hot-
spot. Under this model the attacker is able to inject, block and modify packets on
the network. The attacker’s goal is to extract passwords stored by the password
manager without further action from the user. The attacks presented by Silver
et al rely on exploiting the password manager auto-filling policies: for example,
the password manager can be coerced into auto-filling forms in invisible iframes
embedded within the WiFi hot-spot’s landing page.14

Li et al [15] analysed the security of five popular integrated password man-
agers (that is, password managers integrated with or in the web browser). Four
key concerns with browser-based password managers were identified in this
study: bookmarklet vulnerabilities, web vulnerabilities, authorisation vulnerabil-
ities and user interface vulnerabilities. Bookmarklet15 vulnerabilities, introduced
by Adida et al [16], result from the bookmarklet’s code running in a JavaScript
environment potentially under the control of an attacker. Li et al show that such
vulnerabilities are still widespread in popular password managers. The web vul-
nerabilities identified by Li et al consist of well know cross-site request forgery
(CSRF) and cross-site scripting (XSS) attacks. The authorisation flaws identi-
fied by Li et al result from sloppy implementations. User interface vulnerabilities
can be considered as phishing attacks against the password manager itself. In
cases where the user is not authenticated to their password manager, a num-
ber of in-browser password managers automatically open the login form for the
password manager in an iframe. Users have no means to differentiate between
this behaviour and a phishing attack.

Password managers should be considered as tactical solutions, alleviating
some of the gross security and usability failings of passwords. Pico [17] is a
strategic solution seeking a more usable and secure replacement for passwords
everywhere they are used (not just on the web). Recent work on Pico has at-
tempted to provide a mechanism that can work alongside passwords [18]. The
Pico bootstrapping technologies, whilst not being a password manager in the
classic sense, are required to parse and automatically submit login forms on the
user’s behalf and would thus also benefit from our semantic annotations.

14 Auto-filling of forms by the password manager improves usability and therefore,
before mitigating this vulnerability by disabling the auto-filling, careful consideration
is needed of the inherent trade off between security and usability. We shouldn’t lose
sight of the fact that normal users don’t have threat models; therefore, simply asking
them whether they want to enable or disable auto-filling is a bit of a cop out.

15 A bookmarklet is a bookmark containing JavaScript that can be used to extend a
web browser’s capabilities. Bookmarklets have advantages over alternatives such as
addons or extensions as they are cross browser and are managed by the user like
bookmarks.
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6 Conclusions

All password managers rely on fallible heuristics. Such code is complex, never
fully accurate and it requires constant updates, besides wasteful replication of
efforts by every password manager developer. We argue that all parties would
benefit if websites offered a standard interface to password managers, enabling
consistent and accurate agent-supported password creation, registration and lo-
gin, without brittle programmatic guesswork.

Our PMF proposal, of augmenting a website’s password pages with simple
and unambiguous machine-readable semantics, makes the operation of password
managers much simpler and more reliable. Users benefit from reduced cognitive
load and reduced typing burden. Reliable generation of strong random pass-
words increases security for both users and websites. A well-defined interface
eliminates guesswork and makes the password manager code leaner and much
easier to maintain. We feel PMF is beneficial for all parties involved: users,
website operators, password manager developers. We will be pleased to work
with developers of websites, browsers and password managers, as well as with
standards bodies, to promote its widespread adoption.
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Abstract. Android Lock Pattern is popular as a screen lock method
on mobile devices but it cannot be used directly over the Internet for
user authentication. In our work, we carefully adapt Android Lock Pat-
tern to satisfy the requirements of remote authentication and introduce
a new pattern based method called charPattern. Our new method allows
dual mode of input (typing a password and drawing a pattern) hence
accommodate users who login alternately with a physical keyboard and
a touchscreen device. It uses persuasive technology to create strong pass-
words which withstand attacks involving up to 106 guesses; an amount
many experts believe sufficient against online attacks. We conduct a hy-
brid lab and web study to evaluate the usability of the new method and
observe that logins with charPassword are significantly faster than the
ones with text passwords on mobile devices.

1 Introduction

As being a viable alternative to traditional text based passwords, graphical pass-
words have gained significant attention in academic research in the last 15 years
[1]. From practical point of view, maybe the most successful graphical pass-
word example is Android Lock Pattern (ALP) which comes preinstalled in most
Android smartphones and is presumably the most widely deployed one. As its
name implies, Android Lock Pattern (ALP) is mainly used to lock smartphones.
Security and usability requirements for remote access (over the Internet) are
very different than the ones present in local operation while locking/unlocking
a phone. We identify two main differences as follows:

1. ALP provides a theoretical password space of 18 or 19 bits [1, 2]. Recent
research estimates a partial guessing entropy of only 9.1 bits [2]. This may
provide adequate level of security for its intended purposes especially with
a policy enforcing maximum number of false trials. On the other hand, al-
though there is not a consensus among security researchers for the minimum
security requirements for web authentication, there is no doubt that ALP in
its present form offers much less than required.

2. Even though touch screen devices are being widely deployed, use of a desktop
or a laptop computer with an old-fashioned monitor is still common. Previous
research suggested that an authentication scheme designed for touch screen



devices such as ALP is likely not accommodate users alternating between
desktops and touch screen devices, well [3].

In our work, we propose a new knowledge-based authentication method called
charPattern targeting web applications by a careful adaptation of ALP method
addressing the aforementioned differences and thus challenges. We also conduct
a hybrid lab and web study to compare the usability of charPattern with text
passwords and gridWordX [4]; a recent multiword password proposal answer-
ing the research challenge arising from the evolution of Internet access devices
[3]. The results of user study show that while there is no significant difference
between login times of charPattern and text passwords on desktop/laptop ma-
chines, login times on mobile devices are significantly lower with our new method,
charPattern.

The rest of the paper is organized as follows: Section 2 overviews the related
work. In section 3, the proposed system is presented. The methodology of user
study is discussed in section 4 followed by presenting its results in section 5. We
discuss the results of user study in Section 6. Section 7 concludes the paper.

2 Related Work

Graphical password schemes could be grouped based on how they are mem-
orized: recall-based, cued-recall and recognition-based schemes.

Pass-Go, inspired by an old Chinese game, is a recall-based scheme where
passwords are drawn by using grid intersection points [5]. Another grid-based
system is Gridsure which specifically uses a 5 x 5 grid [6] as an alternative one-
time PIN system. The grid is populated with different random digits, thus a user
who memorizes her pattern could enter a different PIN occupied by the pattern
in each login. PassPattern system [7] is a similar one-time password scheme.

Graphical passwords on mobile devices based on the recognition of pho-
tographs in the context of mobile devices were investigated by Dunphy et al. [8].
Schaub et al. explore the design space of graphical passwords on smart phones
by implementing five different graphical password schemes on one smartphone
platform [9]. They perform usability experiments and analyze shoulder surfing
success rates. They consider two levels of theoretical password strength (14-bits
and 42-bits).

Android Lock Pattern(ALP) could be considered as a variation of the
Pass-Go scheme by using nine points arranged in a 3x3 grid [1, 2]. By setting
the minimum number of points that should be chosen as four, the number of
possible patterns is 389.112 giving an approximate security of 19 bits. However,
this is just a theoretical maximum value. Uelenbeck et al. shows that in practice
only a partial guessing entropy of 9.1 bits is achieved which is around the same
security level of 3-digits random PINs [2].

Given the popularity of ALP, it is of no surprise to see that the idea is
ported to other platforms as well. For instance Eusing Maze Lock 3.1 is such a
free product for Windows platforms [10].



Building passwords from multiple words is a long-standing idea pro-
moted to increase memorability and security. Cheswick [11] (See also summary
by Rik Farrow [12]), was the first who proposed user-chosen multi-word pass-
words for convenient entry on smartphones.

gridWordX, improved version of gridWord [3], is a hybrid multi-word pass-
word scheme which supports elements of text and graphical passwords [4]. With
gridWordX, the user could choose from a grid of words to form a password
without requiring character-by-character text entry. In Fig. 1(b)), the words are
arranged in a 8 x 13 (8 rows, 13 columns) 2D grid. Besides the grid, the inter-
face also includes three combo boxes with autocomplete property for each words
of the password to allow dual mode of input (either by typing or touching on
the grid). Here, three-word-length password provides around 20 bits of password
security.

3 The Proposed System

The proposed system in this research, charPattern (see Fig. 1(c)), allows draw-
ing a pattern over so called dot-characters to support entering a password by
touching on the mobile device (dot-character is a dot corresponding to a unique
character). Since patterns stimulate visual memory, charPattern is expected to
leverage password memorability. Alternatively, the system also facilitates pass-
word entry by typing the dot-characters forming the pattern with a physical or
a virtual keyboard.

3.1 Design Features

We identify the main differences between charPattern and Android Lock Pattern
(ALP) as follows (see Table 1):

1. ALP has 9 dots organized in a 3 x 3 grid. On the other hand, charPattern
has 35 dots organized in seven rows and five columns. With at least four dots
forming a password, this gives a password space over one million. We note
that if the passwords are chosen uniformly, a password space of one million
could withstand against online attacks if lockout rules are in use [13, 14]

2. Theoretical password space could not be reached in practice with user-chosen
passwords since users are more likely to select a password among hotspots,
a more popular subset. However, with persuasive technology proposed first
with Persuasive Cued Click Points (PCCP) method [1], hotspots could be
avoided. The basic idea is to suggest users a randomly generated password
while they are creating their account. While users are allowed to ask for a
new suggestion as much as they wanted, this significantly slow the password
creation process. Hence a secure password selection becomes a path of “least
resistance”. In a sense, use of persuasive technology could be regarded as
balancing the tradeoff between system generated passwords and user cho-
sen passwords regarding usability and security properties. In charPattern,



(a) Text password. (b) gridWordX. (c) charPattern.

Fig. 1: Login interfaces of authentication methods investigated in our work on a
mobile device.

we borrow this technique to suggest users a randomly generated pattern
password composed of four dot-characters.

3. In charPattern, each of the dot is mapped to a unique alphanumeric char-
acter. We choose 10 numeric digits and 25 lowercase letters (all letters in
English alphabet except the letter “z”) to have 35 characters in total. This
gives the opportunity to map each pattern to a text password composed of
4 characters. Users are free to enter their passwords either by drawing the
pattern or by typing the password. For instance the pattern seen in Fig. 1(c)
could also be entered by typing the password “cfwb”.

4. To be able to draw a pattern with any of four dots (not only the consecutive
dots), we require pausing for minimum of 150 ms on a dot to select it as
part of the pattern. In other words, unlike ALP method with charPattern it
is possible to skip dots if we draw a pattern without pausing over them.

3.2 Implementation

The proposed system is implemented for both mobile devices and as a web
application for desktop/laptop computers. On the mobile device, charPattern is
implemented as a standalone full-screen Android application (see Fig. 1).

We also develop charPattern as a web application for desktop computers
using PHP, HTML and Javascript version 5 (not shown as a figure). Both the
mobile and the web application are developed by the same programmer to achieve
a comparable look and feel.



Table 1: ALP vs. charPattern
Comparison Criteria ALP charPattern

Number of dots 9 35

Dot-matrix size 3x3 5x7

Dot interface only dots
each dot mapped to
a unique character

Password-length [4,9] dots 4 dots

# of possible passwords 389112 1256640

Max. password entropy (bits) 17 20

Compatibility with entry
using physical keyboards

NO YES

Creating a password user-selected use persuasive technology

Dot selection method every dot in a path
150 ms pausing on a dot
to select

4 User Study

We conduct a user study to compare the usability of traditional text pass-
words, gridWordX and charPattern on mobile devices and in a traditional desk-
top/laptop environment. Before the study, we formed our hypotheses as follows:

1. Login with charPattern takes shorter time than with text-based authentica-
tion on mobile devices.

2. Login with charPattern takes shorter time than with gridWordX on mobile
devices.

3. Login with charPattern takes comparable time with login using text pass-
words on computers having physical keyboard.

4. Login with charPattern takes comparable time with login using gridWordX
on computers having physical keyboard.

In the user study, 25 undergraduate and graduate students of TOBB Univer-
sity of Economics and Technology (17 males and 8 females) participated. The
ages of participants are ranged between 19 and 28. We note that every partic-
ipant is already familiar with using desktop computers and mobile devices for
Internet access.

4.1 Sessions of the Study

The user study has a within-subjects design and consists of four sessions. The
interval between each session is minimum of four days and maximum seven
days. In the first session, each participant is invited to the lab and asked to
create an account by entering a username and creating a password on a mobile
device. A password is created for all three systems; text password authentication,
gridWordX and charPattern hence each participant has three passwords in total.
The participant also performs a login on the mobile device after solving a mental



rotation test (MRT) test. MRT is used to remove users’ short term memory. We
employ counterbalancing between password methods to handle order effects.

In the second and third sessions, the participants perform logins on their own
laptop/desktop computers remotely by their username-password pairs created
in the first session (with all three systems).

In the fourth (last session) session, the participants are re-invited to the lab
and asked to perform a second login on the mobile device with their username-
passwords (again with all three systems).

4.2 Pre-experimental Instructions

Before the first session, a brief presentation about the user study was provided
which includes general oral instruction and a short demo on three password
methods. The oral instruction covers the following points:

– We emphasize that our aim is to evaluate the authentication methods, not
the participants themselves.

– We ask participants to create a text password which consists of at least eight
characters.

– We ask them not to use a password they use in real life as the text password
they create for the study.

– The participants should not take a note of their passwords in any form
(writing down, taking a photo, etc.).

– The participants are asked to treat their passwords as a real passwords rather
than just experimental as they have to use them in future sessions, again.

We do not mention which authentication method is designed by us in order to
avoid any bias among the participants with respect to usability of the methods.

4.3 Lab Study

In the lab study, all participants used the same mobile device (Sumsung Tab2 7
inch tablet with Android SDK API 17 which has 600x1024 resolution and 170 ppi
pixel density) so that they are tested under same conditions. The participants
filled out a post-task questionnaire after the second login performed in their
second visit to the lab.

4.4 Web Study

Second and third sessions were conducted over the Internet hence we call it
as a web study. The web study was held to compare usability of charPattern
with traditional text password and gridWordX on desktop/laptop computers.
We asked participants not to use their touch-screen devices in the web study.
But we did not ask anything particular regarding mouse use. The users were free
to use a keyboard or a mouse (applicable only with gridWordX and charPattern)
to enter their passwords. In the web study, users were allowed to ask for their
passwords through email if they decided they could not recall their passwords.



5 Results

The following data is collected in the user study:

– Timing. Creation & confirmation and login times.
– Number of Attempts. The number of attempts until the correct login.
– Number of Shuffles. How many times a user asks for a new password

suggestion (applicable to gridWordX and charPattern).
– Modes of Input. In gridWordX and charPattern, users enter passwords

either by typing or by drawing (touching). Mixing these two modes is also
possible. As a result, there are three different modes of input.

– Questionnaire. User responses to survey questions.

5.1 Collected Data Analysis

Here, we provide the results of the collected data analysis. While applying sta-
tistical tests, a difference is considered statistically significant if the p value is
less than 0.05.

Fig. 2: Creation & Confir-
mation times.

Fig. 3: Login times in lab
study.

Fig. 4: Login times in web
study.

The times to create and confirm passwords for each method are presented in
Figure 2.

Login times in the lab study and in the web study are presented in Figure 3
and Figure 4, respectively.

Table 2: Friedman Test Results for Lab Study.
Method
Name

Mean Ranks Test Results
First
Login

Last
Login

First
Login

Second
Login

text password 2.93 2.84 Chi-Square 31.76 26.64

gridWordX 1.56 1.64 df 2 2

charPattern 1.52 1.52 Asymp.Sig. 0.00000 0.00000



Regarding login times of three methods on the mobile device (lab study),
we obtain highly significant difference between three datasets by applying non-
parametric k-related sample-test Friedman to three datasets in each of two ses-
sions separately as shown in Table 2.

Table 3 presents results of non-parametric k-related sample-test Friedman
applied to login times of text passwords, gridWordX and charPattern in the Web
study. Here, we find no significant difference although charPattern has shorter
login times than text passwords and gridWordX.

Table 3: Friedman Test Results for Web Study.
Method
Name

Mean Ranks Test Results
First
Login

Last
Login

First
Login

Second
Login

text password 1.92 2.16 Chi-Square 4.16 2.96

gridWordX 2.32 2.12 df 2 2

charPattern 1.76 1.72 Asymp.Sig. 0.125 0.228

Table 4 presents success rates of text passwords, gridWordX and charPattern
with regard to creation & confirmation and login (a user is considered successful
if he/she could complete it with no more than three attempts and if the password
is not asked by email). We apply non-parametric k-related sample-test Friedman
and obtain no significant difference between results.

Table 4: Login Success Rates
Create &
Confirm

Login Sessions
First Second Third Fourth

text password
Success Rates

25/25
100.00 %

25/25
100%

24/25
96%

25/25
100%

25/25
100%

gridWordX
Success Rates

23/25
92%

25/25
100%

17/25
68%

23/25
92%

25/25
100%

charPattern
Success Rates

25/25
100%

24/25
96%

16/25
64%

24/25
96%

25/25
100%

As presented in Table 5, shuffle count of charPattern is less than of grid-
WordX, but by applying the paired-sample Wilcoxon test, we obtain no signifi-
cant difference between them.

The number of participants using more than 5 shuffles with gridWordX is
5, whereas with charPattern it equals to 1. In Table 6, we show how number of
shuffles in gridWordX and charPattern influences success rates.

Input modes are typing, drawing (clicking) and hybrid mode in charPattern
and gridWordX. The distribution of participants regarding these three input
modes is shown in table 7.



Table 5: Shuffle Results of gridWordX and charPattern
N Mean Std. Dev Min Max

gridWordX
charPattern

25
25

4.60
1.56

7.984
1.981

0
0

36
7

Table 6: Effects of Shuffles on Success Rates for gridWordX and charPattern
# of

Shuffles
# of
Trials

Confirm and Login Success Rates
Conf. 1st 2nd 3rd 4th

gridWordX
Low:<6
High:>5

20 (80%)
5 (20%)

95%
80%

100%
100%

70%
60%

90%
100%

100%
100%

charPattern
Low:<6
High:>5

24 (96%)
1 (4%)

100%
100%

95.8%
100%

62.5%
100%

96.8%
100%

100%
100%

In the questionnaire, we ask seven 10-point Likert-scale (1 is disagreement,
10 is strong agreement) questions. The results are given in Table 8.

6 Discussion

Before the user study, we conjectured that users would spend less time to login
with charPattern on a mobile device because drawing a pattern is much natural
than typing on a virtual keyboard (as in text passwords) or touching on cells
in a grid (as in gridWordX). As seen in Table 2, charPattern is faster than text
passwords and gridWordX with respect to login times on the mobile device which
supports our first two hypothesis.

Regarding login times of text passwords, gridWordX and charPattern in the
Web study, we find no significant difference (see Table 3). As a result, hypothesis
3 and 4 are also supported. Before the user study, we conjectured that on a
machine without a touchscreen the advantage of charPattern regarding login
times is lost because drawing the pattern on the screen is no longer possible.
But we thought charPattern still yields comparable login times with the other
methods since users have the chance to try other modes of input i.e., by typing.
After the user study, we see that the expected result is observed due to a reason
not we have foreseen. In the user study, users still prefer drawing the pattern over
typing the password but this time with a mouse or a touchpad. Since drawing a
pattern with a mouse or a touchpad is not as comfortable as drawing it on the
screen, the login times turned out to be as expected; comparable to other two
methods.

Figure 5 demonstrates the change in login times in subsequent logins. The
login time in the second login on a mobile device takes longer that the one in the
first login for all three methods. This results suggest that although we applied
a MRT test, users were more comfortable in entering their passwords just after
they created it. On the other hand, in the web study second logins took much less
time than the first login. This result is as expected because the first login was the



Table 7: Frequency of Input Modes in charPattern and GridWordX
Create &
Confirm

Logins
wk 1 wk 2 wk 3 wk 4

gridWordX
clicking
typing
hybrid

25
0
0

24
0
1

23
1
1

23
0
2

25
0
0

charPattern
drawing
typing
hybrid

25
0
0

25
0
0

22
2
1

24
1
0

25
0
0

Table 8: The Questionnaire Results
Question Mean

1. Using pattern makes charPattern easily memorable 8.56

2. The increase in number of dots does not make
drawing a pattern more difficult

6.76

3. I easily created a password in charPattern 8.68

4. Login using charPattern was easy on a desktop computer 9.48

5. Login using charPattern was easy on a mobile device 9.08

6. I liked charPattern as much as a text password 8.04

7. charPattern is at least as secure as a text password 7.72

first time the web interface was presented to the users. The important point here
is that in the lab study the difference between login times of charPattern and
text passwords holds for both logins (on the other hand, the difference between
gridWordX and charPattern drops significantly).

The survey results show that users find charPattern easy-to-use both on
desktops and mobile devices. It is surprising to see that users find charPattern
easier to use than text passwords more on desktop machines than mobile devices
(although the difference is not significant).

Limitations. One obvious limitation is with regard to demographics and
number of the participants. The participants were all university students which
might not reflect the behavior of general public. Secondly, the number of par-
ticipants was limited and not sufficient to make sharp conclusions. Finally, we
conducted the study within a short time period. Studies in longer time frames
would be better for analyzing memorability of charPattern.

Security Analysis. We mentioned that the password entropy of charPat-
tern is 20 bits which can safeguard against online attacks with lockout rules.
On the other hand, it is still of an issue whether some passwords are more
likely to be chosen in this space. An attacker could exploit the nonuniform pass-
word distribution by giving priority to more likely passwords while guessing.
In charPattern, we mitigate guessing attacks by disallowing user-chosen pass-
words and suggesting users randomly generated passwords. Hotspots could still
be present in charPattern passwords if users ask for suggestions (hit the “Shuffle”
button) until an easy-to-guess password is suggested.



(a) Login Times on Mobile Device. (b) Login Times on Desktop Computer.

Fig. 5: The change in login times in the first and second logins on Web and Lab
Studies.

Fig. 6: Frequency of dots selected as part of a charPattern password.

Figure 6 presents the frequency of dots selected by the participants where
17.14% were selected 0-1 times, 62.86% were 2-3 times and 20% of dots were
selected more than 3 times. To understand whether this particular distribution
is different than a random distribution, we generate simulated data consisting of
100 datasets each of which has 25 pairs of (x, y) elements where x ranges from 1
to 5 and y ranges from 1 to 7 corresponding to the size of data in our user study
charPattern. Then, we calculate rough estimate values of password entropy for
the collected dataset together with random datasets using the formula H(X)
defined in [15]. Our rough estimate password entropy of collected dataset is
between maximum and minimum entropy values of simulated datasets. Since
each random dataset represents a chance to include the observed data, with
99% probability, the user study dataset is a dataset occurred by chance. This
analysis gives an evidence that hotspots does not skew the password distribution
for charPattern.



7 Conclusion

As Android Lock Pattern has successfully demonstrated, drawing a password
pattern is preferred over typing a password or a PIN by many users for lock-
ing/unlocking their touchscreen devices. However, lock patterns could not be
used over the Internet directly for remote user authentication due to different
security and usability requirements. In this paper, we introduce charPattern,
a new pattern-based authentication method which increases password space to
adequate levels by (i) increasing number of possible patterns by careful addi-
tion of more dots (ii) by using persuasive technology to avoid hotspot passwords
(more popular patterns). To accommodating users who alternately login from
devices with, and without,full physical keyboards, the new scheme improves on
the idea of Android Lock Pattern by introducing a second mode of input by en-
abling users to type the characters corresponding the dots forming their pattern
password.

Our user study, which involves lab and web sessions, shows that charPattern
has significantly shorter login times than text passwords on a mobile device.
In addition, most users choose to enter charPattern passwords by drawing the
pattern rather than by typing via keyboard even on desktop machines, which
leads to login times comparable to those of text passwords on desktops. Based on
user study findings, we conclude that charPattern is a promising alternative to
text passwords for those who access same sites from mobile devices and desktops.
In the future, we plan to compare recall of charPattern passwords with recall of
text passwords in a long term user study.
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• The KikuSema  GmbH
• Headquarters Berlin/ Germany (1998)
• Founder & CEO Ulf Ziske

• Scientific Analyst (MSc) , 
Software developer.

• The Kikusema AB 
• Headquarters in Mariestad, Sweden (2001) 
• Founder & CEO Christine Ziske

• MBA/Scientific Analyst (MSc) , 
IT-Consultant and project manager

Who are we?
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SETTING THE SCENE
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FABULAROSA Thesis

The involvement of the human factor, 
the cognitive performance and the capabilities of humans, 

the Non-Technical Skills, needs to be improved within 
authentication procedures.

The Image in Your Mind
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FABULAROSA Security Pains?

"I needed a password eight characters long 
so I picked Snow White and the Seven 
Dwarves."  nick helm
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FABULAROSA What if?
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FABULAROSA Combination amount? 
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4+1 directions

6 x 5 = 30 levels x 45 = 1350 possibilities to activate a button

6 colours 1 pattern/ max 45 button

UTF16 = 65,535 CHARACTERS



FABULAROSA Combination amount? 

• 3x3 Matrix  Google

• 4of9 Pin iPad/iPhone

• FabulaRosa:
• 65,535 1350 = 1,7 e+6502

• 65535 64 = 1,8 e+308
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FABULAROSA What is it?
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FABULAROSA How does it work? 
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FABULAROSA What do you get?

UTF16 = 65,535 CHARACTERS
COMBINED WITH 1350 POSSIBLE SELECTIONS

EXTREMELY LONG & COMPLEX 
HIGH DEFINITION (HD) PASSWORDS
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FABULAROSA What do you get?
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奟刦乬讛淂鲲奢乖三亰凈刡丨螄亩嫷
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FABULAROSA Innovation? 

• Change of the user interface 
• No use of the keyboards any longer

• Many different HD-passwords are created
• by drawing only one image on a virtual 'Compass Rose' and 

applying such universal concepts as colours, directions and 
patterns, 

• By applying the unique algorithms

• Passwords of  850 characters from a  65,535 character 
set
• Instead of passwords with 8 characters from a 94 character 

set 
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FABULAROSA  State?

Desktop

Smartphone/ Tablet 

Server 
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FABULAROSA Algorithms behind? 

• The Pattern you draw – The Pattern
You can choose 45 buttons, 6 colours and 5 directions. 6 colours by 5 directions 
that equals 30 levels. 30 levels by 45 buttons equals 1350 possibilities to 
activate a button. All buttons are linked with each other and each button 
correlates with a so-called Mass Number.

• The addressees you allocate – The Mass Number 
algorithm
A so-called Alias Addressee is created for each addressee. The Mass Number  
will be calculated by certain algorithm based on this  Alias Addressee. 

• The user you are
Each user has its own so-called  Individual Security Constant
which ensures that two users using the same <pattern> will NOT use the same 
<password>. 
The user gets an individual key set. These keys are transformed into the 
Individual Security Constant.
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FABULAROSA Algorithms behind? 
The Password is calculated by the FabulaRosa Algorithm based on the 
Pattern, the Mass Number Algorithm and the Individual Security constant. 
There  are two steps:

1. The password is calculated with a 
length of 1350 characters using 
the UTF16 character set. 

2. The password is customized to 
the requirements of the 
addressee regarding the feasible 
length and the character set
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FABULAROSA Safety Start Algorithm

The Safety Start Mode protects the App against unauthorized access.

The entire user data, 
including all the 
information about the 
addressees are 
encrypted by an 
own-developed 
algorithm.
You can't proceed 
within the app without 
drawing an additional 
pattern.
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THE AUGMENTATION
THE FIVE NEW PROTOCOLS
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FABULAROSA Innovation? 
Applying  Five New Protocols

1. QR Code 
2. Stealth Mode
3. Secret Based Login
4. Encrypted User Data
5. Multi Instance Authentication/

Scrambled Secrets
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Protocol 1 – QR Code 

Between the communication partners: personal smart 
phones and public devices, a password is transferred by 
QR Code.
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Protocol 2 – Stealth Mode

The password is modified that it cannot be identified. 
The type of the modification is changed within a certain 
time frame.
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Protocol 3 – Login with a Secret 

Once the password will be exchange with the addressee. 
Later no password will be exchanged. 
Only a content-free string will be send to the user. 
During the handling of the login by FabulaRosa the string 
will be scrambled. 
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Protocol 4 – Encrypted User Data

The user data were encrypted and later locally decrypted 
within FabulaRosa by using the complex password matrix; 
suitable for 

• user's credentials, 
• files, 
• applications. (i.e.  Apple’s app development data -

signatures and "mobile provisions„)
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Protocol 5 – Multi Instance Authentication /
Scrambled Secrets 

Up to eight instances which could be a mixture of different 
technical factors with different simultaneous authorities can 
be involved in the process.
Feasible scenarios:

• image authentication, 
• real electronic money
• joined control of machines.
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LIVE DEMO 
SCRAMBLED SECRETS
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FABULAROSA Thesis

The Keyhole Security has to overcome
• by participating of several difference instances

in the authentication process
• by protecting the „values“ themselves by encrypting
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FABULAROSA SCRAMBLED SECRETS APPS

| Kikusema   | FABULAROSA AND THE FIVE PROTOCOLS 28PASSWORD2014 |  8-10 November  | Trondheim



THE JOURNEY IS A LONG ONE!

FABULAROSA
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FABULAROSA

THE NEW NEEDS FRIENDS
www.fabularosa.com
www.kikusema.com

@FabularosaOne
@kikusema
@cyopblog

www.facebook.com/fabularosa
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Unrevealed patterns in password databases
Part one: analyses of cleartext passwords
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Abstract. In this paper we present a regression based analyses of clear-
text passwords moving towards an efficient password cracking method-
ology. Hundreds of available databases were examined and it was ob-
served that they have similar behavior regardless of their size: password
length distribution, entropy, letter frequencies form similar character-
iscics in each database. Exploiting these characteristics a huge amount
of cleartext passwords were analyzed in order to be able to design more
sophisticated brute-force attack methods. New patterns are exposed by
analyzing millions of cleartext passwords.

1 Introduction

IT security companies publish complete IT security solutions from week to week
which are able to protect complete IT systems. Large IT companies spend more
and more money each year on IT security. In spite of all this the amount of
compromised data are continuously increasing. The high-profile incidents are
constantly published but there are a lot of incidents which remain in haze. The
purpose of this study is not to resolve this contradiction, but rather to point out
what kind of information can be gathered from cleartext databases.

1.1 Recent data breaches relating to passwords

In the last few years many security incidents have been published [1]. Hundreds of
large databases containing passwords have been compromised and are accessible
on the Internet. It has been reported that millions of usernames and passwords
were stolen from huge companies. Without loss of generality we enumerate a few
major incidents relating to password leakage:

– September 2014: 4.93 million Gmail usernames and passwords leaked [2] to
a Russian Bitcoin forum. Close inspection revealed that the user details are
old (3+ years). The retrieving method is suspected to be multiple individual
targeted hacks rather than one big data leak.
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– June 2014: The Rex Mundi hacking group stolen details from users in
France and Belgium from Dominos Pizza database [3]. User’s details includ-
ing 650 000 passwords, email, home addresses and phone numbers.

– April 2014: A bunch of AOL accounts have been hacked [4]. AOL says
that a “significant number of user accounts” are affected and that the breach
involves accessing information associated with these accounts. It seems that
those responsible for the security breach have been able to gain access to
email addresses, postal addresses, and address book contact information, as
well as encrypted versions of passwords and answers to security questions.

– March 2014: 145 million eBay accounts were compromised in massive hack
including email addresses and encrypted passwords [5]. It is unclear if or
when hackers will be able to break the encryption protections of passwords.

– November 2013: MacRumors user forums have been breached by hackers
who may have acquired cryptographically protected passwords belonging to
860 000 users [6].

– September 2013: Over 150 million breached records from Adobe have sur-
faced online [7]. Hackers obtained access to a large swathe of Adobe customer
IDs and encrypted passwords and removed sensitive information (i.e. names,
encrypted credit or debit card numbers, expiration dates, etc.). It concerned
approximately 38 million Adobe customers.

– July 2013: Hack exposed e-mail addresses, password data for 2 million
Ubuntu Forum users [8]. The discussion forum for the operating system was
compromised leaking personal details and passwords. The passwords were
cryptographically scrambled using the MD5 hashing algorithm – considered
an inadequate means of protecting stored passwords by security experts.

– May 2013: Drupal reset login credentials after hack exposed password data
[9]. Malicious files placed on association.drupal.org servers via a 3rd-party
application. Usernames, email addresses, country information and crypto-
graphically hashed passwords were exposed.

– April 2013: Scribd, the “world’s largest online library”, admits to network
intrusion, passwords have been breached [10]. The hack resulted in a few
hundred thousand stolen passwords.

– April 2013: 50 million usernames and passwords lost as LivingSocial “spe-
cial offers” site hacked [11]. Online criminals gained access to user names,
email addresses, dates of birth and encrypted passwords for 50 million peo-
ple.

– March 2013: Evernote asked its 50 million users to reset their passwords
following an attempt to hack the note-taking network [12].

– February 2013: 250 000 accounts believed compromised from Twitter [13].
Hackers had access to limited user information – usernames, email addresses,
session tokens and encrypted/salted versions of passwords.

These databases are very good starting points for analysis of passwords. Hun-
dreds of databases had been analyzed.
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1.2 Earlier results on passwords

In the first subsection we showed that a huge number of compromised pass-
word data are present in order to analyze them thoroughly. Several databases
can be downloaded from various sources containing millions of passwords. Nu-
merous articles can be found on the Internet concerning password analysis (see
e.g: [14–20]). They analyzed password length and character type distributions,
dictionary words penetrations, dictionary attack success ratios, etc. One of the
largest cleartext password database available on the Internet is the RockYou
database. The analysis of 32 million cleartext password leaked from RockYou
shows the following character type distributions:

15.94%

Only numerics
36.94%

Mixed letters and numerics

41.69%

Only lower case

1.62%

Only upper case

3.81%
Contains special characters

Fig. 1: RockYou password character type distribution

It was also measured that 40-50% of compromised password hashes can be re-
covered within a short period of time using brute-force attack. It is well-known
that most of the users are not using complex or random passwords, they are
choosing passwords often from dictionary. Exploiting this human behavior one
can decrypt approximately 70-85% of the passwords within few days in a sin-
gle notebook using dictionary attack with some (sometimes sophisticated) rules.
What about the unrecovered passwords? Are these passwords really secure? The
aim of this and the next papers are to describe an efficient password cracking
methodology based on more than three years of experimental researches con-
ducted by the National Security Authority of Hungary (hereafter: HuNSA). The
methodology based on regression analyses of cleartext passwords. It has turned
out that the approach can be used to crack encrypted passwords more efficiently
than brute-force attacks or dictionary attacks. Most of the cases we were able to
decrypt more than 90% of the encrypted passwords irrespectively of the applied
cryptographic algorithm.
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2 Encrypting cleartext passwords

Most companies use strict privacy standards and assert that all private data
is stored securely. However, the reality does not justify that sense. In lots of
cases the compromised data is stored in cleartext, including passwords. Storing
passwords in cleartext is the worst security method ever, but storing the pass-
words in encrypted form is often not much better. Our main idea is based on
the following

Observation. Different password databases have similar behavior regardless of
their size: password length distribution, entropy, letter frequencies show similar
characteristics in every examined database.

Based on this observation, it can be concluded that there is no significant dif-
ference between hashed and cleartext password databases. The only difference
is that we can not analyze the uncracked passwords as cleartexts. In order to
be able to find common patterns in these unrecovered passwords we reverse the
research method. Let us encrypt a cleartext database and try to decrypt it with
brute-force and dictionary attacks. In other words we simulate a real encrypted
database. The remaining uncracked passwords have our main interests. We are
able to analyze the length-distributions, complexity of the passwords, etc. of the
remaining cases because we have the full cleartext database. During more than
three years of experience we were able to find new patterns in cleartext password
databases which can be used against hashed password databases.

2.1 Password strength

Password strength is a measure of the effectiveness of a password standing up
against guessing and brute-force attacks. It is a function of length, complex-
ity, and unpredictability. The effectiveness of a password of a given strength is
strongly influenced by the design and implementation of the authentication sys-
tem. There are two factors to consider in determining password strength: the
average number of guesses the attacker must perform to figure out the correct
password, and the ease with which an attacker is able to check the validity of
each. The first factor is determined by the length of the passwords, by the al-
phabet size they are drawn from and by the randomness or predictability of the
password creation process. The second factor is specified by how the password
is stored and used. This factor is regulated by the design of the password man-
agement system and beyond the control of the user. Passwords can be created
(1) automatically (applying some randomization), (2) by humans, or (3) by a
mixture of them. Humans choose passwords guided by restricted set of rules or
suggestions. In this case only estimates of the strength are possible since hu-
mans tend to follow some kind of mental patterns. Some of these patterns are
collected into dictionaries even in various human languages. Analyzing the un-
cracked passwords lead us to design more sophisticated algorithms and rules in
order to achieve 95-98% of success ratio in cracking against encrypted password
databases.
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2.2 Password length distribution

If one would like to design an algorithm that can generate human-like passwords
the first step is to analyze the password length distributions (hereafter: PLD).
Password length distributions of databases are more complex than a simple
normal distribution. For example, in 96% of password databases there are more
6 and 8 character long passwords than 7 character long ones. This interesting
behavior can be observed in non-english databases as well (see e.g: [21]). It
seems that there is a break in the distribution, and can not be approximated by
a simple function. By analyzing more than 100 different databases with more
than 150 millions of passwords it has turned out that the PLD function can be
approximated by a mixture of two modified Gaussian distribution function. Let
us define the following password distribution (hereafter PWD) function based
on empirical analyses and researches:

PWD(x,Dn, σ, µ1, µ2) = Dn ·
1

2
√

2π
(e

−(x−µ1)2

σ2 + e
−(x−µ2)2

log(σ)/1.5 ) (1)

where Dn is the number of password in the database, σ is the standard deviation
from the average password length with an ε error, µ1, µ2 are the most common
password lengths in the database (e.g. µ1 = 6, µ2 = 8). RockYou database
is a good starting point to test the correctness of PWD(x,Dn, σ, µ1, µ2). In
our particular example PWD(x, 32603388, 2.1, 8, 6) is applied. Figure 2 shows
the real password length distribution (PLD) and the approximated distribution
function (PWD) together.

Fig. 2: Rockyou real PLD (red) and approximated PWD (blue).

It has turned out that the PWD function can be used to approximate PLD
with appropriate accuracy (≈ 95% of the cases). Without going into the details
one can see 6 more examples in Figure 3.
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(a) Youporn (b) Yandex

(c) Yahoo (d) Google

(e) Unpublished (f) RockYou

Fig. 3: Password length distributions of various databases and distribution data.
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2.3 Letter frequency distribution

It is well-known that letter frequency distribution is not uniformly distributed
because passwords are not chosen randomly. Table 1 shows the first 10 most
common characters in different databases:

Database The first 10 most common letter

Google a, e, 1, i, n, r, o, s, 2, l

Y ahoo a, e, i, o, 1, r, n, s, l, t

RockY ou a, e, 1, i, o, n, r, l, s, 0

Y ouPorn a, e, 1, o, i, r, n, s, 2, 1

Unpublished a, e, i, o, s, k, 1, r, n, t

Table 1: Letter frequencies in various databases.

If passwords were truly random, each character should occur with probability
1/N where N denotes the number of different characters in the database. It
can be seen in Figure 4 that the actual password occurrence is similar to some
inverse logarithmic distribution (1/ logN). Analyzing more than 50 databases

Fig. 4: Letter frequency distribution

it has turned out that letter frequency distribution can be approximated by the
following function:

LF (x,Dn, B) =
Dn

B · ln (x+ 2)
− x3

B · ln (x+ 2)
(2)
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where Dn is the number of passwords in the database and B is an appropriate
constant between 1 and 1.5. Most of the cases the best approximation can be
achieved by B ≈ 1.255. Without going into the details one can see 4 more
examples in Figure (5).

(a) Google (b) Unpublished

(c) Yahoo (d) Yandex

Fig. 5: Letter frequency distribution of various databases

Letter frequency distribution can be used to speed-up the brute-force crack-
ing method. Take into consideration the first N most common characters one
can apply a much more sophisticated brute-force attack.

2.4 Entropy distribution

Password strength is specified in terms of information entropy, measured in
bits. Password entropy predicts how difficult a given password would be to



Lecture Notes in Computer Science 9

crack through guessing, brute-force cracking, dictionary attacks or other com-
mon methods. There are different approaches for password entropy computation.
It is known that the NIST SP800-63 document does not provide a valid metric
for measuring the security provided by password creation policies [22].

The information entropy H0 of a random password can be given by the
formula

H0 = log2N
L = L log2N (3)

where N is the number of possible symbols and L is the number of symbols in
the password. For example, using 95 printable ASCII characters in the symbol
space the entropy per symbol is 6.57 bits. Recently, statistical metrics for indi-
vidual password strength were proposed [22]. These enable rating the strength
of a password given together with a large sample distribution without assuming
anything about password semantics.

Most of the cases the database charset is unknown, so one should calculate
entropy based on the occurrence of the observed characters. Given a string S of
length n where P (si) is the relative frequency of each character, the entropy of
a string (in bits) can be calculated as

H1 = −
n∑

i=0

P (si) log(P (si)) . (4)

For example H1(password) is 2.75 bits. We calculated H1 for each password
in more than 50 databases. The result can be seen in Figure 6. Most of the

Fig. 6: Entropy distribution of password databases

passwords have approximately 2.75 entropy in each examined databases. This
means that most of the passwords in the databases apply 7 different characters
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independently of their size. The 8 character long passwords are using 7 different
characters in ≈ 65%. Table 2 shows some examples for H1 = 2.75 bits passwords.

mantra06 passw0rd

liza0522 Buddy608

Nicepass gingerz2

odai7ibt dk239dhg

snickers v8splash

Table 2: Passwords with H1 = 2.75 bits entropy

2.5 The most common passwords

The most common passwords are well studied in the last few years by several au-
thors. Table 3 shows the most common passwords in the leaked Gmail database.

1. 123456 6. 12345678

2. password 7. 111111

3. 123456789 8. abc123

4. 12345 9. 123123

5. qwerty 10. 1234567

Table 3: Top 10 most common passwords in the Gmail database

Analyzing more than 50 databases and more than 150 millions of passwords
it has turned out that the accumulated occurence of the first most common
passwords are approximately logarithmic. The most common password in the
Gmail database can be found 47757 times. The first 10 most common passwords
occur 102030 times in the database, the first 100 passwords occur 19257 times,
and so on. This can be approximated by the following function:

M(x,Dn, r) = log(x)2 ·
√
Dn · r2 + x , (5)

where r is an appropriate constant close to 1 or 2 depending on the database
type. Figure 7 shows the cumulative sum of the first 100 000 passwords of the
Gmail database, where M(x, 4927290, 2.1) was applied.
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Fig. 7: Cumulative common password distribution

3 Conclusion and Future Work

The observations mentioned in the previous sections can be used against en-
crypted databases. In order to make the cracking method more efficient one can
apply a special brute-force attack based on these behaviors.

Combining the characteristics of password length distribution, letter fre-
quency distribution and entropy distribution functions a special brute-force at-
tack can be designed and implemented. The entropy distribution of a normal
brute-force attack distributes uniformly among strings.

For testing purposes HP EliteBook 8570w workstation class laptops were used
which have mid-high range dedicated GPU called AMD FirePro M4000 built on
GCN-architecture. For cracking oclHashcat 1.31 was used with the recommended
AMD Catalyst 14.9 VGA driver package on x64 Windows 8.1 Pro. We used the
Gmail cleartext database with SHA-3 (Keccak) to create a test database with
the original passwords. AMD FirePro M4000 was able to decrypt approximately
29.8M passwords/sec with brute-force attack under Hashcat. We implemented
a special brute-force attack (SBFA) that take entropy and letter distribution
into consideration at the same time 3. The modified SBFA is approximately
11− 13% slower than an unconditional brute-force attack. Analyzing more than
50 databases and analyzing uncracked passwords distributions, and patterns it
has turned out that using this slower SBFA, approximately 23 − 25% overall
performance improvements can be achieved.

As the result of the research shows, the special brute-force attack is much
more efficient than conventional. This is especially important if there is a specific
time window to decrypt the passwords. The methods of attack always evolve,
and the speed of decrypting is constantly rising, but the attacker has definite

3 The exact C++ source code will be published soon.
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time to decrypt the encoded passwords, so the result of this research is always
relevant.

First, as a continuation of the research we want to prepare a special module
that can be used in the most popular password-cracking applications. Secondly,
we believe that there are further opportunities for this research; the speed of de-
crypt can be further optimized, so we will continue our research in this direction.
Thirdly, based on the results of the research we want to create an optimal level
of dictionaries with different size, that provide a much faster decryption within
the specified time window.

Choosing appropriate dictionary attack and brute-force attack is important
against secure hash algorithms like Bcrypt.
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Abstract. The amount of identity data leaks in recent times is dras-
tically increasing. Not only smaller web services, but also established
technology companies are affected. However, it is not commonly known,
that incidents covered by media are just the tip of the iceberg. Accord-
ingly, more detailed investigation of not just publicly accessible parts of
the web but also deep web is imperative to gain greater insight into the
large number of data leaks. This paper presents methods and experiences
of our deep web analysis. We give insight in commonly used platforms for
data exposure, formats of identity related data leaks, and the methods
of our analysis. On one hand a lack of security implementations among
Internet service providers exists and on the other hand users still tend
to generate and reuse weak passwords. By publishing our results we aim
to increase awareness on both sides and the establishment of counter
measures.

Keywords: identity leak, data breach, password, security awareness

1 Introduction

Data leaks, e.g. from Adobe[1], happen regularly on the Internet and
affect millions of users. The impact of such data leakage events is often
underestimated by users, even if covered in media with proper attention.
Many users use the same e-mail address to complete registrations for
hundreds of accounts on different sites in the web, while only a few of them
maintain records or use unique passwords for such accounts. Accounts
may contain sensitive information, which can be used to gain access to
other accounts of the same user, especially if the password is reused.

Knowledge about the existence of data leaks is hard to gather, since
they are often published in small pieces through a variety of hacker forums
or personal web pages. We developed a service for tracking identity leaks,
where we have solved following not-trivial problems.



– Automated discovery and collection of leaked data sets on the Internet

– Normalization of data sets

– High-speed search through billions of leaked records

– Security and privacy issues

In this paper we describe solutions for the problems mentioned above.
Besides that, we provide password statistics as well as recommendations
for both regular Internet users and enterprise security departments. We
hope that offered measures could help to reduce the impact of the data
leaks on the security and privacy of end-user accounts all over the Inter-
net.

The rest of this paper is organized as follows. Section 2 covers related
work and Section 3 presents our implementation. Section 4 provides de-
tails on data gathering, Section 5 shows information represented in leaks
and categorizes leaks by their origin, Section 6 gives an evaluation of
used passwords in the analyzed leaks. Finally, we outline future work in
Section 7 and then conclude in Section 8.

2 Related Work

The relevance of finding and analyzing publicly available identity data
leaks on the web and deep web can be conducted from numerous reports
on Internet security. Our goal is to increase people’s awareness of their
potentially leaked data and develop statements about the quantity and
quality of existing identity leaks.

In their annual Internet security threat report[2], a well-known IT se-
curity company showcases a drastic increase of identity data leaks caused
by hacking of databases. In 2013, there were 253 breaches containing more
than 552 million identities[2, p.13]. Another report[3] by Risk Based Se-
curity, sponsor of the DataLossDB1, even estimates 822 million affected
records from 2,163 incidents.

The scientific community is strongly focused on developing and evolv-
ing technologies to prevent and detect data leaks in companies. This is a
fast developing field involving a lot of interesting publications. However,
for those innovations to be taken over into practice we found lack of ex-
isting awareness regarding security risks. Filling this gap is where we see
this work’s contribution to Internet security.

1 DataLossDB - http://datalossdb.org/
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2.1 Scientific Publications

Scientific work related to password and identity leaks mostly focuses on
breach prevention from an enterprise point of view (e.g. [4]). This paper
is related to the cases where prevention mechanisms failed and user iden-
tity or password data was leaked by internal or external attackers. Hence,
relevant topics are the security of stored passwords after they were ex-
posed to the public, such as leak detection on the Internet and password
security in general.

The latter is of special importance for us since a securely generated
and obfuscated password should be practically useless to an attacker, even
if stolen from a web server. Unfortunately, a large amount of leaked pass-
words can be reversed, guessed, or brute forced fairly easy. The main rea-
sons are weak user-generated passwords and insecure obfuscation mecha-
nisms[5]. Additional threats on the Internet are reuse of passwords[6] and
publicly available information[7].

Our mechanisms of web monitoring regarding identity leak data and
normalization are self-developed, since no relevant publications in this
area exist. To prevent the spreading of potentially abusable source code we
forbear to publish any implementation details that enhances the progress
of leak data collection.

2.2 Products and Services

Due to rising security awareness, enterprises as well as individual persons
are more and more interested in what happens to their data and who has
access to it. Some companies have identified this gap in the market and
provide several products to sell information about existing identity data
leaks to end users. In addition non-commercial solutions by government
agencies (e.g. BSI2) and private programmers exist to aid a public interest.

We noticed that products with commercial interest such as Survela3,
BreachAlarm4, or PwnedList5 are based on much larger data sets than
other services. This follows from their continuous crawling of the web and
deep web. However, it is hard to measure the quality of their methods,
because in general they are not revealed to the public. Besides, the quality
of data leaks itself is questionable as well, since cracking and testing the
correctness of a user’s password for a service or website would constitute
a criminal offense.
2 BSI Security Check - https://www.sicherheitstest.bsi.de/
3 Survela - https://survela.com/
4 BreachAlarm - https://breachalarm.com/
5 PwnedList - https://pwnedlist.com/
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3 Identity Leak Checker Service

Our Identity Leak Checker6 is a free-of-charge Internet service that allows
users to search for occurrences of their e-mail-address in publicly acces-
sible identity leaks. As part of the service, we find, collect and normalize
leaked data sets, partially automatically, to make high-speed and up-to-
date leak checking available to Internet users. The service was started in
May 2014 and has more than 1.2 million requests and has warned more
than 120,000 users of identity loss (Aug. 11th, 2014). There are 25 leaked
databases with more than 172 million records incorporated into the ser-
vice. Additionally, more than 3,000 leaks have been collected, which we
plan to integrate into the service in the future.

The service has a search page with an input field, where users can en-
ter their e-mail-addresses. As soon as the search is submitted, the e-mail
is checked against the data set and a response e-mail is sent out to in-
form the user about the search result. The e-mail provides categories and
approximate publication dates of the leaked data. This way no sensitive
information is revealed to potentially compromised accounts.

4 Gathering of Identity Leaks

The locations in the cyberspace where identity information is published
by cyber criminals are manifold. We use these locations as sources for
data collection and categorize them by their purpose, i.e. leak provision
and leak announcement.

4.1 Leak Provision

These sites on the Internet are usually only hosting the leaks, meaning
they store and deliver the leaks, but are not aware that they are hosting
this critical data. Because these providers can host any kind of data,
it is hard to monitor them for new appearing leaks. The following list
gives an overview of provider types and whether they are general-purpose
providers or used exclusively for leak distribution.

General-Purpose Providers

– Paste pages are web sites that allow anyone on the Internet to pub-
lish small text snippets. While these pages are often used for distribut-
ing code snippets, event log files and texts, a selection of these pages is

6 HPI Identity Leak Checker - https://sec.hpi.de/leak-checker
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also massively used to distribute leaks. A famous example in this cat-
egory is PasteBin7[8]. Paste pages are used to distribute small-sized
leaks with around 100 - 10,000 identities. On a single day, we can find
around 10 - 100 leaks distributed over these pages.

– File Hosting Providers are a common place to distribute leaks,
which are too big in size for paste pages or are organized in directories.
A popular site in this category is AnonFiles8, which allows people to
anonymously upload and share files. Leaks distributed over file hosting
providers have usually around 10,000 - 10,000,000 identities. On a
single day, we can find up to 10 leaks distributed in this way.

– The BitTorrent ecosystem is used to distribute leaks that are of
major interest to the public, being downloaded many times. These
leaks usually contain more than one million identities. We found this
kind of distribution quite infrequent, i.e. we monitored around 2-3
publications in six months. The Adobe leak is one famous example
with around 150 million user accounts[9].

Leak-Only Providers

– There are special paste pages by hacker groups, that are dedicated
to the publishing of their leaks. The idea is similar to the general-
purpose paste pages. The leak sizes are slightly larger, because the
page is specifically built to publish day-to-day leaks.

– Drop zones are remote anonymous shares for looted data of cy-
ber criminals. These drop zones are either manually maintained by
the criminals or automatically populated by botnet clients perform-
ing phishing and keylogging. There have been multiple cases in the
past, where these drop zones have been taken over by companies or
researchers[10][11][12][13]. Often they contain big repositories of col-
lected user data, such as credentials and financial details. Getting
access to private drop zones is very challenging.

– Leak database shares are servers on the Internet, where various pre-
viously published leaks are shared between members of a community.
The cases we encountered are all hosted in the Onion network[14][15]
and contain hundreds of earlier and bigger leaks.

– Some hacker groups maintain their own leak distribution pages,
which are subpages of their main website and host all their looted data.
These pages should show the experience and success of the attackers
and provide proof of their hacks.

7 PasteBin - http://pastebin.com
8 AnonFiles - https://anonfiles.com
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– Hacker Forums are sometimes used to publish identities directly
in the posts of a forum thread. In this case, the leaks are hosted by
the forum. Due to limitations in the length of posts, the number of
identities leaked in one post is limited to a few thousands.

4.2 Leak Announcement

These locations on the Internet do not directly host leaks, but they give
directions where leaks can be found or even give direct links to leaks.
Cyber criminals use these places to announce their achievements and get
recognition from the community.

– Hacker forums are a popular source for hackers to publish any kind
of information about hacking, like vulnerabilities, exploits and others,
e.g. leaks. The forums are mostly free, but sometimes require regis-
tration. If there are sections in the forums specifically for leaks, often
links to leak providers are given.

– Leak announcement pages are web sites where individuals can post
links to their own leaks or are referring to leaks they found somewhere
on the Internet.

– Leak monitoring pages are web sites that check various sources for
new upcoming leaks. There are implementations that monitor paste
pages and file hosters for incoming files and try to find potential leaks
in the posted data. Once interesting data is found, notifications are
posted to their page or on their social media accounts. Examples in
this category are LeakedIn9 or BreachAlarm.

– Social media web sites like Twitter and Facebook are massively used
to announce leaks. The authors of the announcements are typically
Hacker or hacker groups, security researchers/journalists, e.g. Brian
Krebs or Troy Hunt, automated leak monitors, e.g. Dump Monitor,
or leak security news pages. The posts are mostly referring to paste
pages and file hosting sites, as listed in Section 4.1.

4.3 Automated Gathering of Identity Leaks

Automated gathering of leaks from the listed sources can be difficult,
because the leak providers usually do not provide an interface that can
be accessed programmatically. The most challenging provider type is file
hosters, because they have access restrictions and protect their data with

9 LeakedIn - http://www.leakedin.com/
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Captchas. Paste pages on the other hand are easy to access program-
matically and even have APIs sometimes. Because of these limitations,
programmatically collected leaks are often small- to middle-sized.

5 Anatomy of an Identity Leak

Looking at the previously gathered identity leaks, different information
sources and types of information can be identified.

5.1 Information in Identity Leaks and Data Model

The information in identity leaks varies from e-mail addresses with login
credentials to any imaginable information about a person, from home
address to credit-card data. In order to manage the information being
found in different leaks, we created a data model that covers the most
interesting and common information. The data model is object-oriented
and can be seen in Figure 1.

User Record

Credentials Person Info Credit Card Bank Account

E-mail

Record Id

Encrypted Password

Password

Hint

Encryption Algorithm

Username

Password Salt

Name

Gender

Company

Phone Number

SSN

Birthday

Address

Street
ZIP code
City

State

Country

Card Number

CVV

Expiration Date

Bank Number

Account Number

Bank Name

Fig. 1: Data-model for identity leak information

There is a main object User Record that holds information about a
single record from a leaked database. Each of these objects holds the
E-mail as the main identifier for an identity and the Record Id as reference
to the id within the leaked database.

User Record has four sub-objects, covering various facets of a user,
such as credentials, credit card and bank account data, and personal
information, like home addresses, birthday and phone number. Each user
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record can have multiple sub-objects of the same type. This happens
frequently, when users have to specify multiple phone numbers or have a
home and company address.

There is additional information in leaks that is currently not cov-
ered by our data model, because it is only rarely included, but could be
of interest for special purposes. Such information includes IP addresses,
personal websites or instant messaging usernames from AIM, Skype, or
ICQ.

5.2 Types of Identity Leaks

There are multiple sources where cyber criminals obtain identity infor-
mation, which is also reflected by the kind of information and structure
a specific leak contains. Looking at forums dedicated to leak announce-
ment confirms this view. They use specialized terms for leaks from certain
sources, which we call leak types. We encountered following types of leaks:

Database Dumps (Dumps) A user or customer database of a web ser-
vice has been hacked and downloaded, e.g. by SQL injection on the
web frontend of the service. This kind of leak is most common and
contains between 1,000 up to millions of records.

Phishing-/Trojan-Data (Logs) The data is collected individually from
each user. This covers the collection of user data from following sources:

– Malware (e.g. trojans, keyloggers, botnet clients) that is installed
on a user’s computer and collects information the user enters,

– phishing websites a user visits to enter his secret information, and

– password sniffers that are used in public networks and are tailored
to extract identity information from network traffic.

The leaks have around 100 - 10,000 records.

Full Identity Leaks (Dox) Detailed information about the identity of
a single person and related people. The information is gathered from
publicly available sources, such as database dumps, social networks,
or personal and company websites. This kind of leak contains the
most complete information about a person and is therefore also most
dangerous for victims.

User/password combinations (Combos) A list of combinations of
user identifiers, such as usernames or e-mail addresses, and pass-
words. The source of the information is mostly unknown and is either
a database dump or phishing-/trojan-data. Usually, combo-lists lack
information about identities’ origins.
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The company High-Tech Bridge partially confirms these origins of
leaks in their analysis[8] of PasteBin leaks.

To show the distribution of leak origins, we have analyzed automati-
cally collected leaks from May 2014. The results are shown in Figure 2.
Figure 2a shows how many leaks have been found for each category. It
confirms that database dumps are most common with as many as 161
leaks. Logs and full identity leaks are less often encountered. However, it
should be noted that leaks with combos can also count in either dumps
or logs.

45 

65 

59 

161 

Identity leaks (DOX)

User/password combinations
(Combos)

Phishing- / Trojan-Data (Logs)

Database dumps

(a) Number of Leaks

117 
110436

18483  172657

 

Identity leaks 
(Dox)

User/password 
combinations
(Combos) 

Phishing- / 
Trojan-Data (Logs)

Database dumps

(b) Number of Identities

Fig. 2: Statistics for automatically collected leaks in May 2014

Figure 2b gives a rough idea on how many identities, which are counted
by e-mail addresses, are affected for the different leak types. In this case
most identities where leaked with dumps with around 1,072 identities per
leak. On the second position are combos with around 1,700 identities per
leak. Here it is also important to note, that automatically detected leaks
are usually smaller in size, as outlined in Section 4.3 and therefore the
identities per leak for dumps is rather low. On the other hand, the col-
lected combos could be originating from bigger dumps. Identity leaks are
least frequent and contain around 2.5 identities per leak, where leaks with
multiple identities additionally cover relatives and family members.

6 Evaluation

6.1 Password Distribution

We have calculated the most popular passwords used in 28 of the biggest
data leaks. However, the distribution of popular passwords often dif-
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fers across databases. Some passwords are presented in only one or two
databases, but still could have the highest absolute frequency (among all
leaked sources), due to the very high number of records in these databases.
For example, ‘adobe123’ is the most popular password in the Adobe leak.
Due to its popularity for Adobe users and the very large size of the leaked
data (150 million records), the fraction of this password among all leaked
data sets remains high enough to put it on the first place for all data sets.

To avoid this problem, we have sanitized our data to filter out database-
specific passwords. First, we calculate the password frequency for each
password in each leak source and select the top n passwords ordered by
average frequency in the leak source. Second, for each of the selected top n
passwords, we calculate the variance coefficient based on the distribution
of source-wise password frequencies. Finally, we exclude passwords with
the variance coefficient falling into the top 10% of the min-max coefficient
range. The sanitized password statistic is presented in Figure 3.

"123456" 
1.27% 

"123456789" 
0.43% 

"qwerty" 
0.27% 

"12345678" 
0.24% 

"qwertyuiop" 
0.18% 

"12345" 
0.14% 

"111111" 
0.13% 

"qwe123" 
0.13% 

"password" 
0.11% 

"1234567" 
0.08% 

(a) Top 1 - 10 Passwords

Password
Avg. frequency

per source

123123 0,08%

1234567890 0,07%

11111111 0,06%

pokemon 0,06%

000000 0,06%

1qaz2wsx 0,06%

1q2w3e4r 0,05%

qazwsx 0,05%

1234 0,05%

123321 0,05%

(b) Top 11 - 20 Passwords

Fig. 3: Most popular passwords by average password frequency in leak
sources

Although almost every leak source contains user credentials with very
weak passwords, Figure 3 implies that the aggregated fraction of the top
10 weak passwords is not that high (2.85%). Moreover, the top 20 most
popular passwords make only 3.31% of all passwords on average. All in
all, weak passwords are being used by about 5% of the users in an average
data set, and we hope that this fraction will be reduced in the future by
further dissemination of password policies.
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Regional Password Distribution On top of the distribution of pass-
words in general, further investigation can be done on passwords originat-
ing from identities with different backgrounds, like their origin country or
culture and language. By looking at these, it can be determined, whether
there are factors influencing the choice of passwords. We have identified
three sources in our collected leaks, that can be clearly attributed to Chi-
nese services. All sources should contain mostly passwords from Chinese
identities.

Taking the analysis methods from before, we analyzed the password
distribution only for Chinese leaks. The results are shown in Figure 4.

"123456789" 
1.55% 

"12345678" 
1.26% 

"00000000" 
0.20% 

"111111" 
0.18% 

"1234567890" 
0.14% 

"123123123" 
0.11% 

"88888888" 
0.09% 

"000000" 
0.09% 

"password" 
0.09% 

"5201314" 
0.08% 

(a) Top 1 - 10 Chinese Passwords

Password
Avg. frequency

per source

7758258 0,05%

888888 0,05%

666666 0,05%

123321 0,05%

987654321 0,05%

147258369 0,04%

1314520 0,04%

111111111 0,04%

iloveyou 0,03%

1qaz2wsx 0,03%

(b) Top 11 - 20 Chinese Passwords

Fig. 4: Most popular Chinese passwords by average password frequency
in leak sources

Comparing the distributions of passwords in general against Chinese
passwords, it turns out that the top 2 passwords are the same, namely
the number sequences 123456, 123456789. One thing that stands out of
the lists, is that the Chinese passwords are mostly numerical, whereas
the general passwords contain many alphabetic characters. Actually, the
password password, iloveyou and 1qaz2wsx are the only alphabetic pass-
word in the top 20. Another thing that stands out is a higher prevalence of
the number 8 and 6, i.e. in the passwords 88888888 (8x8), 666666 (6x6)
and 888888 (6x8) and the special, seemingly random, numbers 5201314,
7758258 and 1314520. However, looking up these numbers in relation to
China, we could find that 6 and 8 are numbers with a very positive mean-
ing in China and that the sequence 5201314/1314520 is pronounced like
I love you forever and 7758258 like kiss and love me in Chinese. So these
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passwords are quite special to Chinese people, but have low significance
for non-Chinese people.

All in all, the analysis of passwords from only Chinese identities shows
that there are special passwords for different regions of the world. There
are passwords that are specific to the language of the region, like 5201314
or that are derived from cultural backgrounds, like the positive number
8. Surely, the analysis of regional passwords can be an interesting topic
for future research.

6.2 Password Encryption/Hashing Methods

While we have analyzed passwords from various leaks, we also found a
big amount of passwords that are not immediately obtainable in clear-
text format. This is because they are obfuscated with different types of
hash functions, such as MD5, SHA-1 or PHPass10. Some of the stored
hash values involve salts and/or multiple iterations of a single hash func-
tion. We have analyzed the hash routines, i.e. the specific usage of hash
functions, salts and iterations on all our normalized leaked databases and
were able to find the distribution in Figure 5. The notation we used for
describing the routines defines $p as password, $s as hashing salt, and $u
as username. In one occasion, the username was used as a unique hashing
salt. The diagram shows that cleartext passwords are still used in every
third password database, although security experts are warning for years
to properly secure passwords.

Another fact we can deduce from this diagram is that MD5, a hash
function widely considered insecure[16, 17], is still extremely popular for
service providers to store passwords. One third of the databases use MD5
without a salt. Passwords stored this way are highly susceptible to rain-
bow table attacks[18] and can be reversed extremely fast with tools like
hashcat11 and John the Ripper12 or online hash reversing pages, e.g.
hashkiller.co.uk providing more than 43 billion reversed MD5 hashes.
14% of databases are using multiple iterations of MD5 hashing. These
hashes are far more secure than a single application of MD5 due to the
fact, that effective reversing based on dictionaries is very unlikely. How-
ever, many passwords can still be reversed with rather small computa-
tional overhead. Only a small number of databases are using hash func-
tions other than MD5. We found one source using SHA-1, another hash

10 PHPass - http://www.openwall.com/phpass/
11 hashcat - http://hashcat.net/hashcat/
12 John the Ripper - http://www.openwall.com/john/
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function that is discouraged to use and rather fast to reverse[19]. Only
hash routines with a high computational overhead can be considered as
sufficiently resistant against brute force attacks. Such routines use a high
number of iterations of a hash function or they are intensive to calculate.
Routines like bcrypt($p.$s)13 and PHPass($p) fall under this category of
hash routines with high computational overhead.

cleartext 
32% 

hash 
32% 

hash with salt 
25% 

hash with salt and many 
iterations 

11% 

cleartext

hash

hash with salt

hash with salt and many
iterations

Fig. 5: Distribution of different obfuscation types of password database
leaks. The parameters used are defined as follows: $p = password, $s =
salt, $u = username. The most common way of storing passwords among
the analyzed sources was f = $p, i.e. cleartext.

Figure 6 summarizes the distribution of different levels of password
hashing techniques. Cleartext passwords are unprotected and hash rou-
tines involving strong hash functions, salts, and a high number of iter-
ations are considered most secure. It is notable, that for hash routines
a negative correlation, between password security and the amount of
databases utilizing it, exists. However, the only strong hash routine we
found, i.e. bcrypt and PHPass, was used in as little as 11% of the cases[17].

13 bcrypt library - http://bcrypt.sourceforge.net/
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Fig. 6: Distribution of different types of password hashing techniques.

7 Future Work

Follow-up work could focus on finding today’s unknown password leak
sources, their monitoring, and normalization of arising data. In the cur-
rent state of our project, data is being normalized semi-automatically,
resulting in a model which requires a lot of time and effort. It is desirable
to minimize human interaction during web monitoring and normaliza-
tion of leaks, based on the various recurring data formats (e.g. filtering
of false positive results of automatic data gathering). Efficiency can be
increased by developing mostly automated processes, using technologies
such as content analysis, machine learning, etc.

Another area of research, based on identity leak gathering, is advanced
password analysis on anonymized data records. Being able to reverse spe-
cific password hashes in leaks allows insight into information that is po-
tentially available to hackers. A controlled research environment is able to
generate statistics relevant to Internet password security. E.g. the publi-
cation of top used passwords lists enables service providers to warn users
to avoid specific terms in their passwords or actively prevent the creation
of weak passwords. Hence, we believe this type of analysis has potential
to increase Internet security in general.

Often, the passwords in leaks are hashed or encrypted and it is rarely
obvious which routine of hashing has been used. We aim to enhance the
classification of password databases in terms of the used hash routines.
Due to the big impact of the usage of obfuscation standards on password
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security, the results will be telling to automatically determine the used
routine and give an estimation on the leak’s password security. Hence,
it allows conclusions to security of stored passwords of Internet service
databases in general. This information can be used to raise security aware-
ness, especially on the side of database owners.

8 Conclusion

The most challenging part of analyzing a large data set of identity data
leaks is the normalization of numerous different formats. In some occa-
sions big data leaks in an easy readable format are provided. However, the
highest amount of sources contain only 100-1,000 or more identities and
have custom formats and a questionable quality of content. Even though
those sources seem less significant due to the low number of entries, in
reality they are very important for the goal of our work. The media pri-
marily focuses on big breach events where millions of identities have been
revealed. This may give end users a false sense of security if they are not
affected by those breaches, since they will potentially never know about
their data being leaked in one of the countless small breaches.

Another challenge is the increased efficiency of identification and mon-
itoring of leak sources. This is especially important for the search in the
deep web, where usually no indexing exists. In addition some web sites
(e.g. PasteBin) inhibit our efficiency of crawling by restricting the number
of requests based on IP addresses.

Our work covers an increasing base of identity data leaks. Using this
data we can provide up-to-date analysis and statistics of identity data
breaches, insecure passwords, and the security of web content providers’
password management. The results of these analyses have been made
available to users by our Identity Leak Checker Service14. We propose
this service to increase public awareness and help users to implement
countermeasures against misuse of their data.
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Abstract. It is evident from the breached password databases that in the
absence of any composition policy, passwords are created predominantly
using lowercase letters or digits or combination of both. Considerable por-
tion of these passwords can be broken offline using dictionary attacks, which
exploit the fact that some passwords are more probable than the others.
Remaining portion of these passwords can be recovered using a brute-force
attack since the passwords do not have sufficient length. To counter these
attacks, password policies enforce users to create passwords from a larger
search space. One way to achieve this is to enforce the use of a large al-
phabet set while the other way is to increase the length of passwords. Both
of these strategies link the increase in the search space to the increase in
the security of passwords. However, we refute the claim that merely in-
creasing the search space results in secure passwords. We hypothesize that
with the human generated passwords, the search space will remain highly
biased and increasing the search space might just result in a different dic-
tionary for the attacker. We also believe that the system can play a role
in changing this biased distribution without resorting to the assignment
of random passwords to the users. And therefore, we propose two schemes
which ensure that the attacker has to brute-force search the entire search
space to break the password database.

1 Introduction

Today, we are living in an internet age, where most of the services such as banking,
computing, insurance, utilities are available online. In order to gain access to these
web services, the user must prove his identity to the system. This is done through
a process called as authentication. There are various ways of authenticating users,
however the most common and inexpensive way is to use the text-based passwords.
In this authentication mechanism, every user selects a unique user-id along with
a password. The user-id is assumed to be public but the password should remain
secret and difficult to guess. If the password is easy to guess, then depending
upon the nature of the service, the compromise of the password can affect the
user substantially. Today, almost every website implements the lock out policy or
the CAPTCHA mechanism to ensure that the online brute-force attacks do not
succeed in a short time. However, with the number of password database breaches
increasing [1],[2],[3],[4], the strong threat to the weak passwords comes from the
offline attacks. In these attacks, the attacker steals the password database which
we assume to be protected by a one-way hash function. Now, since the attacker
possesses the hashed password database, there is no restriction on the number of
attempts that the attacker might try to break these passwords. And therefore, if
the passwords set by the users are easy to guess i.e. from an English dictionary or



small enough to brute-force search [5], then the attacker can break such passwords
in no time.

Websites force users to choose their passwords from a large search space, so that
the brute-force search becomes infeasible. The available search space SS depends
upon two factors; the size of an alphabet set γ from which the password is derived
and the length n of the password. Specifically, the search space SS can be measured
using the formula:

Search Space SS = |γ|n (1)

Now, the above equation suggests that there are two ways to increase the search
space, one is to create passwords of minimum length but using a large alphabet set
and the other is to create longer passwords without any restriction of the alphabet
set. However, the former strategy seems to be quite popular among the websites.
Today, most websites enforce the minimum length restriction in addition to the
use of at least one lowercase, uppercase, digit and special character for creating
passwords. But, some researchers claim that increasing the length of passwords to
say 16 without enforcing the use of the large alphabet set results in more secure
and usable passwords [6]. Generally, the strength of the password is measured using
entropy, a concept which is more popular in the information theory. If the password
p is derived from a uniformly distributed search space SS , then its entropy Ep [7]
is given by:

∴ Entropy Ep = log2(|γ|n) bits (2)

However, in reality the search space is not uniformly distributed and therefore, the
above equation gives upper bound on the strength of the password p. Measuring
the exact strength of the password is a non-trivial task and therefore, claiming
the security of one scheme over another is non-trivial either. To draw conclusions
based upon the survey conducted on few thousand users might be misleading. It is
quite evident from the millions of passwords available from the leaked databases
that in the absence of any composition rule, the passwords set by users are easy to
break (common English words). These passwords are created predominantly using
lowercase letters. If the same kind of behaviour is observed even for the longer
passwords, the attacker can create a more sophisticated dictionary to mount the
attack.

The theoretical search space SS provides only upper bound on the strength
of the password but measuring its actual strength seems to be a difficult task.
For most of the purposes, finding the lower bound on the password strength will
be sufficient, however, this also seems to be an arduous task. There are different
strength meters deployed on different websites that evaluate passwords strength
on different criteria [8]. For some strength meters, longer passwords are stronger
while for some strength meters the use of a large alphabet set creates stronger
passwords. The current strength meters cannot distinguish between the passwords
created by the random and the non-random process. The passwords created by
the random process are secure against the offline attacks as the only way to break
such passwords is to perform the brute-force search. However, such passwords are
not considered usable [9].

Contribution. The main objective of this paper is to contradict the claim that



forcing users to derive passwords from a large search space result in secure pass-
words. For this purpose, we partition the search space into bins. Then, we analyse
the passwords from the Rockyou database [10] and use the data from the existing
surveys [11],[12] to demonstrate that increasing the search space does not result in
the creation of secure passwords. We show that enforcing the composition rules re-
sults in a non-uniform distribution on the partitions or bins which can lead to more
sophisticated offline attacks than the trivial brute-force search. We also show that,
merely increasing the password length requirement results in longer but weaker
passwords.
Finally, we propose two schemes viz., random bin scheme and random phrase
scheme, that utilizes the search space uniformly. The random bin scheme aims
to create more secure passwords by utilizing every partition or bin uniformly while
the random phrase scheme aims to create more secure passwords by utilizing ev-
ery word in the bin uniformly. The purpose of both these schemes is to cause an
exponential increase in the effort of an offline attacker.

Notation. In the rest of the discussion we have used the following notations.
L - An alphabet representing the set {a, . . . , z} of lowercase letters.
U - An alphabet representing the set {A, . . . , Z} of uppercase letters.
D - An alphabet representing the set {0, . . . , 9} of decimal digits.
S - An alphabet representing the set of 33 special symbols such as ,&,#, {, } and
so on.
+ - denotes 1 or more occurrences of the alphabet.
* - denotes 0 or more occurrences of the alphabet.
? - denotes 0 or 1 occurrence of the alphabet.
[i,j] - denotes at least i and at most j occurrences of the alphabet, where 0 ≤ i < j.
|α| - represents the number of elements in a set α.

Organization. The organization of this paper is as follows. In section 2, we pro-
vide a brief explanation of the related work. Then, in the subsequent sections we
describe our contribution in detail. In section 3, we partition the search space into
bins. In section 4, we show that increasing the search space either by forcing the
use of the large alphabet set or by increasing the length of the passwords might
not achieve the expected results. In section 5, we propose two schemes that in-
creases the effort of an offline attacker exponentially. In section 6, we discuss the
implications of these schemes on the future. Finally, in section 7, we conclude the
paper.

2 Related Work

User habits in creating passwords have been studied since 1979 [5]. The authors
of [5] analysed 3289 passwords and found that 86% of them are weak either due
to their prevalence in the dictionary or due to their short length and contain-
ing only lowercase letters or digits. Later in 1990, Klein [13] successfully broke
25% of the passwords in use, on the unix system using the brute-force attack. In
1999, Moshe and William [14] based on their survey of 997 participants found that
80% of the passwords were derived only using lowercase and uppercase letters.
In 2006, the leak of 34,000 Myspace passwords revealed that passwords such as
“password”are popular choices among the users [15]. In 2007, Florencio and Herley



[7] studied passwords of nearly 5 million users and found that most of the pass-
words are created using either lowercase letters or digits. The leak of 32 million
Rockyou passwords in 2009 revealed that 0.9% of these passwords is a numeric
string “123456”[16]. These data suggest that there is a non-uniform distribution
on the search space and therefore, the resulting passwords are not secure.

The presence of composition rules is believed to create secure passwords [17]
while [6] and [18] suggest that longer passwords are no less secure than those
created under composition rules. There are also studies which suggest that the
presence of strength meters result in stronger passwords [19]. However, all these
results are based upon the survey of not more than few thousand users and there
is no real data available to study passwords created in the presence of composition
rules or strength meters. Moreover, determining the actual strength of the pass-
word is not an easy task. NIST provides the guidelines for measuring the strength
of the password [20], however this approach is not based on the large empirical
data.

In the following sections, we describe our contribution in detail. First, we par-
tition the search space into bins and show that increasing the search space does
not guarantee the creation of secure passwords. Subsequently, we describe two
schemes which result in the creation of secure passwords.

3 Partitioning the Search Space into Bins

Consider the alphabet set σ = {L,U,D, S} consisting of 4 alphabets. We refer to n
length strings derived from the alphabet set σ as password bins or just bins, e.g. L8,
U1L7, S1U1L5D1 are all 8 length bins. The collection of all n length bins forms a
bin space. Therefore, the size of the bin space is 4n. Basically, every bin represents
a class of passwords, e.g. the bin L8 represents 8 length passwords composed
entirely of lowercase letters while the bin U1L7 represents 8 length passwords that
begin with an uppercase letter followed by 7 lowercase letters. Every such bin
depending upon its alphabetic composition has a certain capacity associated with
it. This capacity is defined as the number of passwords represented by the bin. For
instance, the capacity of the bin L8 composed of all lowercase letters is |L|8 = 268.
Since the collection of all passwords form the search space for an attacker, the size
of the search space is the sum of capacity of all bins.

4n∑
i=1

Ci = (|L|+ |U |+ |D|+ |S|)n

= (26 + 26 + 10 + 33)n

= 95n

where Ci is the capacity of the ith bin. The number and capacity of bins increases
exponentially with the increase in the length.

Studies [5],[14],[7] suggest that in the absence of any composition rule, users
create their passwords preferably from the bins composed entirely of lowercase
letters (L+) or digits (D+). Thus, if no restriction is imposed during the password
creation, very few bins are used extensively for deriving the passwords which results
in a non-uniform distribution on the bin space. To identify the bins that are more



Fig. 1: Illustration of a Bin Space. The number of n = 2 length bins derived using the
alphabet set σ = {L,U,D, S} is 4n = 42 = 16.

frequently used for the password creation, we studied nearly 14 million unique
passwords in the Rockyou database [10] that were breached in 2009. However, upon
analysis, we found that nearly 13 million Rockyou passwords which comprise 93%
of the breached database, have maximum length of 12. Therefore, for the current
purpose, we focus our attention on these passwords only.
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Fig. 2: Length-wise distribution of 14 million unique passwords found in the Rockyou
Database.

Analysing 13 million unique passwords revealed the form of the popular bins
which are enlisted in the Table 1 along with their descriptions. The most popular
bins are of the form L+D+, that begin with at least one lowercase letter and
end with at least one digit. Nearly 31.32% of the passwords were derived from
these bins. Counting the number of bins of any particular form depends upon its
composition and the password length n. For instance, the number of bins of the
form L+D+ and length 3 is 2 (LD2,L2D). Table 1 also enumerates the count of the



most popular bins found in the Rockyou database as the function of the password
length n.

Table 1: Analysing 13 million passwords of length n ≤ 12 in the Rockyou database reveals
the most popular bins.

Popular bins Bin Description Number of
such bins of

length n

% of
passwords

found

U+ composed entirely of uppercase letters 1 1.51

U+D+ starting with at least 1 uppercase letter
and ending with at least 1 digit

n− 1 2.20

D+L+ starting with at least 1 digit and ending
with at least 1 lowercase letter

n− 1 3.93

D+ composed entirely of digits 1 16.36

L+ composed entirely of lowercase letters 1 24.30

L+D+ starting with at least 1 lowercase letter
and ending with at least 1 digit

n− 1 31.32

The total number of popular bins that constitutes nearly 80% of 13 million
Rockyou passwords can be found by adding the entries in the third column of the
Table 1 while varying the password length n from 1 to 12.

12∑
n=1

1 + n− 1 + n− 1 + 1 + 1 + n− 1 =

12∑
n=1

3 · n

= 3 ·
12∑
n=1

n

= 234 (3)

The number of bins having length n ≤ 12 is
12∑
n=1

4n. However, analysing the 13

million unique passwords in the Rockyou database revealed that nearly 80% of

these passwords can be found in a tiny fraction 234/
12∑
n=1

4n of the total bins. This

clearly indicates that the bin space is highly biased. Now, the offline attacker can
exploit the fact that few bins are extremely popular and as a result, searching the
popular bins will break the protected password database. Given the fact that 56-bit
DES key can be searched exhaustively, if the Rockyou password database was pro-
tected with a one way hash function, the motivated attacker could have performed
the brute-force search on 234 popular bins of the length n ≤ 12 and recovered
nearly 80% of passwords. The capacity of any of the 234 bins does not exceed
log2(2612) ≈ 56 bits. The actual search space is enormous log2(9512) ≈ 79 bits.
However, the attacker can take advantage of the fact that only a fraction of the
bins are highly probable and skip the search of the unpopular bins. Also, there is
no need to mount the dictionary attack as the brute-force search of few popular



bins is sufficient for the attack to succeed.

Remark 1 : The entire search space can be partitioned into bins. When no
restriction is imposed during the password creation, the bin space becomes highly
biased and as a consequence a tiny fraction of bins become very popular. Therefore,
the effort of the offline attacker is reduced drastically as the considerable portion
of the password database can be recovered by targeting only these popular bins.

4 Increasing the Search Space

In this section, we show that increasing the search space still results in a non-
uniform distribution on the bin space, which can be exploited by the offline at-
tacker. As mentioned previously, the search space can be increased either by enforc-
ing the composition rules or by enforcing the minimum length restriction during
the password creation. We discuss both the cases.

4.1 Effect of Enforcing the Composition Rules

The composition rules deny the use of bins composed of only one alphabet and
enforce users to choose the bins composed of at least 2 or 3 alphabets. In this
case, the search space is too large (95n) to carry out the brute-force search. How-
ever, merely increasing the search space does not imply that all available bins are
used uniformly. Surveys [11],[12] and breached databases suggest that the bins of
the form {S,D}pU1Ln−2p−1{S,D}p, p > 0, that begin with at least one digit or
symbol followed by at least one uppercase letter and then lowercase letters and
ending with at least one digit or symbol are more popular. We analysed 3 types
of minimum 8 length passwords from the Rockyou database viz.; alpha-numeric,
alpha-symbolic and the passwords composed of at least one letter from each al-
phabet L,U,D and S. These passwords best reflect the ones that are created due
to the compostion rules widely in use today. Analysing these Rockyou passwords
provides more insights into the bins that become highly probable in the presence
of the composition rules.

It is evident from the Table 2. that enforcing composition rules might not
achieve security even against the brute-force attack. For instance, analysing the
alpha-numeric passwords in the Rockyou database reveals that nearly 56% of these
passwords are derived from the bins U1L+D+ that begin with an uppercase letter
followed by lowercase letters and ending with digits. The number of such bins are
few and depends upon the length. In general, if the length of the bin is n, then the
number of bins that begin with an uppercase letter and end with digits is n − 2.
Since, the number of available bins is 4n, the considerable portion (56%) of Alpha-
Numeric passwords fall in a very tiny fraction ((n − 2)/4n) of bins. Moreover, if
n is not large i.e. n ≤ 12 which typically is, then the popular bins can be easily
brute-force searched for passwords. Nearly 93% of 14 million unique passwords in
the Rockyou database have length at most 12.

Now, if the attacker can identify such high probable bins then only those need
to be searched, instead of searching the entire search space. The non-uniform dis-
tribution on the bins suggests that enforcing composition rules does not result in
a proper utilization of the available search space of 95n. Today, most of the orga-
nizations need users to set at least 8 length passwords derived from the set σ. If



Table 2: Analysing the composition rules compliant passwords of length n ≥ 8 in the
Rockyou database reveals the most popular bins.

Password
Type

Number
of

passwords

Popular bins Bin Description Number
of n

length
bins

% of
Rock-
you

pass-
words

alpha-
numeric
{L,U,D}+

293932 U1L+D+ starting with 1 uppercase
letter followed by 1 or more
lowercase letters and ending

with 1 or more digits

n− 2 56

alpha-
symbolic
{L,U, S}+

36730 U?L∗S1U?L∗ consisting of exactly 1
symbol and starting and
ending with at most 1

uppercase letter followed by
0 or more occurrences of

lowercase letter

4 · n 41.5

All
{L,U,D, S}+

44726 UL+D∗S1D∗ consisting of exactly 1
symbol sandwiched between
the digits and starting with
1 uppercase letter followed
by at 1 or more occurences

of lowercase letter

2 · n 30

the bin of length 9 and of the form U1L5S1D2 becomes most popular, then to re-
cover the majority of passwords, the offline attacker has to brute-force search only
26 ∗ 265 ∗ 33 ∗ 102 ≈ 239.5 combinations which is quite feasible with the currently
available computing power. With this kind of distribution, the attacker does not
have to brute-force the relatively enormous search space of 959 ≈ 259 and hence,
the minimum 8 length requirement is not enough.

Remark 2 : The passwords created due to the composition rules might not be se-
cure even against the brute-force attack. Again, this is because of the non-uniform
distribution on the bin space. Some bins are more frequently used for deriving
the passwords. For instance, if users are enforced to create alpha-numeric pass-
words, the analysis of Rockyou database suggests that bins of the form U1L+D+

can become more popular. Therefore, the offline attacker without resorting to any
dictionary attack can break considerable fraction of the protected password database
by searching only the popular bins. This defeats the purpose of enforcing the com-
position rules.

4.2 Effect of Increasing the Password Length

To render the brute-force search infeasible, passwords should be created from the
large capacity bins. Using the large capacity bins implies increasing the password
length n. Another advantage of increasing the password length is that we can get
rid of the restriction of using a large alphabet set for deriving the passwords. This
is because increasing the length results in an exponential increase in the capacity



of the bin which makes the brute-force search infeasible. In the absence of any
alphabet set restriction, the bins of the form Ln are more preferred for creating
the passwords [5],[14],[7]. If the search space with 75 bits entropy is considered
as infeasible to mount a brute-force attack then the minimum length restriction
should be at least n = 16. This is because, the capacity of the bin L16 is |L|16 =
2616 and provides log2(2616) ≈ 75 bits of entropy. However, there is not only a non-
uniform distribution on the bins but even words in the bin are highly biased. This
behaviour is exploited by the attacker in the form of sophisticated dictionaries.
The words in the bins that are more probable are the common English words,
misspelled English words or common English phrases.

Table 3: Breaking Ln passwords in Rockyou database v/s Random database using the
phrase dictionary of size 256.

Password
length n

Number of Ln pass-
words in Rockyou
database

% of Rockyou pass-
words broken using
the phrase dictionary

% broken if the Rockyou
passwords were random

13 128695 79.36 100 · 256/2613 ≈ 2.9

14 86632 68.26 100 · 256/2614 ≈ 0.11

15 59796 58.12 100 · 256/2615 ≈ 0.004

16 36416 47.82 100 · 256/2616 ≈ 0.00016

17 14138 39.5 100 · 256/2617 ≈ 0.0000063

18 8970 32.5 100 · 256/2618 ≈ 0.0000002

Analysing the longer passwords in the Rockyou database revealed that the
sizeable chunk of these passwords are merely concatenation of most common pass-
words and most common words used in the English dictionary. To verify this,
we selected nearly 16000 ≈ 214 words comprising the common passwords, common
names, common words and analysed passwords of the form Ln, where 13 ≤ n ≤ 18.
We created a phrase dictionary with the help of the 16000 ≈ 214 words and ob-
served that by exploring over 256 search space (phrases of at most 4 words), a
considerable portion of longer passwords in the Rockyou database can be recov-
ered. However, if passwords were derived randomly from an uniform distribution,
then a very tiny fraction of passwords would have been broken due to our phrase
dictionary. For instance, the number of Rockyou passwords derived from the bin
L13 that can be broken by exploring a search space of 256 is nearly 79% while
the number of random passwords derived from the bin L13 that can be broken is
nearly 100 ∗ 256/2613 ≈ 2.9 � 79.36. The results are shown in the Table 3. We
achieved the similar results for passwords of other lengths too. These results cleary
indicate that the words in the bin are also non-uniformly distributed, which dras-
tically reduces the search space for an offline attacker. Therefore, increasing the
capacity of bins might not solve the password security problem. In other words,
longer passwords might not imply secure passwords. If users are forced to create
longer passwords and the same behaviour is observed then the motivated attacker
can build more sophisticated dictionary and with the available computing power



can mount more serious attack than ours.

Remark 3 : If users are forced to create longer passwords without any restric-
tion of a large alphabet set, then bins of the form Ln can become more popular.
Moreover, if the resulting passwords are concatenation of common English words
as evident from the analysis of Ln passwords in the Rockyou database, the offline
attacker can construct a dictionary to exploit this bias. As a result, the search
space for the attacker is drastically reduced due to the non-uniformly distributed
words in the high probable bins. Therefore, merely increasing the password length
might not result in the secure passwords.

5 Application of Bins

As concluded earlier, increasing the search space does not result in the creation
of secure passwords. The non-uniform distribution on the bins enables the offline
attacker to mount a brute-force attack on few popular bins to recover the majority
of passwords. However, if the capacity of popular bins is large enough to make
the brute-force search infeasible, then the attacker can resort to sophisticated
dictionary attack which exploits the fact that words in the bins are also non-
uniformly distributed. In this section, we present two schemes that counter these
attacks and result in an exponential increase in the effort of the offline attacker.

5.1 Random Bin Scheme

With the human generated passwords, the non-uniform distribution on the search
space cannot be avoided. Therefore, to achieve the desired security, system assigned
passwords seems to be the best option. These passwords can be seen as generated
using the following steps.

1. Randomly select the length n, nmin ≤ n e.g. n = 12.
2. Randomly select the bin β of length n, e.g. β = L2D3L1S4U2.
3. Randomly select a word in the bin β, e.g. ke932c-%?’LQ

However, system assigned passwords affects usability [9]. Users have no control over
creating their passwords and the resulting passwords are difficult to remember.
Therefore, we propose a scheme that provides users with some control over their
passwords creation without significantly comprimising the security. In this scheme,
we allow the system to decide upon the first two steps. In other words, we allow
system to randomly assign the bin β of length n to the users. Now, every user
selects the password from the assigned bin. We call this as random bin scheme.
This scheme ensures that the bin space is uniformly distributed and the brute-
force search of few bins does not break the entire password database. The effort
of the offline attacker is increased considerably as every bin needs to be searched.
However, this scheme provides no guarantee over the distribution of words in the
bin, as they are chosen by users. The another advantage of this scheme is that the
minimum length of the password requried to thwart the brute-force attack can be
calculated precisely. For this purpose, we assume that passwords are created using
95 characters (4 alphabets L,U,D, S). Now, if the entropy Edesired is considered
to be secure against the brute-force attack, then the minimum length nmin of



passwords should be:

Edesired = log2(95nmin)

= nmin · log2(95)

∴ nmin = Edesired/log2(95) (4)

if Edesired = 75 bits, then nmin ≈ 12. In this case, there are 4nmin = 412 bins
available which are randomly assigned to the users. Therefore, the attacker has to
brute-force search the entire search space of 95nmin to break the resulting password
database.

Alternatively, the system can randomly assign a unique bin to every user. This
is mere a variant of random bin scheme and we call it as a unique bin per user
scheme. Assuming that bins are derived from the alphabet set σ = {L,U,D, S},
the length of the password should be at least :

nmin = log|σ|(number of users)

= log4(number of users) (5)

Thus, if passwords are derived using 4 alphabets σ = {L,U,D, S} and the number
of users is 220 ≈ 1 million then the minimum length of the password should be
log4(220) = 10. But, if passwords are derived using only 2 alphabets L and D,
then the minimum length requirement should be log2(220) = 20 ( Fig. 3). In cases,
where the number of users are few, the system can resort to the random bin
scheme and compute the nmin by fixing the desired entropy Edesired to counter
the brute force attack.
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Fig. 3: Using the unique bin per user scheme to determine the minimum password length
nmin for 220 ≈ 1 million users by varying the size of the alphabet set σ.

Strength. The uniform distribution on the bins ensure that the entropy Emin



of the password database in a unique bin per user scheme is at least:

Emin = log2(|σ|nmin)

= log2(4nmin) (6)

|σ|nmin is the number of possible bins of length nmin derived from the alphabet
set σ. This scheme ensures that the bins are uniformly distributed and assigned
uniquely to every user. The advantage of such system assigned schemes is that the
password reuse can be prevented, the password strength can be measured and with
the lock out policies in place, online attacks can be easily thwarted. Moreover, the
brute-force attack on few bins will not break the password database as the bins
are equally likely. Now, offline attackers have to target all 4nmin bins and hence,
the entropy Emax of a resuting password database against the brute-force attack
is :

Emax = log2(95nmin) (7)

Thus, when bins are randomly assigned to the users, all bins become equally likely.
As a result, there is no bias to exploit and therefore, to break the password database,
attackers have to brute-force search the entire search space.

Challenges. In the random bin scheme, a bin of certain length is randomly as-
signed to the user. Creating passwords complying with the assigned bins can be
cumbersome and might annoy the users. Further, some bins are more usable than
the others, e.g. the password bin U1L8D5S2 can be considered as more usable
than S2L1D3L2S1U4D2L1. In such cases, usability will not be any better than
the system assigned passwords. Moreover, some bins that are more user friendly,
might result in weaker passwords. For instance, with the bin S12L4 of length 16,
the password set by an user could be #12a4. Therefore, in such cases, the strength
of passwords will be merely due to the randomness of bins and not much due to
the letters used in passwords. This fact can be exploited by the dictionary attack.

5.2 Random Phrase Scheme

There is yet another way to increase the security of the password database. The
system can allow a non-uniform distribution on the bin space, however, the words
in those high probable bins should be uniformly distributed. Now, even if the
attacker learns about the high probable bins, any attempt to mount the dictionary
attack will be futile as there will not be any bias to exploit. The only way to break
the database is to perform the brute-force search on the high probable bins. The
password length is chosen such that the capacity of bins makes the brute-force
attack infeasible. In the absence of any alphabet set restrictions, the bins of the
form Ln become more popular [5],[14],[7] and therefore, we assume that passwords
are created using the alphabet L i.e. |L| = 26 lowercase letters. Again, assuming
that the Edesired bits of entropy is strong enough to resist the brute-force attack,
the minimum length nmin of Ln bins should be :

Edesired = log2(26nmin)

= nmin · log2(26)

∴ nmin = Edesired/log2(26) (8)



If Edesired = 75 bits, then nmin ≈ 16. In this case, words from the bins Ln,
n ≥ nmin = 16, are randomly assigned to the users. Therefore, the attacker has to
brute-force search the entire search space of 26nmin to break the resulting password
database.

Strength. The uniform distribution on the words in Lnmin bins ensures that
the entropy of the password database is :

Emin = log2(|L|nmin)

= log2(|26|nmin) (9)

Thus, when words from a popular bins are randomly assigned to the users, all
words become equally likely. Since there is no bias to exploit, attackers have to
brute-force search the popular bins to break the password database. However, the
capacity of popular bins is large enough to resist the brute-force attack.

Challenges. Finding such usable bins wherein words are easy to remember is a
daunting task. Generating system assigned pass-phrase composed of English words
can be one way of generating such bins. However, all words in the bin are not pass-
phrases. Therefore, we choose a alphabet set εwords consisting of English words,
from which the pass-phrase can be derived. If |εwords| = 16000 ≈ 214 English words
are used to create pass-phrases, then to achieve 75 bits of entropy, every user should
remember the pass-phrase made up of at least 75/log2(214) = 75/14 ≈ 5 words.
Remembering 5 words can be very demanding for the users and thus, assigning
the random pass-phrases can lead to a cognitive burden.

In the following section, we discuss the further consequences of partitioning the
search space into bins and the implications of proposed schemes on the future.

6 Discussion

If we assume that passwords are derived from n length bins composed of 4 alpha-
bets σ = {L,U,D, S} and if θn denotes the average capacity of each bin, then the
size of search space SS and the corresponding entropy Ep is:

Search Space SS = θn · 4n

∴ Entropy Ep = n · log2(θ) + 2 · n (10)

However, this search space, provides a very loose upper bound on the password
strength. Analysis of the Rockyou database revealed that the bin space is highly
biased. The number of bins increases exponentially with the increase in the pass-
word length n, however, the number of bins that are utilized increases only linearly
(Fig. 4). These utilized bins form a tiny fraction which can be exploited by the
brute-force attack. The uneven utilization of bins enables us to compute much
tighter upper bound on the password strength. If c · n, where c is a constant, de-
notes the number of bins used for deriving n length passwords, then the size of
the search space that is actually utilized Sutilized and the corresponding entropy
Eutilized is given by:

Search Space Sutilized = θn · c · n
∴ Entropy Eutilized = n · log2(θ) + log2(c · n) (11)
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Fig. 4: Available Bin Space v/s Actual Bin Utilization in the Rockyou Database as a
function of password length n.

Hence, by targeting only the popular bins, the effort of an attacker is reduced by
at least Ep − Eutilized bits,

Ep − Eutilized = 2 · n− log2(c · n) (12)

And therefore, the fraction F of the search space that can be skipped by the
attacker is at least:

Fraction F = (Ep − Eutilized)/Ep
= (2 · n− log2(c · n))/(n · log2(θ) + 2 · n) (13)

e.g. if θ = 26, n = 12 and c = 5, then Ep ≈ 12 · 4.5 + 12 · 2 = 78 bits and
Eutilized ≈ 12 · 4.5 + 6 = 60 bits. In this case, the effort is reduced by at least
78−60 = 18 bits and therefore, the fraction of the search space that can be skipped
is 18/78 ≈ 0.23. Today, the search of 78 bits search space is nearly infeasible but
searching 60 bits space is not an impossible task. This indicates that just increasing
the search space is not enough.

Also, until now determining the minimum length requirement of the password
was not an exact science. However, by using the concept of a bin, we can not only
determine the minimum length requirement but also achieve the desired level of
security without using the system assigned random passwords. More specifically,
the random bin and the random phrase schemes enable us to address these issues
by precisely computing the minimum length requriement of the passwords for any
alphabet set σ and enforcing the uniform distribution on the search space and
therefore, eliminating the difference between the actual search space Ep and the
utilized search space Eutilized.

The passwords yet have to play a more crucial role in achieving the desired level
of security by thwarting the unauthorised access. With the Cisco, predicting nearly
50 billion ≈ 235.5 internet connected devices by 2020 [21] and with no alternative
usable and secure authentication mechanism in sight, the importance of the text-
based passwords will increase tremendously. Suppose that a random password of



length 10 is used for protecting every device. Since, there are only |σ|10 = 410

bins of length 10, searching any bin will reveal nearly 235.5/410 ≈ 215.5 = 46340
passwords. This suggests that in the future even if the passwords are derived
randomly, the number of passwords that can be recovered by searching any bin can
prove fatal. However, with a unique bin per user scheme or in the correct context it
is more appropriate to call it as a unique bin per device scheme, the minimum length
of the passwords to prevent such attacks can be percisely calculated. The minimum
length of the passwords required to protect 50 billion ≈ 235.5 devices against the
brute-force attack is nmin = log4(number of devices) = log4(35.5) ≈ 18.

7 Conclusion

Most websites prefer the use of composition rules to create secure passwords.
However, some researchers claim that just increasing the password length create
more secure passwords. We hypothesized that both these approaches do not ensure
the security of the resulting passwords. We partitioned the search space into bins
and showed that some bins are more probable than the others. These popular
bins can be exhaustively searched to recover the considerable portion of passwords
without searching the entire available space. Futher, we showed that the longer
passwords are mostly derived by concatenating common English words and can
be broken using the phrase dictionary. To circumvent these attacks, we proposed
random bin and random phrase schemes which ensure that either the bins are
uniformly distributed or words in bins are uniformly distributed. Further, these
schemes allow us to determine the minimum length requirement of passwords as a
function of number of users and alphabet set. Because of the random bin scheme,
every bin becomes equally likely and hence there are no more popular bins. Now,
the attacker cannot expect to get the majority of passwords by a brute-force search
of few bins which is possible today with the composition rules in place. The attacker
has to search the entire search space to break the password database. In the random
phrase scheme, every word in a bin has equal probability of being a password which
renders the dictionary attack futile whereas the brute-force attack is countered by
choosing the bin of a large capacity. Both these schemes ensures that the effort
of the attacker is increased exponentially and the resulting password database is
secure against the brute-force attack.
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Overview of the Candidates for the

Password Hashing Competition

And their Resistance against Garbage-Collector Attacks
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Abstract. In this work we provide an overview of the candidates of
the Password Hashing Competition (PHC) regarding to their functional-
ity, e.g., client-independent update and server relief, their security, e.g.,
memory-hardness and side-channel resistance, and its general proper-
ties, e.g., memory usage and flexibility of the underlying primitives. Fur-
thermore, we formally introduce two kinds of attacks, called Garbage-
Collector and Weak Garbage-Collector Attack, exploiting the memory
management of a candidate. Note that we consider all candidates which
are not yet withdrawn from the competition.

Keywords: Password Hashing Competition, Overview, Garbage-Collector Attacks

1 Introduction

Typical adversaries against password-hashing algorithms (also called password
scramblers) try plenty of password candidates in parallel, which becomes a lot
more costly if they need a huge amount of memory for each candidate. On the
other hand, the defender (the honest party) will only compute a single hash, and
the memory-cost parameters should be chosen such that the required amount of
memory is easily available to the defender.
But, memory-demanding password scrambling may also provide a completely
new attack opportunity for an adversary, exploiting the handling of the target’s
machine memory. We introduce the two following attack models: (1) Garbage-
Collector Attacks, where an adversary has access to the internal memory of
the target’s machine after the password scrambler terminated; and (2) Weak
Garbage-Collector Attacks, where the password itself (or a value derived from
the password using an efficient function) is written to the internal memory and
almost never overwritten during the runtime of the password scrambler. If a
password scrambler is vulnerable in either one of the attack models, it is likely
to significantly reduce the effort for testing a password candidate.

Up to now, there exist two basic strategies of how to design a memory-demanding
password scrambler:



Type-A: Allocating a huge amount of memory which is rarely overwritten.
Type-B: Allocating a reasonable amount of memory which is overwritten mul-

tiple times.

The primary goal of the former type of algorithms is to increase the cost of
dedicated password-cracking hardware, i.e., FPGAs and ASICs. However, algo-
rithms following this approach do not provide high resistance against garbage-
collector attacks, which are formally introduced in this work. The main goal of
the second approach is to thwart GPU-based attacks by forcing a high amount
of cache misses during the computation of the password hash. Naturally, algo-
rithms following this approach provide some kind of built-in robustness against
garbage-collector attacks.

Remark 1. For our theoretic consideration of the proposed attacks, we assume
a natural implementation of the algorithms, e.g., that some possible mentioned
overwriting of the internal state after the invocation of an algorithm is neglected
due to optimization.

2 (Weak) Garbage-Collector Attacks and their
Application to ROMix and scrypt

In this section we first provide a definition of our attack models, i.e., the Garbage-
Collector (GC) attack and the Weak Garbage-Collector (WGC) attack. For illus-
tration, we first show that ROMix (the core of scrypt [19]) is vulnerable against
a GC attack (this was already shown in [11], but without a formal definition of
the GC attack), and second, we show that scrypt is also vulnerable against a
WGC attack.

2.1 The (Weak) Garbage-Collector Attack

The basic idea of these attacks is to exploit the memory management of password
scramblers based on the handling of the internal state or some single password-
dependent value. More detailed, the goal of an adversary is to find a valid pass-
word candidate based on some knowledge gained from observing the memory
used by an algorithm, whereas the test for validity of the candidate requires
significantly less time/memory in comparison to the original algorithm. Next,
we formally define the term Garbage-Collector Attack.

Definition 1 (Garbage-Collector Attack). Let PSG(·) be a memory-con-
suming password scrambler that depends on a memory-cost parameter G and let
Q be a positive constant. Furthermore, let v denote the internal state of PSG(·)
after its termination. Let A be a computationally unbounded but always halting
adversary conducting a garbage-collector attack. We say that A is successful if
some knowledge about v reduces the runtime of A for testing a password can-
didate x from O(PSG(x)) to O(f(x)) with O(f(x)) ≪ O(PSG(x))/Q, ∀x ∈
{0, 1}∗.
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Algorithm 1 The algorithm scrypt [19] and its core operation ROMix.

scrypt

Input:
pwd {Password}
s {Salt}
G {Cost Parameter}

Output: x {Password Hash}
10: x← PBKDF2(pwd , s, 1, 1)
11: x← ROMix(x,G)
12: x← PBKDF2(pwd , x, 1, 1)
13: return x

ROMix

Input:
x {Initial State}
G {Cost Parameter}

Output: x {Hash value}
20: for i = 0, . . . , G− 1 do
21: vi ← x

22: x← H(x)
23: end for
24: for i = 0, . . . , G − 1 do
25: j ← x mod G

26: x← H(x⊕ vj)
27: end for
28: return x

In the following we define the Weak Garbage-Collector Attack (WGCA).

Definition 2 (Weak Garbage-Collector Attack). Let PSG(·) be a password
scrambler that depends on a memory-cost parameter G, and let F (·) be an un-
derlying function of PSG(·) that can be efficiently computed. We say that an
adversary A is successful in terms of a weak garbage-collector attack if a value
y = F (pwd) remains in memory during (almost) the entire runtime of PSG(pwd),
where pwd denotes the secret input.

An adversary that is capable of reading the internal memory of a password
scrambler during its invocation, gains knowledge about y. Thus, it can reduce the
effort for filtering invalid password candidates by just computing y′ = F (x) and
checking whether y = y′, where x denotes the current password candidate. Note
that the function F can also be given by the identity function. Then, the plain
password remains in memory, rendering WGC attacks trivial (see Section 2.2 for
a trivial WGC attack on scrypt).

2.2 (Weak) Garbage-Collector Attacks on scrypt

Garbage-Collector Attack on ROMix. Algorithm 1 describes the necessary
details of the scrypt password scrambler together with its core function ROMix.
The pre- and post-whitening steps are given by one call (each) of the standard-
ized key-derivation function PBKDF2 [15], which we consider as a single call to
a cryptographically secure hash function. The function ROMix takes the initial
state x and the memory-cost parameter G as inputs. First, ROMix initializes an
array v of size G ·n by iteratively applying a cryptographic hash function H (see
Lines 20-23), where n denotes the output size of H in bits. Second, ROMix ac-
cesses the internal state at randomly computed points j to update the password
hash (see Lines 24-27).
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It is easy to see that the value v0 is a plain hash (using PBKDF2) of the original
secret pwd (see Lines 10 and 21 for i = 0). Further, from the overall structure of
scrypt and ROMix it follows that the internal memory is written once (Lines 20-
23) but never overwritten . Thus, all values v0, . . . , vG−1 can be accessed by a
garbage-collector adversary A after the termination of scrypt. For each pass-
word candidates pwd ′, A can now simply compute x′ ← PBKDF2(pwd ′) and
check whether x′ = v0. If so, pwd

′ is a valid preimage. Thus, A can test each
possible candidate in O(1), rendering an attack against scrypt (or especially
ROMix) practical (and even memory-less).
As a possible countermeasure, one can simply overwrite v0, . . . , vG−1 after run-
ning ROMix. Nevertheless, this step might be removed by a compiler due to
optimization, since it is algorithmically ineffective.

Weak Garbage-Collector Attack on scrypt. In Line 12 of Algorithm 1,
scrypt invokes the key-derivation function PBKDF2 the second time using again
the password pwd as input again. Thus, pwd has to be stored in memory during
the entire invocation of scrypt, which implies that scrypt is vulnerable to WGC
attacks.

3 Overview

Before we present the tables containing the comparison of the candidates for the
Password Hashing Competition (PHC), we introduce the necessary notions (see
Table 1) to understand the tables.
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Identifier Description

Primitives/Structures

BC Block cipher
SC Stream cipher
PERM Keyless permutation
HF Hash function
BRG Bit-Reversal Graph
DBG Double-Butterfly Graph

General Properties

CIU Supports client-independent update
SR Supports server relief
KDF Usable as Key-Derivation Function (requires outputs to be pseudorandom)
FPO Using floating-point operations
Flexible Underlying primitive can be replaced
Iteration Algorithm is based on iterations/rounds

Security Properties

GCA Res. Resistant against garbage-collector attacks (see Definition 1)
WGCA Res. Resistant against weak garbage-collector attacks (see Definition 2)
SCA Res. Resistant against side-channel attacks.
ROM-port Special form of memory hardness [8].
Shortcut Is it possible to bypass the main (memory and time) effort of an algorithm by

knowing additional parameters, e.g., the Blum integers p and q for Makwa which
are used to compute the modulo n.

Table 1. Notations used in Tables 2, 3, and 4.

5



Comments for Table 2. The values in the column ”Memory“ come from the authors recommendation for password hashing
or are marked as ‘◦‘ if no recommendation exists. The entry “A (CF)” denotes that only the compression function of algorithm
A is used. An entry A(XR) denotes that an algorithm A is reduced to X rounds. The scrypt password scrambler is just added
for comparison. If an algorithm can only be partially be computed in parallel, we marked the corresponding entry with ’part.’.
Note that POMELO and schvrch do not depend on an existing underlying primitive but on an own construction.

Algorithm Based On Iteration Memory Usage Parallel Underlying Primitive Underlying Mode
BC/SC/PERM HF

AntCrypt X 32 kB part. - SHA-512 -
ARGON AES X 1 kB - 1 GB X AES (5R) - -
battcrypt X 128 kB - 128 MB part. Blowfish-CBC SHA-512 -
Catena BRG/DBG X 8 MB part. - BLAKE2b -
CENTRIFUGE X 2 MB - AES-256 SHA-512 -

EARWORM X 2 GB (ROM) X AES (1R) SHA-256 PBKDF2 HMAC

Gambit Sponge X 50 MB - Keccakf - -
Lanarea DF X 256 B - - BLAKE2b -
Lyra2 Sponge X 400 MB - 1 GB - BLAKE2b (CF) -
Makwa Squarings X negl. X - SHA-256 HMAC

MCS PHS X negl. - - MCSSHA-8 -
ocrypt scrypt X 1 MB - 1 GB - ChaCha CubeHash -
Parallel X negl. X - SHA-512 -
PolyPassHash Shamir Sec. Sharing - negl. - AES SHA-256 -
POMELO X (8 KB, 8 GB) part. - - -

Pufferfish Blowfish/bcrypt X 4 - 16 kB - Blowfish SHA-512 HMAC
Rig BRG X 15 MB part. - BLAKE2b -
scrypt X 1 GB - Salsa20/8 - PBKDF2
schvrch X 8 MB part. - - -
Tortuga Sponge & rec. Feistel X ◦ Turtle - -

SkinnyCat BRG X ◦ - - SHA-*/BLAKE2* -
TwoCats BRG X ◦ X - SHA-*/BLAKE2* -
Yarn X ◦ part. BLAKE2b (CF), AES - -
yescrypt scrypt X 3 MB (RAM)/3 GB (ROM) part. Salsa20/8 SHA-256 PBKDF2 HMAC

Table 2. Overview of PHC Candidates and their general properties (Part 1).
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Comments for Table 3. Even if the authors of a scheme do not claim to
support client-independent update (CIU) or server relief (SR), we checked for
the possibility and marked the corresponding entry in the table with ’X’ or ’part.’
if possible or possible under certain requirements, respectively. Note that we say
that an algorithm does not support SR when it requires the whole state to be
transmitted to the server. Moreover, we say that an algorithm does not support
CIU if any additional information to the password hash itself is required. Note
that Catena refers to both instantiations, i.e., Catena-BRG and Catena-

DBG.

Algorithm CIU SR FPO Flexible

AntCrypt X - X part.
ARGON X X - X

battcrypt X - - part.
Catena X X - X

CENTRIFUGE - - - X

EARWORM - X - -
Gambit - X opt. part.
Lanarea DF - X - X

Lyra2 X X - part.
Makwa part. - - X

MCS PHS - X - part.
ocrypt - - - X

Parallel X X - X

PolyPassHash X - - X

POMELO X - - -

Pufferfish - X - part.
Rig X X - X

scrypt - - - X

schvrch - - - -
Tortuga - - - -

SkinnyCat - X - X

TwoCats X X - X

Yarn - X - -
yescrypt - X - X

Table 3. Overview of PHC Candidates and their general properties (Part 2).
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Comments for Table 4. The column “Type” specifies which type of a memory-demanding design a certain algorithm
satisfies. The types “A” and “B” are as described in Section 1 and marking an algorithm by “-” denotes that it is not designed
to be memory-demanding. An entry supplemented by ’∗’ (as for Memory-Hardness and Security Analysis), denotes that there
exists not sophisticated analysis or proofs for the given claim/assumption. For SCA Res., ’part.’ (partial) means that only one
or more parts (but not all) provide resistance against side-channel attacks.

Algorithm Type Memory-Hardness KDF GCA Res. WGCA Res. SCA Res. Security Analysis Shortcut

AntCrypt B X X X X X X
∗ -

ARGON B X X X X - X -
battcrypt B X X X - X X

∗ -
Catena-BRG B X X - X X X -
Catena-DBG B λ X X X X X -

CENTRIFUGE A X
∗ - - - X X

∗ -
EARWORM B ROM-port - X - X X -
Gambit B X

∗

X X X X X
∗ -

Lanarea DF B X
∗

X X X part. X
∗ -

Lyra2 B X X X X part. X -

Makwa - - X X X part. X X

MCS PHS - - X X X X - -
ocrypt B X

∗

X X X - X
∗ -

Parallel - - X X - X X
∗ -

PolyPassHash - - - - - - X X

POMELO B - - X X part. X
∗ -

Pufferfish B X
∗

X X X - X
∗ -

Rig B λ X X X X X -
scrypt A sequential X - - - X -
schvrch B - - X X X X

∗ -

Tortuga B X
∗

X X X X X
∗ -

SkinnyCat A sequential X - - part. X -
TwoCats B sequential X X X part. X -
Yarn B X

∗ - X - - X
∗ -

yescrypt A ROM-port, sequential X - - - X
∗ -

Table 4. Overview over the security properties of PHC candidates.
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Remark 2. Note that we do not claim completeness for Table 4. For example, we
defined a scheme not to be resistant against side-channel attacks if it maintains
a password-dependent memory-access pattern. Nevertheless, there exist several
other types of side-channel attacks such as those based on power or acoustic
analysis.

4 Resistance of PHC Candidates against (W)GC Attacks

In this section we briefly discuss potential weaknesses of each PHC candidate re-
garding to garbage-collector (GC) and weak-garbage collector (WGC) attacks or
argue why it provides resistance against such attacks. Note that we assume the
reader to be familiar with the internals of the candidates since we only concen-
trate on those parts of the candidates that are relevant regarding to GC/WGC
attacks.

AntCrypt [9]. The internal state of AntCrypt is initialized with the secret
pwd . During the hashing process, the state is overwritten multiple times (based
on the parameter outer rounds and inner rounds), which thwarts GC attacks.
Moreover, since pwd is used only to initialize the internal state, WGC attacks
are not applicable.

ARGON [3]. First, the internal state derived from pwd is the input to the
padding phase. After the padding phase, the internal state is overwritten by
applying the functions ShuffleSlices and SubGroups at least L times. Based
on this structure, and since pwd is used only to initialize the state, ARGON is
not vulnerable against GC/WGC attacks.

battcrypt [24]. Within battcrypt, the plain password is used only once, namely
to generate a value key = SHA-512(SHA-512(salt || pwd)). The value key is then
used to initialize the internal state, which is expanded afterwards. In the Work
phase, the internal state is overwritten t cost×m size times using password-
dependent indices. Thus, GC attacks are not applicable.

Note that the value key is used in the three phases Initialize blowfish, Initialize
data, and Finish, whereas it is overwritten in the phase Finish the first time.
Note that the main effort for battcrypt is given by the Work phase. Thus, one
can assume that one iteration of the outer loop (iterating over t cost upgrade)
lasts long enough for a WGC adversary to launch the following attack:
For each password candidates x and the known value salt, compute key′ =
SHA512(SHA512(salt || x)) and check whether key′ = key. If so, mark x as a
valid password candidate.

Catena [11]. Catena has two instantiations Catena-BRG and Catena-

DBG, which are based on a (G, λ)-Bit-Reversal Graph and a (G, λ)-Double-
Butterfly Graph, respectively. Both instantiations use an array of G elements
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each as their internal state. This state is overwritten λ − 1 times for Catena-

BRG and (2 log2(G)−1)·λ+2 log2(G)−2 times for Catena-DBG. Hence, when
considering Catena-BRG, a GC adversary with access to the state can reduce
the effort for testing a password candidate by a factor of 1/λ. When considering
Catena-DBG, the reduction of the computational cost of an adversary is neg-
ligible. The authors mention this fact by recommending Catena-DBG when
considering GC attacks.

For Catena-BRG as well as Catena-DBG, the password pwd is used only to
initialize the internal state. Thus, both instantiations provide resistance against
WGC attacks.

CENTRIFUGE [1]. The internal state M of size p mem×outlen byte is
initialized with a seed S derived from the password and the salt as follows:
S = H(sL || sR), where sL ← H(pwd || len(pwd)) and sR ← H(salt || len(salt)).
Furthermore, S is used as the initialization vector (IV ) and the key for the CFB
encryption. The internalM is written once and later only accessed in a password-
dependent manner. Thus, a GC adversary can launch the following attack:

1. receive the internal state M (or at least M [1]) from memory
2. for each password candidate x:

(a) initialization (seeding and S-box)
(b) compute the first table entry M ′[1] (during the build table step)
(c) check whether M ′[1] = M [1]

The final step of CENTRIFUGE is to encrypt the internal state, requiring the
key and the IV , which therefore must remain in memory during the invocation
of CENTRIFUGE. Thus, the following WGC attack is applicable:

1. Compute sR ← H(salt || len(salt))
2. For every password candidate x:

(a) Compute s′
L
← H(x || len(x)) and S′ = H(s′

L
|| sR), and compare if

S′ = IV
(b) If yes: mark x as a valid password candidate
(c) If no: go to Step 2

EARWORM [12]. EARWORM maintains an array called arena which con-
sists of 2m cost×L×W 128-bit blocks, whereW = 4 and L = 64 are recommended
by the authors. This read-only array is randomly initialized (using an additional
secret input which has to be constant within a given system) and used as AES
round keys. Since the values within this array do not depend on the secret pwd ,
knowledge about arena does not help any malicious garbage collector. Within
the main function of EARWORM (WORKUNIT), an internal state scratchpad
is updated multiple times using password-dependent accesses to arena. Thus, a
GC adversary cannot profit from knowledge about scratchpad, rendering GC at-
tacks not applicable.
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Within the function WORKUNIT, the value scratchpad tmpbuf is derived di-
rectly from the password as follows:

scratchpad tmpbuf ← EWPRF(pwd , 01 || salt, 16W ),

where EWPRF denotes PBKDF2HMAC-SHA256 with the first input denoting
the secret key. This value is updated only at the end of WORKUNIT using the
internal state. Thus, it has to be in memory during almost the whole invocation of
EARWORM, rendering the following WGC attack possible: For each password
candidate x and the known value salt, compute y = EWPRF(x, 01 || salt, 16W )
and check whether scratchpad tmpbuf = y. If so, mark x as a valid password
candidate.

Gambit [21]. Gambit bases on a duplex-sponge construction [2] maintaining
two internal states S and Mem, where S is used to subsequently update Mem.
First, password and salt are absorbed into the sponge and after one call to the
underlying permutation, the squeezed value is written to the internal state Mem
and processed r times (number of words in the ratio of S). The output after the
r steps is optionally XORed with an array lying in the ROM. After that, Mem
is absorbed into S again. This step is executed t times, where t denotes the time-
cost parameter. The size of Mem is given by m, the memory-cost parameter.
Continuously updating the states Mem and S thwarts GC attacks. Moreover,
since pwd is used only to initialize the state within the sponge construction,
WGC attacks are not applicable.

Lanarea DF [18]. Lanarea DF maintains a matrix (internal state) consisting of
16 · 16 ·m cost byte values, where m cost denotes the memory-cost parameter.
After the password-independent setup phase, the password is processed by the
internal pseudorandom function producing the array (h0, . . . , h31), which deter-
mines the positions on which the internal state is accessed during the core phase
(thus, allowing cache-timing attacks). In the core phase, the internal state is
overwritten t cost×m cost× 16 times, rendering GC attacks impossible. More-
over, the array (h0, . . . , h31) is overwritten t cost×m cost times which thwarts
WGC attacks.

Lyra2 [14]. The Lyra2 password scrambler (and KDF) is based on a duplex
sponge construction maintaining a state H , which is initialized with the pass-
word, the salt, and some tweak in the first step of its algorithm. The authors
indicate that the password can be overwritten from this point on, rendering
WGC attacks impossible. Moreover, Lyra2 maintains an internal state M , which
is overwritten (updated using values from the sponge state H) multiple times.
Thus, GC attacks are not applicable for Lyra2.

Makwa [22]. Makwa has not been designed to be a memory-demanding pass-
word scrambler. Its strength is based on a high number of squarings modulo a
composite (Blum) integer n. The plain (or hashed) password is used twice to ini-
tialize the internal state, which is then processed by squarings modulo n. Thus,
neither GC nor WGC attacks are applicable for Makwa.
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MCS PHS [17]. Depending on the size of the output, MCS PHS applies it-
erated hashing operations, reducing the output size of the hash function by one
byte in each iteration – starting from 64 bytes. Note that the memory-cost pa-
rameter m cost is used only to increase the size of the initial chaining value T0.
The secret input pwd is used once, namely when computing the value T0 and
can be deleted afterwards, rendering WGC attacks not applicable. Furthermore,
since the output of MCS PHS is computed by iteratively applying the underly-
ing hash function (without handling an internal state which has to be placed in
memory), GC attacks are not possible.

ocrypt [10]. The basic idea of ocrypt is similar to that of scrypt, besides the
fact that the random memory accesses are determined by the output of a stream
cipher (ChaCha) instead of a hash function cascade. The output of the stream
cipher determines which element of the internal state is updated, which consists
of 217+mcost 64-bit words. During the invocation of ocrypt, the password is used
only twice: (1) as input to CubeHash, generating the key for the stream cipher
and (2) to initialize the internal state. Neither the password nor the output of
CubeHash are used again after the initialization. Thus, ocrypt is not vulnerable
to WGC attacks.
The internal state is processed 217+tcost times, where in each step one word of
the state is updated. Since the indices of the array elements accessed depend
only on the password and not on the content, GC attacks are not possible by
observing the internal state after the invocation of ocrypt.

Remark 3. Note that the authors of ocrypt claim side-channel resistance since
the indices of the array elements are chosen in a password-independent way. But,
as the password (beyond other inputs) is used to derive the key of the underlying
stream cipher, this assumption does not hold, i.e., the output of the stream cipher
depends on the password, rendering (theoretical) cache-timing attacks possible.

Parallel [25]. Parallel has not been designed to be a memory-demanding pass-
word scrambler. Instead, it is highly optimized to be comuted in parallel. First,
a value key is derived from the secret input pwd and the salt by

key = SHA-512(SHA-512(salt) || pwd).

The value key is used (without being changed) during the Clear work phase
of Parallel. Since this phase defines the main effort for computing the password
hash, it is highly likely that a WGC adversary can gain knowledge about key.
Then, the following WGC attack is possible: For each password candidate x and
the known value salt, compute y = SHA-512(SHA-512(salt) || x) and check
whether key = y. If so, mark x as a valid password candidate. Since the internal
state is only given by the subsequently updated output of SHA-512, GC attacks
are not applicable for Parallel.

PolyPassHash [5]. PolyPassHash denotes a threshold system with the goal
to protect an individual password (hash) until a certain number of correct pass-
words (and their corresponding hashes) are known. Thus, it aims at protecting
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an individual password hash within a file containing a lot of password hashes,
rendering PolyPassHash not to be a password scrambler itself. The protection
lies in the fact that one cannot easily verify a target hash without knowing a min-
imum number of hashes (this technical approach is referred to as PolyHashing).
In the PolyHashing construction, one maintains a (k, n)-threshold cryptosystem,
e.g., Shamir Secret Sharing. Each password hash h(pwdi) is blinded by a share
s(i) for 1 ≤ i ≤ k ≤ n. The value zi = h(pwdi) ⊕ s(i) is stored in a so-called
PolyHashing store at index i. The shares s(i) are not stored on disk. But, to be
efficient, a legal party, e.g., a server of a social networking system, has to store
at least k shares in the RAM to on-the-fly compare incoming requests on-the-fly.
Thus, this system only provides security against adversaries which are only able
to read the hard disk but not the volatile memory (RAM).

Since the secret (of the threshold cryptosystem) or at least the k shares have
to be in memory, GC attacks are possible by just reading the corresponding
memory. The password itself is only hashed and blinded by s(i). Thus, if an
adversary is able to read the shares or the secret from memory, it can easily
filter wrong password candidates, i.e., makeing PolyPassHash vulnerable against
WGC attacks.

POMELO [27]. POMELO contains three update functions F (S, i), G(S, i, j),
and H(S, i), where S denotes the internal state and i and j the indices at which
the state is accessed. Those functions update at most two state words per invo-
cation. The functions F and G provide deterministic random-memory accesses
(determined by the cost parameter t cost and m cost), whereas the function
H provides random-memory accesses determined by the password, rendering
POMELO at least partially vulnerable to cache-time attacks. Since the password
is used only to initialize the state, which itself is overwritten about 22·t cost + 2
times, POMELO provides resistance against GC and WGC attacks.

Pufferfish [13]. The main memory used within Pufferfish is given by a two-
dimensional array consisting of 25+m cost 512-bit values, which is regularly ac-
cessed during the password hash generation. The first steps of Pufferfish are
given by hashing the password. The result is then overwritten 25+m cost + 3
times, rendering WGC attacks not possible. The state word containing the hash
of the password (S[0][0]) is overwritten 2t cost times. Thus, there does not exist
a shortcut for an adversary, rendering GC attacks impossible.

Rig [6]. Rig maintains two arrays a (sequential access) and k (bit-reversal
access). Both arrays are iteratively overwritten r · n times, where r denotes the
round parameter and n the iteration parameter. Thus, rendering Rig resistant
against GC attacks. Note that within the setup phase, a value α is computed by

α = H1(x) with x = pwd || len(pwd) || . . . ,

Since the first α (which is directly derived from the password) is only used during
the initialization phase, WGC attacks are not applicable.

13



schvrch [26]. The password scrambler schvrch maintains an internal state of
256 · 64-bit words (2 kB), which is initialized with the password, salt and their
corresponding lengths, and the final output length. After this step, the password
can be overwritten in memory. This state is processed t cost times by a function
revolve(), which affects in each invocation all state words. Next, after applying a
function stir() (again, changing all state entries), it expands the state to m cost
times the state length. Each part (of size state length) is then processed to
update the internal state, producing the hash after each part was processed.
Thus, the state word initially containing the password is overwritten t cost ·
m cost times, rendering GC attacks impossible. Further, neither the password
nor a value directly derived from it is required during the invocation of schvrch,
which thwarts WGC attacks.

Tortuga [23]. GC and WGC attacks are not possible for Tortuga since the
password is absorbed to the underlying sponge structure, which is then processed
at least two times by the underlying keyed permutation (Turtle block cipher [4]),
and neither the password nor a value derived from it has to be in memory.

SkinnyCat and TwoCats [7]. SkinnyCat is a subset of the TwoCats scheme
optimized for implementation. Both algorithms maintain a 256-bit state state
and an array of 2m cost+8 32-bit values (mem). During the initialization, a value
PRK is computed as follows:

PRK = Hash(len(pwd), len(salt), . . . , pwd , salt).

The value PRK is used in the initialization phase and first overwritten in the
forelast step of SkinnyCat (when the function addIntoHash() is invoked). Thus,
an adversary that gains knowledge about the value PRK is able to launch the
following WGC attack: For each password candidates x and the known value
salt, compute PRK ′ = Hash(len(x), len(salt), . . . , x, salt) and check whether
PRK = PRK ′. If so, mark x as a valid password candidate.

Within TwoCats, the value PRK is overwritten at an early state of the hash
value generation. TwoCats maintains consists of a garlic application loop from
startMemCost = 0 to stopMemCost, where stopMemCost is a user-defined
value. In each iteration, the value PRK is overwritten, rendering WGC attacks
for TwoCats not possible.

Both SkinnyCat and TwoCats consist of two phases each. The first phase up-
dates the first half of the memory (early memory) mem[0, . . . ,memlen/(2 ·
blocklen)− 1], where the memory is accessed in a password-independent man-
ner. The second phase updates the second half of the memory mem[memlen/(2 ·
blocklen), . . . ,memlen/blocklen− 1], where the memory is accessed in a pass-
word-dependent manner. Thus, both schemes provide only partial resistance
against cache-timing attacks. For SkinnyCat, the early memory is never over-
written, rendering the following GC attack possible:
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1. Obtain mem[0, . . . ,memlen/(2 · blocklen)− 1] and PRK from memory
2. Create a state state′ and an array mem′ of the same size as state and mem,

respectively
3. Set fromAddr = slidingReverse(1) ·blocklen, prevAddr = 0, and toAddr =

blocklen
4. For each password candidate x:

(a) Compute PRK ′ as described using the password candidate x
(b) Initialize state′ and mem′ as prescribed using PRK ′

(c) Compute state′[0] = (state′[0] +mem′[1])⊕mem′[fromAddr ++]
(d) Compute state′[0] = ROTATE LEFT(state′[0], 8)
(e) Compute mem′[blocklen+ 1] = state′[0]
(f) Check whether mem′[blocklen+ 1] = mem[blocklen+ 1]
(g) If yes: mark x as a valid password candidate
(h) If no: go to Step 4.

Note that this attack does not work for TwoCats since an additional feature in
comparison to SkinnyCat is that the early memory is overwritten.

Yarn [16]. Yarn maintains two arrays state and memory, consisting of par and
2m cost 16-byte blocks, respectively. The array state is initialized using the salt.
Afterwards, state is processed using the BLAKE2b compression function with
the password pwd as message, resulting in an updated array state1. This array
has to be stored in memory since it is used as input to the final phse of Yarn. The
array state is expanded afterwards and further, it is used to initialize the array
memory. Next, memory is updated continuously. Both memory and state are
overwritten continuously. The array state1 is overwritten at the lastest in the
final phase of Yarn. Thus, GC attacks are not possible for Yarn. Nevertheless,
the array state1 is directly derived from pwd and stored until the final phase
occurs. Thus, the following WGC attack is possible:

1. Compute h ← Blake2b GenerateInitialState(outlen, salt, pers) as in
the first phase of Yarn

2. For each password candidate x:
(a) Compute h′ ← Blake2b ConsumeInput(h, x)
(b) Compute state1’← Truncate(h′, outlen) and check whether state1’ =

state1

yescrypt [20]. The yescrypt password scrambler maintains two lookup tables
V and V ROM , where V is located in the RAM and V ROM in the ROM. De-
pending on the flag YESCRYPT RW, the behaviour of the memory management in
RAM can be switched from “write once, read many” to “read-write”. Never-
theless, yescrypt does not completey overwrite the memory in RAM, rendering
similar GC attacks as for scrypt possible (see Section 2.2). But, such an attack
would require a higher effort in comparison the attack on scrypt since yescrypt
at least partially overwrites the RAM locations.
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When considering WGC attacks, one has to differ between two variants of
yescrypt depending whether it runs in the scrypt compatibility mode or not. In
scrypt compatibility mode, obviously the same WGC as for scrypt is applicable
(see Section 2.2). If not running in scrypt compatibility mode, yescrypt uses the
results of the initial call to PBKDF2 in the last step. Thus, the value which has
to remain in memory is given by HMAC-SHA-256(SHA-256(pwd), salt). Since
it is also possible to compute HMAC and SHA-256 efficiently, yescrypt does not
provide resistance against WGC attacks.

5 Conclusion

In this work we provided an overview of the first-round candidates of the Pass-
word Hashing Competition, which are not yet withdrawn. Further, we analyzed
each algorithm regarding to its vulnerability against garbage-collector and weak
garbage-collector attacks. Even if both attacks require access to the memory on
the target’s machine, they show a potential weakness, which should be taken
into consideration. As a results, we have shown GC attacks on Catena-BRG,
CENTRIFUGE, PolyPassHash, scrypt, SkinnyCat, and yescrypt. Additionally,
we have shown that WGC attacks are applicable to battcrypt, CENTRIFUGE,
EARWORM, Parallel, PolyPassHash, scrypt, SkinnyCat, Yarn, and yescrypt.
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Abstract. Password Hashing is the technique of performing one-way transformation of the password.
One of the requirements of password hashing algorithms is that it should be memory demanding to
provide defense against hardware attacks. In practice, most Cryptographic designs are implemented
inside a Cryptographic module, as suggested by NIST in a set of standards (FIPS 140). A cryptographic
module has a limited amount of memory and this makes it challenging to implement a password hashing
algorithm inside it.
In this work, we propose a novel approach to allow a limited memory cryptographic module to be used
in the implementation of a high memory password hashing algorithm. We also analyze all the entries of
the Password Hashing Competition (PHC) to evaluate the suitability of the submitted algorithms to be
implemented in a Cryptographic module. We show that all the submissions to the PHC can be securely
implemented in a crypto-module following our suggestion. To the best of our knowledge, this is the first
attempt in the direction of secure implementation of password hashing algorithms.
Keywords: Password, Password hashing, Cryptographic module, Cryptographic module based pass-
word hashing.

1 Introduction

Passwords are the most common technique for user authentication currently. Specifically, a pass-
word is a secret word or string of characters which is used by a principal to prove her identity as
an authentic user to gain access to a resource. In order to ensure the confidentiality of the secret
password, only its one-way transformation is stored and not the password itself. The technique used
for this one-way transformation is called ‘Password Hashing’. The password hashing transforms the
password into another string, called the ‘hashed’ password which is usually stored in the database of
the server (or authenticator of the system). Following Moore’s Law [23], the hardware is becoming
more and more powerful with time at a constant cost factor. Multi-core GPUs and ASIC modules are
commonly used to implement brute force attack over possible password choices. These hardware per-
form highly efficiently when the password hashing computation requires negligible storage. However,
these attacks are comparatively inefficient when the computation requires relatively large amount of
memory. Therefore, consumption of comparatively huge memory by the password hashing design is
a design goal of such schemes to provide defense against hardware threats.

The most common threat of password hashing is that the server database which contains the pass-
word hashes is vulnerable to adversaries. Since the user chosen passwords usually have low entropy, it
is quite feasible for the adversary to guess the passwords and to compute the corresponding password
hashes. These computed hashes are then matched with the compromised database to retrieve the
actual password. This is termed the “offline attack” against the password hashing scheme. There can
be “online attacks” as well in which the attacker actively measures information leakage at the time
the password hash algorithm is performing its computations. While evaluating the security, we can
not even trust the server. The natural question in this case is if it is feasible to provide security even
when the server is compromised. It is challenging to provide a system which provides the same level of
security as could be achieved when the server was secure, however, it is indeed possible to increase the
level of difficulty of the adversary to reveal the sensitive data. With the goal of restricting the active
adversary as well as the off-line attacker (who compromises password hash file to reveal passwords),
the approach taken in this paper is the use of a cryptographic module for the password hash com-
putation. In a series of standards (FIPS 140), NIST already recommends the use of a cryptographic
module for stream ciphers, block ciphers, authenticated encryption, key generation algorithms etc.



Password hashing algorithms are a natural candidate for the use of a cryptographic module to im-
plement them and we feel that these modules will be required, at least for some use cases, in the
future.

A cryptographic module is a device (plus the requisite software to make it work) with a secret
key stored inside it and it is assumed that the device itself is secure against all types of adversaries.
Cryptographic modules are usually secured physically and the attacker is not allowed access to the
input of the device. The only part where the attacker can mount an attack is the output of the
module. In general, it is hard to keep a big and bulky device from attackers and hence such a device
usually contains a small amount of memory. This memory could range from few bytes for tiny devices
to few kilobytes.

As mentioned above, a major limitation of a cryptographic module is that it has a limited memory.
However, by design, all password hashing schemes require comparatively large memory. Therefore it is
not always feasible to implement a complete password hash computation on a cryptographic module.
Some schemes can still be easily fitted into a small memory and yet require large memory while
computing the password hash. On the other hand, some other schemes do not directly fit inside a
limited memory device. These latter class of schemes need tweaks in them, which may cause the
security proof of the original scheme to fail. In this paper we consider possible approaches to provide
security of password hashing schemes using cryptographic module. We also analyze all password
hashing designs in the ongoing Password Hashing Competition (PHC) with respect to their suitability
to be implemented inside a small memory crypto-device.

The rest of the document is organized as follows. In section 2 we explain the term cryptographic
module and its importance. This is followed by the general approach towards the design of crypto-
graphic module based password hashing scheme in section 3. The security analysis of this approach
is provided in sections 4. Subsequently, the analysis of the submitted PHC designs with respect to
cryptographic module based approach is included in sections 5. Finally, we conclude the paper in
section 6.

2 Cryptographic Module

The Federal Information Processing Standards (FIPS) specify requirements for cryptographic modules
for various security algorithms in FIPS 140 series. The standard FIPS 140-2 [1] defines a cryptographic
module as: “the set of hardware, software, firmware, or some combination thereof that implements
cryptographic logic or processes, including cryptographic algorithms, and is contained within the
cryptographic boundary of the module”.

The standard [1] specifies the security requirements satisfied by a cryptographic module when
implemented within a security system protecting sensitive but unclassified information. It provides
four increasing, qualitative levels of security that are intended to cover the wide range of potential
applications and environments in which cryptographic modules may be employed. The available
cryptographic services for a cryptographic module are based on many factors that are specific to the
application and the environment. Cryptographic modules should use cryptographic algorithms that
have been approved for protecting Federal government sensitive information. The four security levels
as defined in [1] are as follows.

1. Security Level 1: It provides the lowest level of security by supporting basic security require-
ments specified for a cryptographic module (e.g., use of at least one approved algorithm or ap-
proved security function). This level does not require any specific physical security mechanisms
that are beyond the basic requirement for production-grade components.

2. Security Level 2: This level enhances the physical security mechanisms of a Security Level 1.
This can be provided by adding the requirement for tamper-evidence, which includes the use of
tamper-evident coatings or seals or for pick-resistant locks on removable covers or doors of the
module.



3. Security Level 3: This level enhances the physical security mechanisms required at Security
Level 2. Apart from the requirement of tamper-evident, this level attempts to prevent the intruder
from gaining access to critical security parameters held within the cryptographic module. This
level is intended to provide physical security requirements with high probability of detection and
response to attempts at physical access, use or modification of the cryptographic module .

4. Security Level 4: This level provides the highest level of security defined in the standard. At
this level, the physical security mechanisms provide a complete envelope of protection around
the cryptographic module. The implemented mechanisms intent of detecting and responding to
all unauthorized attempts at physical access. There is a very high probability of detection of
penetration of the cryptographic module from any direction and the detection results in the
immediate ‘zeroization’ [1] of all plaintext critical security parameters. The cryptographic modules
of this level are useful for operation in physically unprotected environments.

The Cryptographic Module Validation Program of the NIST actively checks the accuracy of the
applied algorithms, therefore we get the assurance that the claimed security is indeed provided and
that the cryptographic module can protect the sensitive information and provide the required security.

With the increasing need of securing access to resources, and to protect the user behavior, cryp-
tographic modules are becoming more and more prevalent with time.

3 General approach for cryptographic module based password hashing scheme

From the design restriction of cryptographic module, it is known that we can not implement an al-
gorithm which requires comparatively huge memory for its implementation. Therefore it is ever chal-
lenging to provide a complete cryptographic module based approach for password hashing schemes.
Considering this challenge we come to the conclusion that the only possibility is to protect the pass-
word. The entropy of the password is commonly weak as we can not force the user of the password
to choose a strong one. Therefore another requirement is to increase the entropy. This is possible if
we use a large secret key (at least 128 bit) with the password. The responsibility of the cryptographic
module will be to secure the key and to provide (typically) the server, the one-way transformation of
this password operated with key (it can take other parameters as well depending on the algorithm).
Then the server can follow further computations of the password hashing algorithm that can be suit-
ably applied with this approach to compute the password hash. The overview of the above procedure
is shown in Fig. 1. The steps of this general procedure is specified in the following protocol.

Secret key

Cryptographic Module

Password
Hashing
Algorithm

one-way
transformation

OUTPUTPASSWORD

Password
Hash

(Optional)Parameters

Fig. 1: Cryptographic module used in password hashing

The Protocol for the general cryptographic module based password hashing scheme

1. Password is the input to the cryptographic module (it can take any number of other parameters
depending on the password hashing algorithm).



2. Cryptographic module performs a one-way transformation over the password and the secret key
(and other parameters if applicable); this output is then provided to the server.

3. Server performs the remaining steps of the password hashing algorithm and produces the final
password hash.

4 Security analysis

The security of the overall design depends on the security provided by the cryptographic module to
protect the password and the security of the password hashing algorithm. For the resistance from the
vulnerability of the adversary we can assume that guessing a large random key (at least 128 bit) is
quite challenging. Therefore predicting the output of the cryptographic module will be difficult.

By using the random secret key of the cryptographic module we increase the entropy of the
password and also restrict the adversary if it tries to compromise the data during execution of the
password hashing algorithm. Therefore this design approach for password hashing provides enhanced
security if the underlying password hashing design is secure.

We summarize the overall requirement for the secure implementation of the proposed crypto-
graphic module based approach to claim the security of the system as follows:

– The input password of the cryptographic module: The input password of the cryptographic
module should be secure. One way to achieve this security is by encrypting the password. This
is required to ensure that the password will be secure even if intercepted by the adversary before
the computation. In this case we assume that a standard encryption algorithm is used for the
encryption of the password.

– The internal operation of the cryptographic module: The cryptographic module should
perform the one-way transformation operating the secret key with the decrypted password (and
with optional parameters if available). The security provided by the cryptographic module as
explained in section 2 ensures the security of the internal operation.

– The input to the password hashing algorithm: The output of the cryptographic module
should be the input to the password hashing algorithm (with other parameters depending on the
algorithm used). The level of difficulty to guess this output depends on the algorithm implemented
by the cryptographic module and the strength of the secret key. Therefore we can claim that it will
be difficult to guess the output. Hence use of a low entropy password with a secret key to perform
one-way transformation will definitely provide better security than the plain-text password.

– The security of the password hashing algorithm: The password hashing algorithm should
fulfill the requirements as mentioned in [2] and based on these criteria we can ensure the level of
security provided by the scheme.

From the above explanation, we can state that if a password hashing technique follows the above
mentioned approach then the cryptographic module based system will always provide better security
than the usual implementation of a password hashing algorithm (without using a crypto-module).

5 Analysis of submitted PHC designs with respect to cryptographic module
based approach

In this section we analyze the design of all the PHC submissions [2] to verify whether use of crypto-
graphic module is possible without significant modification of the designs. We try to follow similar
approach to provide solutions for all the designs, even though other approaches can also be suitable.
We provide the graphical view of the designs and highlight (in red) the area that can be implemented
in a cryptographic module. We include the security analysis of cryptographic module implementation
for few of the designs (at least one from each category as discussed in section 5.1). It is easy to extend
this approach to the remaining designs for which the proof of security is not provided/ commented
upon.



– AntCrypt [9] The State array of 2m_cost+8 bytes of AntCrypt is initialized with salt and pass-
word and updated throughout the execution of the algorithm as shown in Fig. 2(a). To implement
cryptographic module based approach, we can replace the values (salt and password) highlighted
in red in Fig. 2 by the output of the cryptographic module which appends the secret key and
performs the one-way transformation over the concatenated values. This little modification does
not affect the remaining design of AntCrypt as explained in [9].
Security analysis: The security of the design as claimed by the author in [9] depends on the
underlying hash function. The design writes the password to the state in the beginning and im-
mediately overwrites it by the output of the hash function. Following our proposal as shown in
Fig. 2(b), the initial salt and password is overwritten with pseudo-random output of the cryp-
tographic module. Remaining design uses this pseudo-random value in place of the (usual low
entropy) password. Hence suggested modification does not affect the security of the overall de-
sign, even replacing the plain-text password with pseudo-random value enhances the security from
information leakage.

Fig. 2: (a)Overview of the design AntCrypt (b) The cryptographic module implementation

– ARGON [5] The algorithm implements four phases. The first ‘Padding phase’ takes input pass-
word, salt, secret value, other parameters and use zero padding to obtain specified length (32(t-
4)bytes, see [5] for more detail) and creates block of data. ‘Initial round’ applies AES to each
block. In the next ‘Main round’ the transformations ShuffleSlices and SubGroups are applied
alternatively L times. At the end ‘Finalization round’ generates the output tag. As mentioned,
the padding phase of ARGON is initialized with password, salt and secret key. We suggest to
replace this secret key with the secret key of the cryptographic module and to apply the one-way
transformation on the values highlighted in red to create the ‘Input’ as shown in Fig. 3(a). Argon
uses the only cryptographic primitive AES. Therefore use of other primitive will modify the design
requirement. In that case we suggest to use HMAC where the key will be the secret key of the
module and hash function can be any block cipher (AES) based hash function. This modification
does not affect the remaining design of ARGON which is explained in [5].
Security analysis: As per the suggestion, the use of HMAC with AES based hash function and
the secret key to hash the value inside the cryptographic module provide better security from
information leakage than using the parameters in the plain-text form. This modification does not
affect the remaining implementation of the design and the overall claimed security of Argon.
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Replace the value with the output from the cryptographic module
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Hash(Password, Salt, Secret)

Cryptographic Module

Output
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Fig. 3: (a)Overview of the design Argon taken from [5] , (b) The cryptographic module implementation

– battcrypt [24] The algorithm initializes the value key by taking hash of salt concatenated with
password. We can use cryptographic module to initialize this key by performing one-way trans-
formation over the value appended with the secret key as shown in Fig. 4, highlighted in red. This
modification does not affect the remaining design of battcrypt as explained in [24].

(a)

||H(31||key)

m[0] m[1] · · ·

1. key= H(H(Salt)||password)

2. key used to initialize ’Blowfish’

data = H(0||key)||H(1||key)|| · · ·
Initialize array of size memsize by
applying ’Blowfish ’ on data s.t.
data=blowfish(data)
mem[i]=data

m[msize− 1]

Update each m[i], t-cost time us-
ing ’Blowfish’, but memory index
is obtained from data which is
password dependent.

m[msize− 1]′m[1]′m[0]′ · · ·

t-cost
time

Output= truncate(key,outlen)

key= H(H(data||key))
key= truncate(key,outlen)‖ zeros(64 - outlen)

data=data ⊕ m[i]

Replace the value with the output from the cryptographic module

Hash(Salt ‖ Password ‖ Secret key)

Cryptographic Module

Output

(b)

Fig. 4: (a)Overview of the design battcrypt (b) The cryptographic module implementation

Security analysis: At the first step of the algorithm battcrypt, it takes hash of the salt and
then hash of the resulting value concatenated with password. We suggest to replace the com-
putation with a single hash as shown in Fig. 4(b). The one-wayness is preserved by this and
memory-hardness and other properties of the whole design remains the same. Hence the sug-
gested modification does not affect the security.

– Catena [11] The algorithm Catena initializes the value x by performing hash on the concatenation
of values tweak t, salt and password respectively. This value x is used to initialize the array of
2g0 elements and g0 increases by 1 at each following iterations as shown in Fig. 5(a). We can use
cryptographic module to initialize this x as shown in Fig. 5(b). This modification does not affect
the remaining design of Catena as explained in [11].



x = H(t||pwd||salt)

2g0 memory locations

· · ·

· · ·
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· · ·
x

x
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Replace the value x with the output from cryptographic module
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i = g

Hash(t‖pwd‖salt‖secret)

Output

Cryptographic Module

(a)

(b)

Output
x=truncate(x,m)

Fig. 5: (a)Overview of the design Catena (b) The cryptographic module implementation

Security analysis: Like the previous design we added one more parameter, secret key for the
initial hash computation without making difference to the remaining design as shown in Fig 5.
Therefore this modification does not affect the security claimed for the remaining design.

– CENTRIFUGE [3] The algorithm initializes the value seed by taking hash of salt and password
and the length parameters as shown in Fig. 6. We can replace this seed value with the output of
the cryptographic module which highlighted in red in Fig. 6. This modification does not affect
the remaining design of CENTRIFUGE as explained in [3].

0-15
byte 32-63

byte16-31
byte

AES-256, IV AES-256, key
To initialize

output buffer

seed=H(H(pwd‖len(pwd))‖H( salt‖len(salt)))

Cryptographic Module

Output

H(pwd‖len(pwd)‖secret key)‖H( salt‖len(salt)))
OR

H(pwd‖len(pwd)‖secret key‖ salt‖len(salt))

S-Box
8× 8

array of
256 bytes

Initialized with values 0-255
and then shuffled using pseu-
dorandom buffer of 256 byte

output buffer gener-
ated from S

Encrypted with AES
generate memory array (M)repeated

p-mem times

add values to
update values

of output buffer

Output

encrypt with AES

(a)

(b)

Fig. 6: (a)Overview of the design CENTRIFUGE (b) The cryptographic module implementation

Security analysis: Like the previous constructions CENTRIFUGE performs hash on the pass-
word and consumes the result for remaining phases, therefore suggested method does not affect
the claimed security.

– EARWORM [12] The password and salt is required several times during the whole computation
of EARWORM as shown in Fig 7(a). Apart from that the algorithm needs a secret value other
than the password. This secret value is used to generate a huge array ARENA. Therefore this
computation can not be performed in cryptographic module. To provide the security based on
cryptographic module we can compute the hash (or HMAC as used in the algorithm) of the



password with the secret value inside the module and whenever password is required we can use
this hash value. Using the hash will be a good alternative from storing the password and reusing
it. Therefore EARWORM needs little modification of the design [12].

3. procedure WORKUNIT( parameters)

return EWPRF(scratchpad tmpbuf, 02‖salt, outlen)

generates index
of array ARENA

index a and
index b

generates

scratchpad

scratchpad ← AESRound(ARENA[index b][l][w], scratchpad[w])

scratchpad ← AESRound(ARENA[index a][l][w], scratchpad[w])update
L×W times

index b← scratchpad

update
D/2 times

scratchpad tmpbuf← scratchpad
update
W times

2. out ⊕ WORKUNIT(parameters )

update
t cost
times

1. The array ARENA= 2mcost × L×W -128-bit blocks used as AES round keys.
ARENA generated using a secret value.

a. index tmpbuf← EWPRF(password, 00‖salt, 32) b. scratchpad tmpbuf← EWPRF(password, 01‖salt, 16W)

return ( out ⊕ WORKUNIT( parameters))

Hash(Password‖Secret key)

Cryptographic Module

Output

(a)

Note: Replace the value pwd everywhere with the output from the cryptographic module

(b)

Fig. 7: (a)Overview of the design EARWORM (b) The cryptographic module implementation

Fig. 8: (a)Overview of the design Gambit taken from [4], (b) The cryptographic module implementation

– Gambit [20] The algorithm is based on duplex-sponge construction and initial input of the
sponge is the value salt concatenated with password. This initial computation with the value



password can be implemented in the cryptographic module as shown in Fig. 8 highlighted with
red. This suggestion is due to preserve the sponge based approach of Gambit. For this approach
we assume that the state size of the sponge is small enough to fit all required computations inside
the low memory cryptographic module. This modification does not affect the remaining design of
Gambit as explained in [20].

– Lanarea DF [17] The algorithm has three phases, the setup phase followed by the core phase
and the key extraction phase. The setup phase initializes a matrix of m_cost×16×16 byte which
is updated t_cost×m_cost× 16 times at the core phase. The core phase processes the password
and salt through a pseudorandom function and generates an array (h0, · · · , h31) which determines
the access pattern of the matrix. This array generation from password can be replaced with the
output of the cryptographic module as shown in the Fig. 9 where F is the pseudorandom function
used in the algorithm. Specifically the algorithm uses BLAKE2b and pseudo-random function for
its implementation. As suggested before if the pseudo-random function is a block cipher then we
suggest to use HMAC inside the cryptographic module to generate the hash, where key will be the
secret key and hash will be the block cipher based hash. Therefore use of cryptographic module
does not need modification in the remaining design as explained in [17].

1. Setup phase
a. (i0 · · · i127)← (p0 · · · p127), first 128 byte of π
b. (i128 · · · i255)← (e0 · · · e127), first 128 byte of e
c. (i256 · · · i287)← 0

(h0 · · ·h31)← F (i0 · · · i287)
fx,y ← hy where fx,y repre-
sents the entries of the matrix
and F is pseudorandom func-
tion

(m cost ×16)× 16

2. Core Phase
a. (h0 · · ·h31)← F (P0 · · ·Pa1, S0 · · ·Sb1), F processes password P and salt S
b. overwrites the matrix t cost×m cost×16 times
c. Process L times the following steps (L is output length)
c.1. (h0 · · ·h31)← F (s0 · · · sa1, h0 · · ·h31)
c.2.(kx×32 · · · k(x×32)+31)← (h0 · · ·h31)

F(Password, Salt, secret key)

Cryptographic Module

Output

Replace the compu-
tation with the out-
put of the crypto-
graphic module

(a)

(b)

Fig. 9: (a)Overview of the design Lanarea DF (b) The cryptographic module implementation
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Output

(a)

(b)

H.absorb(pad(salt‖password‖secret key))
M [0]||M [1] = H : squeeze(2C, b)

Fig. 10: (a)Overview of the design Lyra2 (b) The cryptographic module implementation



– Lyra2 [14] This is a duplex sponge based algorithm which initializes a matrix at the setup phase.
The initial computation of this phase performs the sponge absorb with input salt and password.
Like the Gambit design, we suggest to implement this initial computation with password to be
implemented inside the cryptographic module as shown in Fig. 10(b), highlighted in red. This
modification does not affect the remaining design of Lyra2 as explained in [14].

– Makwa [21] The algorithm Makwa is not memory demanding therefore it is possible to imple-
ment the whole design inside the cryptographic module. Even if we implement the whole design
the required modification is to make the pre-hashing computation compulsory for the password
(which is optional for the design) as shown in Fig. 11 highlighted in red. In case of complete
implementation in cryptographic module, the output will be the output of the algorithm Makwa.
Therefore this design as explained in [21] can easily support cryptographic module based approach.

Fig. 11: (a)Overview of the design Makwa taken from [21], (b) The cryptographic module implementation
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Fig. 12: (a)Overview of the design MCS_PHS where Hk denotes output length of hash is k byte (b) The cryptographic
module implementation



– MCS_PHS [16] The algorithm implements iterative hash. It initializes the value T0 by taking
concatenation of password, password length, salt, salt length and other parameters as shown in
Fig. 12(a). This T0 is proposed to be a large value but it is the input of a hash function, therefore
we can use cryptographic module to calculate T0 and T1. In this case we assume T0 is small enough
to fit in the low memory cryptographic module. The suggested implementation does not affect
the remaining design of MCS_PHS as explained in [16].

– Omega Crypt (ocrypt) [10] The algorithm initializes the value Q using password and salt as
shown in Fig. 13(a). The value Q is of length 771 byte. We can implement the initial three steps
in cryptographic module as shown in Fig. 13 highlighted in red. Therefore cryptographic module
based design does not require modification in the design of ocrypt as explained in [10]. In this
case it may happen that size of Q is large with respect to the low memory cryptographic module,
but the value 771 byte is not very large to resolve.

Step3. Ck(256bit)← H(Q),

Step4. Initialize ChaCha8 with key Ck and IV zero

Step5. Initialize array A of size 217+m cost64-bit words and A← Q

Step6. Array A processed 217+t cost times updating one word at each step.

Step7. output = H(A)

Step2.Q(771byte) = Password ‖ |Password| ‖ salt ‖ |salt| ‖ key ‖ |key| ‖ output− length ‖ t cost ‖ m cost

Step1.Password ‖ 0∗, Salt‖ 0∗, Key ‖ 0∗, each padded to a length of 255byte

Replace the value Ck with the output of the cryptographic module

3. Ck(256bit)← H(Q),

2.Q = Password ‖ |Password| ‖ secretkey ‖ salt ‖ |salt| ‖ key ‖ |key| ‖ output− length ‖ t cost ‖ m cost

Cryptographic Module

Output Ck

1.Password ‖ 0∗, Salt‖ 0∗, Key ‖ 0∗, each padded to a length of 255byte

(a)

(b)

Fig. 13: (a)Overview of the design ocrypt (b) The cryptographic module implementation

key=Hash(salt ‖ password‖ secret key)

Cryptographic Module

Output key

Step1. key = SHA512(SHA512(salt) ‖ password)

Step2. work = work ⊕ SHA512(BIG ENDIAN 64(i) ‖ BIG ENDIAN 64(j) ‖ key)t cost parallel
times

Step3. key = SHA512(SHA512(work ‖ key))
key = truncate(key, outlen) ‖ zeros(64 - outlen)

t cost sequential
times

Step5. return truncate(key, outlen)

Replace the value of key with the output of cryptographic module

(a)

(b)

Fig. 14: (a)Overview of the design Parallel (b) The cryptographic module implementation

– Parallel [25] The algorithm initializes the value ‘key’ performing hash over password and salt
as shown in Fig. 14. The overall design is not memory demanding. Therefore it is possible to



implement the whole algorithm in cryptographic module. We have shown in the diagram the
implementation of the first hash computation in cryptographic module. Therefore cryptographic
module based design does not require any modification in the design of Parallel as explained
in [25].

– PolyPassHash [6] The algorithm provides a threshold cryptosystem based technique to protect
password hashes where the password hash can be verified only if a threshold of passwords are
known. It basically aims to prevent an attacker from efficiently cracking individual passwords
from a stolen password database. Therefore in this work we are not providing the cryptographic
module based approach for PolyPassHash [6].

– POMELO [27] The algorithm POMELO uses three different state updation functions that are
used to update the state array which is first initialized to zero and then filled with password and
salt values as shown in Fig. 15(a). To provide cryptographic module based approach we suggest
to replace the password and salt values with the output of the cryptographic module as shown
in Fig. 15(b) highlighted in red. This suggested modification may change the design requirement
by the use of an additional cryptographic primitive which is not preferred. Therefore in this case
we should be specific before selection of the function that can be implemented without affecting
the overall design requirements. The suggested approach does not affect the remaining design of
POMELO as explained in [27].
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Fig. 15: (a)Overview of the design POMELO (b) The cryptographic module implementation
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Fig. 16: (a)Overview of the design Pufferfish (b) The cryptographic module implementation



– Pufferfish [13] The algorithm initializes the S-box of size 2m_cost+5512 bit processing the salt
and the password as shown in Fig. 16(a). The value password is again used to generate the value
key_hash. Therefore we suggest to implement the hash of the password to perform inside the
cryptographic module and to replace the value password with this hashed value for the computa-
tion of the steps 2 and 3 as shown in Fig. 16. Therefore cryptographic module based design does
not require modification in the design of Pufferfish as explained in [13].

– Rig [7] The initialization phase of the algorithm Rig computes the hash of the value x derived
from password, salt and other parameters and produce the hash output α as shown in Fig. 17(a).
We suggest to implement this initialization phase in cryptographic module and this approach does
not require modification in the design of Rig as explained in [7].

Input x = pwd ‖ binary64(pwdl) ‖ s ‖ binary64(sl) ‖ binary64(n) ‖ binary64(l)
s = Salt, mc=memory count
n = no. of iterations

x
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(mc, n)

h∗

(mc, n)

s ‖ binary64(2mc)

H1

H2

H3

α

Replace the value α with the output of the cryptographic module

x = pwd ‖ binary64(pwdl) ‖ secretkey ‖ s ‖ binary64(sl) ‖ binary64(n) ‖ binary64(l)
α = Hash(x)

Cryptographic Module

Output α

(a)

(b)

Fig. 17: (a)Overview of the design Rig (b) The cryptographic module implementation
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– Schvrch [26] The algorithm initializes the state array of 2 KB with zero and then fill the state
with password, salt and their length parameters and output length. The processing of the steps
depends on the values of the m_cost and t_cost. If these values are greater than zero then the
state array is updated t_cost time with function revolve otherwise update with function evolve.
The whole procedure is shown in Fig. 18(a). For the cryptographic module based approach we
suggest the state array to be initialized with the output of the cryptographic module instead
of the plain-text values. In that case as suggested in [26] the array can be filled with other
parameters other than the length of password but the resulting value should be small enough to
be accommodated inside the low memory cryptographic module. The algorithm Schvrch defines
different functions inside the design. Therefore it is required to put extra attention for the selection
of the function inside the cryptographic module so that the suggested approach would not modify
the requirement of the design. Apart from that the cryptographic module based approach does
not affect the remaining design as explained in [26].

– Tortuga [22] The algorithm is based on Turtle design and specifically the permutation used in
this construction is the Turtle algorithm. The steps of the algorithm are enumerated in Fig. 19(a).
It uses password at step 2 and reuses at step 3 where both computations use different cryptographic
primitives, Turtle cipher and Sponge. To provide the cryptographic module based approach we
suggest to compute the hash of the password with the secret key in the module and to use the
hashed value where ever password is required. This approach will be secure than using plain-text
password repeatedly. Therefore our suggested cryptographic module based design does not require
major modification in the design of Tortuga as explained in [22].
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Fig. 19: (a)Overview of the design Tortuga (b) The cryptographic module implementation
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Fig. 20: (a)Overview of the design TwoCats (b) The cryptographic module implementation



– TwoCats [8] The PHC [2] submission TwoCats [8] include two variants, TwoCats and Skinny-
Cat. In this section we provide the overview of the common part of both these variants as our
suggestion can easily satisfy both. The algorithm first computes a pseudo-random key PRK from
password,salt and other parameters. It initializes a state array of size 256 bits and another ar-
ray mem of length 2m_cost+8. It uses a two-loop architecture, where the first loop is password
independent and update first half of the mem array, and the second loop is password dependent
which updates second half of the mem array. Both the loops update the value of the state array
performing hash. Fig 20 shows that we can implement the generation of PRK inside the crypto-
graphic module. Therefore cryptographic module based design does not require modification in
the design of TwoCats as explained in [8].

– Yarn [15] The algorithm Yarn has five phases and the first phase of the algorithm uses password
and generates the final state applying Blake2b as shown in Fig. 21(a). The second phase processes
the resulting state and expands it to produce pseudo-random data for the subsequent phases. The
third phase produces a large array initialized with pseudo-random data. The fourth phase calls
AES primitive multiple times and the fifth phase produces the output. Therefore the first phase
can be implemented in cryptographic module with a secret key and this approach does not require
modification in the design of Yarn [15].

Fig. 21: (a)Overview of the first phase design Yarn taken from [15], (b) The cryptographic module implementation

Security analysis: The security of the algorithm is based on the security of BLAKE2b function
and the AES function. At the first phase of the algorithm, it performs repeated hash(Blake2b) on
the input password. We suggest to implement this phase inside cryptographic module which ap-
pends secret key with the password and then performs the usual computation. This modification
enhances the security of password leakage and also preserves the one-wayness. The memory-
hardness and other properties of the whole design remain the same. Hence the suggested modifi-
cation enhance the overall security of the algorithm.
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Fig. 22: (a)Overview of the design yescrypt (b) The cryptographic module implementation



– yescrypt [19] Yescrypt is based on the design Scrypt [18] and the significant difference is that
the design of RoMix in Yescrypt supports an optional pre-filled read-only lookup table (VROM,
implemented in ROM). If VROM is accessed then the YESCRYPT_RW flag is set, and the other
random-read lookup table (V, located in RAM) is updated partially. Password is the input to the
initial call of PBKDF2 and last call of PBKDF2 uses the results of this initial call. Therefore it
is required to store the password dependent data in memory. We can implement the initial call
to PBKDF2 in cryptographic module appending the secret key with the password as shown in
Fig. 22 to enhance the security. Therefore cryptographic module based design does not require
modification in the design of Yescrypt as explained in [19].

5.1 Categorization of the schemes

From the analysis of the submitted PHC designs in the last section with respect to their suitability
for a crypto-module based implementation, we categorize the approaches taken as follows:

– Category I: Use of the secret key with password (and other parameters, if applicable) for the
initial hash computation inside the cryptographic module.

– Category II: Replacement of the input plain-text password by the hash of the password with
the secret key (and other parameters depending on the algorithm) which does not affect the
design requirements (in terms of the use of the cryptographic primitive inside the cryptographic
primitive).

– Category III: Replacement of the initial plain-text password input by the hash of the password
with the secret key which may affect the design requirement (in terms of the use of cryptographic
primitive inside the cryptographic module).

– Category IV: Use of cryptographic module for initial multiple line execution (e.g., repeated use
of the cryptographic primitive) of the algorithm.

Following Table 1, lists the algorithms based on the above defined categories:

Table 1: Categorization of the algorithms based on the taken approaches for cryptographic module implementation.

Category I Category II Category III Category IV
battcrypt AntCrypt Argon Yarn
Catena EARWORM Lanarea DF
CENTRIFUGE MCS_PHS† POMELO
Gambit† Omega Crypt† Schvrch †
Lyra2† Pufferfish
Makwa Tortuga
Parallel
Rig
TwoCats
yescrypt

†Assuming that the memory requirement for the suggested implementations are small enough to fit inside a low
memory crypto-module.

6 Conclusions

In this paper, we provide a novel approach to enhance the security of the implementation of password
hashing algorithms using a cryptographic module. We graphically explained how the designs of the
PHC candidates fit in this architecture. Considering the emerging threats in the landscape of Crypto-
graphic implementations, we believe our analysis will have significant impact towards the security of
password hashing algorithms. We hope that secure implementations of password hashing algorithm
would consider this cryptographic module based approach to enhance their security in appropriate
use cases.
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Abstract. Passwords are still by far the most widely used form of user
authentication, for applications ranging from online banking or corporate
network access to storage encryption. Password guessing thus poses a
serious threat for a multitude of applications. Modern password hashes
are speci�cally designed to slow down guessing attacks. However, having
exact measures for the rate of password guessing against determined
attackers is non-trivial but important for evaluating the security for many
systems. Moreover, such information may be valuable for designing new
password hashes, such as in the ongoing password hashing competition
(PHC).

In this work, we investigate two popular password hashes, bcrypt and
scrypt, with respect to implementations on non-standard computing plat-
forms. Both functions were speci�cally designed to only allow slow-rate
password derivation and, thus, guessing rates. We develop a methodology
for fairly comparing di�erent implementations of password hashes, and
apply this methodology to our own implementation of scrypt on GPUs,
as well as existing implementations of bcrypt and scrypt on GPUs and
FPGAs.

Keywords: Password hashing, e�cient implementations, bcrypt, scrypt,
FPGAs, GPUs

1 Introduction

Passwords are still the most widely used form of user authentication on the
Internet (and beyond), despite substantial e�ort to replace them. Thus, research
to improve their security is necessary. One potential risk with authentication in
general is that authentication data has to be stored on the login server, in a form
that enables the login server to test for correctness of the provided credentials.
The database of stored credentials is a high-pro�le target for an attacker, which
is illustrated in recent years by a substantial number of databases leaked by
attacks. Even worse, for storage encryption the encryption key, protected by the
password using a KDF, is stored on the same machine as the encrypted data, and
thus an even easier target. A leak of the password database is a major concern
not only because the credentials for that particular site leak, and resetting all
passwords for all users of a site in a short time span requires a signi�cant e�ort.
In addition, password re-use, i.e., using one password for more than one site, is



a frequent phenomenon to reduce the cognitive load of a user, causes a single
leaked password to compromise a larger number of accounts.

In order to mitigate the adverse e�ects of password leaks, passwords are
typically not stored in plain, but in hashed (and possibly salted) form, i.e., one
stores

(s, h) = (salt ,Hash(pwd , salt))

for a randomly chosen value salt . Such a hashed password can easily be checked
by recomputing the hash and comparing it to the stored value h. While a se-
cure hash function cannot be inverted, i.e., directly computing the password pwd
from (s, h) is infeasible in general, the mere fact that the server can verify the
password gives rise to a so-called o�ine guessing attack. Here, an attacker pro-
duces a large number of password candidates pwd1, pwd2, pwd3, . . ., and veri�es
each candidate as described before. User-chosen passwords are well-known to
be predictable on average [19, 37], so such an attack is likely to reveal a large
fraction of the stored passwords, unless special precautions are taken.

A widely used method to defend against o�ine guessing attacks is using hash
functions that are slow to evaluate. While cryptographic hash functions are de-
signed to be fast to compute, password hashes are deliberately slow, often using
iterated constructions to slow down an attacker. This, of course, also slows down
the legitimate server, but the attacker is typically more substantially a�ected
by the slow-down as he needs to evaluate the hash functions millions or bil-
lions times. Some well-known examples for password hashes are the classical de-
scrypt [24], which dates back to the 1970s, md5crypt, sha256crypt/sha512crypt,
PBKDF2 [18], bcrypt [31], and scrypt [30]. There is ongoing e�ort to design
stronger password hashes, e.g., the password hashing competition [29].

Currently lacking is a thorough understanding of the resistance of those pass-
word hashes against attacks using non-standard computing devices, in particu-
lar FPGAs and GPUs. Understanding these issues is, however, crucial to decide
which password hash should be used, and at what hardness settings.

In this work, we make several contributions towards this goal: First, we pro-
vide an implementation of scrypt on GPUs that supports arbitrary parameters,
which is substantially faster than existing implementations; second, we determine
�equivalent� parameter sets for password hashes to allow for a fair comparison;
third, based on the equivalent parameter sets, existing implementations, and our
implementation of scrypt, we draw a fair comparison between bcrypt and scrypt.
In summary, we �nd that for fast parameters both bcrypt and scrypt o�er about
the same level of security, while for slow parameters scrypt o�ers more security,
at the cost of increased memory consumption.

1.1 Related Work

Password security. Guessing attacks against passwords have a long history [2, 39,
22]. More recently, probabilistic context-free grammars [37] as well as Markov
models [25, 5] have been used with great success for password guessing. Most



password cracking tools implement some form of mangling rules, some also sup-
port some form of Markov models, e.g., JtR and hashcat. An empirical study on
the e�ectiveness of di�erent attacks including those based on Markov-models can
be found in [7]. If no salt is used in the password hash, rainbow-tables can be used
to speed up the guessing step [15, 28] using precomputation. An implementation
of rainbow-tables in hardware is studied in [23].

Closely related to the problem of password guessing is that of estimating the

strength of a password. In early systems, password cracking was used to �nd
weak passwords [24]. Since then, so-called pro-active password checkers are used
to exclude weak passwords [2, 4]. However, most pro-active password checkers
use relatively simple rule-sets to determine password strength, which have been
shown to be a rather bad indicator of real-world password strength [36, 20, 6].
More recently, Schechter et al. [32] classi�ed password strength by counting
the number of times a certain password is present in the password database,
and Markov models have been shown to be a very good predictor of password
strength and can be implemented in a secure way [6].

Processing platforms for password cracking. Password cracking on general-purpose
CPUs is widely used, and cleverly optimized implementations can achieve sub-
stantial speed-up compared to straight-forward implementations. Well-known
examples for such �general purpose tools� are John the Ripper [17], as well as
specialized tools such as TrueCrack [35] for TrueCrypt encrypted volumes. How-
ever, due to the versatility of their architecture, CPUs usually do not achieve an
optimal cost-performance ratio for a speci�c application.

Modern graphics cards (GPUs) have evolved into computation platforms for
universal computations. GPUs combine a large number of parallel processor
cores which allow highly parallel applications using programming models such
as OpenCL or CUDA. GPUs have proven very e�ective for password cracking,
demonstrated by tools such as the Lightning Hash Cracker by ElcomSoft [9] or
hashcat [33].

Special-purpose hardware usually provides signi�cant savings in terms of
costs and power consumption and at the same time provides a boost in perfor-
mance time. This makes special-purpose hardware very attractive for cryptanal-
ysis [13, 14, 10, 40]. With the goal of benchmarking a power-e�cient password
cracking approach, Malvoni et al. [21] provide several implementations of bcrypt
on low-power devices, including an FPGA implementation. Similarly, Wiemer
et al. [38] provide an FPGA implementation of bcrypt. In [8], the authors pro-
vided implementations of PBKDF2 using GPUs and an FPGA cluster, targeting
TrueCrypt.

1.2 Outline

We describe the scrypt algorithm and our GPU implementation in Section 2, and
brie�y review the bcrypt algorithm and recent work on implementing bcrypt on
FPGAs in Section 3. In Section 4 we present a framework for comparing password
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Fig. 1. Overview of scrypt. The data widths are given in bytes.

hashing functions and dedicated attacker platforms. We present the �nal results
and a discussion in Section 5.

2 scrypt

In this section we describe the scrypt password hash and present a GPU imple-
mentation of scrypt for guessing passwords in parallel.

2.1 The scrypt password hash

The scrypt password hash [30] is a construction for a password hash which specif-
ically counters attacks using custom hardware (the cost estimations speci�cally
target ASIC designs, but the results hold, in principle, against FPGAs as well).
The basic idea of the scrypt design is to force an attacker to use a large amount
of memory, which results in large area for the memory cells and thus high cost
of the ASICs.

Parameters. Scrypt takes as input a password pwd and a salt salt , and is pa-
rameterized with the desired output length dklen and three cost parameters:
memory usage N , a block-size r, and a parallelism factor p. If p > 1 then basi-
cally p copies of the ROMix algorithm, which is described below, are executed
independently (sequentially) of each other; the overall memory usage for ROMix
is 128 · r ·N bytes. Scrypt returns a hash value h of size dklen bytes.

Overall structure. The overall structure or scrypt consists of three main steps
(see Figure 1).



Algorithm 2.1: ROMix

Data: B, r, N
Result: B′

1 X ← B;
2 for i← 0 to N − 1 do
3 V [i]← X;
4 X ← BlockMix(X);

5 end

6 for i← 0 to N − 1 do
7 j ← Integerify(X) mod N ;
8 X ← BlockMix(X ⊕ V [j]);

9 end

10 B′ ← X;

(i) Initially, scrypt applies the PBKDF2 password hash [18] to the password
and the salt, with an iteration count of 1, using HMAC-SHA-256 as MAC
function, and producing 128 · p · r bytes of output. PBKDF2 is used to
distribute the entropy from the password and salt and expand the input
length, and presumably as a fail-safe mechanism to ensure the onewayness
of the overall construction.

(ii) The output of this initial step is split into p chunks of 128 · r bytes, and
each chunk is fed into one of p parallel copies of the ROMix algorithm,
which is the core part of the scrypt construction and described below.

(iii) Each invocation of the ROMix algorithm yields 128 · r bytes of data, which
are concatenated and fed into another instances of PBKDF2, together with
the password, an iteration count of 1, and using HMAC-SHA-256, which
�nally produces the desired output of length dklen.

ROMix. The ROMix algorithm is the core of the construction. It operates on
blocks of size 128 · r bytes, and allocates an array V of N blocks as the main
data structure. ROMix �rst �lls the array V with pseudo-random data, and then
pseudo-randomly accesses the data in the array to ensure the attacker is actually
storing the data.
(i) First, ROMix �lls the array V by repeatedly calling BlockMix, abbreviated

H, which is basically a random permutation derived from the Salsa20/8
hash function (see below). The current state X is initialized with the input
bytes (derived from the output of PBKDF2). Then, successively, H is ap-
plied to the state and the result written to successive array locations. The
pseudo-code is shown in Algorithm 2.1 from line 2 to 5.

(ii) Second, the stored memory is accessed in a pseudo-random fashion in an
attempt to ensure that all memory cells are stored. The initial state X is
the �nal state of the previous step. The current state is interpreted as an
index pointing to an element in the array V , that target value is XORed to
the current state, and H is applied to form the next state. The pseudo-code
is shown in Algorithm 2.1 from line 6 to 9



BlockMix. The BlockMix construction H operates on 2 ·r blocks of size 64 bytes
each. It resembles the CBC mode of operation, with a �nal permutation of the
block order. It's main use is apparently to widen the block size from the �xed
64 bytes of salsa20/8 to arbitrary width as required by the ROMix.

Recommended parameter values. Two sets of parameter choices are given [30] for
typical use cases. For storage encryption on a local machine Percival proposes
N = 220, r = 8, p = 1, which uses 1024 MB of memory. For remote server login he
proposes N = 214, r = 8, p = 1, which uses 16 MB. Android since version 4.4 uses
scrypt for storage encryption [11], with parameters (N, r, p) = (215, 3, 1) [34].

2.2 GPU Programming

Over the years, GPUs have changed from being mere graphic processors to gen-
eral purpose processing units, o�ering programming interfaces such as CUDA [27]
for cards manufactured by NVIDIA.

GPUs execute code in so called kernels, which are functions that are executed
by many threads in parallel. Each thread is member of a block of threads. All
threads within a block have access to the same shared memory, which allows
communication and synchronization between threads. During execution, blocks
are assigned to Streaming Multiprocessors (SMs). An SM then schedules its
pending blocks in chunks of 32 threads, called a warp, to its hardware, where each
thread within a warp executes the same instruction. When threads in the same
warp execute di�erent instructions they are scheduled one after another (thread
divergence). When threads are scheduled for high-latency memory instructions,
the scheduler will execute additional warps while waiting for the memory access
to �nish, thus to a certain extend hiding the slow memory access.

Each thread has private registers and local memory which is, for example,
used for register spilling. Threads from the same block can access the fast per-
block shared memory, which can be used for inter-thread communication. All
threads can access global memory, which is by far the largest memory, but also
the slowest. There are some specialized memory regions, constant memory and
texture memory, which are fast for speci�c access patterns.

NVIDIA's GTX 480 GPU [26] is a consumer-grade GPU which o�ers rea-
sonable performance at an a�ordable price. It entered market in 2010 at the
price of 499 dollars. A GTX 480 consists of 15 SMs with 32 computing cores
each, i. e., the architecture provides 480 cores within a single GPU. Memory
bandwidth is 177.4 GB/s. The cores are running at 1401 MHz and can reach a
single-precision �oating point performance (Peak) of up to 1345 GFLOPS. (For
comparison: Intel's recent Core i7 980 CPUs running at 3.6 GHz are listed at 86
GFLOPS [16].) The GTX 480 o�ers 1536MB of global memory.

2.3 Implementing scrypt on CUDA

Our implementation performs a brute-force password search over a con�gurable
character set. The implementation is fully on the GPU, the CPU is only respon-
sible for enumerating the passwords, calling the GPU kernels, and comparing



the �nal results.(Parts of the implementation are inspired by the cudaMiner [3],
a miner for the litecoin cryptocurrency, which uses scrypt with very low cost
parameters (N, r, p) = (1024, 1, 1) as proof-of-work.)

The CPU keeps track of the current progress and calls a new kernel with a
starting point in the space of all passwords. It starts as many threads in parallel
as are allowed by the available global memory, but always requires the number
of threads to be a multiple of 32, as we are running 32 threads per warp. If the
parameter p is greater than one, then those blocks will be executed one after
another, which does not increase memory usage. In the remainder of the section
we give some details about the GPU implementation.

PBKDF2. The implementation of PBKDF2 is rather straightforward. The iter-
ation count of c = 1 is hard-coded. Overall, the operation is not time-critical.

BlockMix. The BlockMix operation operates on a state of 2 · r words of size 64
bytes each, thus 128 · r bytes in total, which are kept in the registers. For an
e�cient implementation of the mixing layer, in addition to the array holding
the data, we implement an array with pointers that serve as index for the data;
this way the mixing layer can be implemented by copying pointers (4 bytes)
instead of blocks of data (64 bytes). The Salsa20/8 implementation follows the
original proposal [1] including the optimization to eliminate the transpositions
by alternatingly processing rows and columns.

ROMix. The implementation of ROMix has to take special care of the memory
hierarchy in order to utilize the GPUs potential. The main concern is maximiz-
ing memory throughput. Global memory can be accessed in chunks of 32, 64, or
128 bytes, which must be aligned to a multiple of their size (naturally aligned).
However, one thread can access a word of at most 16 bytes, so memory through-
put is maximized when several threads access contiguous and aligned words;
then memory access is called coalesced. Therefore, reading one block (64 bytes)
is distributed across four threads reading words of 16 bytes, and, as each of the
four threads needs to access a full block after all, they will cooperate four times
to load all four blocks. Data is �rst read to shared memory by the cooperating
threads, then copied to the registers by each thread individually.

Writing data to global memory follows the same rules. The data is �rst copied
by the individual threads from registers to shared memory and then written to
global memory by cooperating threads in an aligned and coalesced fashion.

Time-memory trade-o�. Our implementation also provides the possibility to
use a time-memory trade-o�. By just storing every t-th data segment generated
by the initial BlockMix iterations, only 1/t of the original amount of memory is
needed. In return, every time a segment that was not stored is needed, it must be
recomputed from the nearest previous segment. If t is increased, the probability
of such a recomputation rises. So does the time needed for a recomputation since
the there are on average more iterations to recompute.



Algorithm 3.1: bcrypt

Input: cost, salt, pwd
Output: hash

1 state← EksBlow�shSetup(cost, salt, pwd);
2 ctext← �OrpheanBeholderScryDoubt�;
3 Repeat (64) begin
4 ctext← EncryptECB(state, ctext);
5 end

6 return Concatenate(cost, salt, ctext);

Algorithm 3.2: EksBlow�shSetup

Input: cost, salt, pwd
Output: state

1 state← InitState();
2 state← ExpandKey(state, salt, pwd);
3 Repeat (2cost) begin
4 state← ExpandKey(state, 0, salt);
5 state← ExpandKey(state, 0, pwd);

6 end

7 return state;

3 bcrypt

The second password hash we consider is the bcrypt hash function.

3.1 The bcrypt password hash

Provos and Mazières published the bcrypt hash function [31] in 1999, which, at
its core, is a cost-parameterized, modi�ed version of the blow�sh algorithm. The
key concepts are a tunable cost parameter and a constantly modi�ed moderately
large (4KByte) block of memory. Bcrypt is used as the default password hash in
OpenBSD since version 2.1 [31]. Additionally, it is the default password hash in
current versions of Ruby on Rails and PHP.

Parameters. Bcrypt uses the input parameters cost, salt, and key. The number of
executed loop iterations is exponential in the cost parameter, cf. Algorithm 3.2.
The algorithm uses a 128-bit salt to derive a 192-bit password hash from a key

of up to 56 bytes.

Design. Bcrypt is structured in two phases. First, EksBlowfishSetup initial-
izes the internal bcrypt-state. Afterwards, Algorithm 3.1 repeatedly encrypts
a magic value using this state. The resulting cipher text is then concatenated
with the cost and salt and returned as the hash. While the encryption itself is
as e�cient as the original Blow�sh encryption, most of the time is spent in the
EksBlowfishSetup algorithm.



The EncryptECB encryption is e�ectively a blow�sh encryption. Within its
standard 16-round Feistel network, the SBoxes and subkeys are determined by
the current state and the plaintext is encrypted in 64-bit blocks.

The EksBlowfishSetup algorithm is a modi�ed version of the blow�sh key
schedule. It computes a state, which consists of 18 32 bit subkeys and four SBoxes
� each 256 × 32bit in size � which are later used in the encryption process. The
state is initially �lled with the digits of π and a modi�ed version of the blow�sh
keyschedule is performed. After xoring the key to the subkeys, it successively
uses the current state as SBoxes and subkeys to encrypt blocks of the current
state and update the state. In this process, the function ExpandKey computes 521
blow�sh encryptions. If the salt is �xed to zero, one call to ExpandKey resembles
the standard blow�sh key schedule.

Recommended parameter values. Provos and Mazières originally proposed to
use a cost parameter of six for normal user passwords, while using eight for
administrator passwords.

3.2 Implementations of bcrypt on FPGAs

While general-purpose hardware, i. e., CPUs, o�ers a wide variety of instruc-
tions for all kinds of programs and algorithms, usually, only a few are important
for a speci�c task. More importantly, the generic structure and design might
impose restrictions and become cumbersome, i. e., when registers are too small
or memory access times becomes a bottleneck. Recon�gurable hardware like
Field-Programmable Gate Arrays (FPGAs) and special-purpose hardware like
Application-Speci�c Integrated Circuits (ASICs) are more specialized and dedi-
cated to a single task. An FPGA consists of a large area of programmable logic
resources (the fabric), e. g., lookup tables, shift registers, multiplexers and stor-
age elements, and a �xed amount of dedicated hardware modules, e. g., memory
cores (BRAM), digital signal processing units or even PowerPCs, and can be
specialized for a given task.

Recently, two groups presented implementations of bcrypt on FPGAs. The
latest work is by Wiemer et al. [38], who present an implementation of bcrypt
on Xilinx FPGAs from the low power consumption and low cost segment. Their
platform is the zedboard, more precisely the Zynq-7000 XC7Z020 FPGA. The
Zynq-7000 persists mainly of a dual-core ARM Cortex A9 CPU and an Aritx-7.
The zedboard allows easy access to the logic inside the FPGA fabric via direct
memory access and provides several interfaces, e. g., AXI4, AXI4-Stream, AXI4-
Lite or Xillybus. These cores come with drivers for embedded Linux kernels and
thus o�er an easy way of accessing custom logic from a higher abstraction layer.
Their design has a LUT consumption of 2, 777 LUTs per (quad-)core and uses
13 BRAMs. Including a simple logic for generating password candidates for a
brute-force guessing attack, they were able to �t 10 quad-core designs on a single
FPGA, which runs at a maximum clock frequency of 100MHz.

The other work by Malvoni et al. [21] reported a rate of 4571 passwords per
second for a cost parameter of 5 on the zedboard. Due to unstable behavior,



they could not fully implement there design idea of 56 bcrypt instance and had
to reduce this number to 28. Therefore, the simulated their design on the larger
Zynq-7045 and reported 7044 passwords per second as the expected result for a
stable behavior. Additionally, they reported a theoretical rate of 8112 passwords
per second which they derived from the performance for a cost parameter of 12.

4 Methodology

Next, we present the methodology that we use to compare di�erent algorithms
on di�erent platforms.

4.1 Basic idea

In this work we consider o�ine guessing attacks, and consequently the hashrate,
i. e., how fast an attacker can verify its password guesses, is the critical factor.
The e�ect of a password hash is to slow down the attacker's veri�cation of a
password guess. Slower password hashes will usually slow down both the (honest)
veri�cation of a password, as well as the attacker. However, an attacker is not
bound to use the same implementation as the (honest) veri�cation server, and so
he may utilize optimizations that the legitimate veri�er is not able to implement;
in particular can the adversary use di�erent hardware platforms much more
easily than the veri�cation server.

Thus, it is important to consider the ratio between the following two run-
times: �rst, the runtime of the normal (optimized for server use) implementation
on typical server CPUs, and second, the runtime for a password on an attacker's
implementation on comparable hardware of his choice. Here, the defender chooses
the algorithm and parameters to be used, while the attacker can choose a hard-
ware platform and has certain optimization techniques that the defender cannot
use. As we want to compare di�erent password hashing algorithms attacked on
di�erent platforms, we need to derive reasonably equivalent parameters for the
di�erent password hashes. Thus, we start by measuring the runtime of the al-
gorithms on di�erent PCs � which di�er in the amount of processors as well as
architecture and available memory � and derive comparable algorithm-parameter
pairs.

4.2 Derivation of equivalent parameters

To determine the �equivalent� parameter sets for the di�erent schemes, we run a
series of tests on di�erent CPUs and compare runtimes. We use implementations
that target password checking by legitimate servers (i. e., that check one pass-
word at a time). Thus, we call two parameter sets of two algorithms �equivalent�
if the legitimate server that checks the passwords needs the same runtime to do
so in both cases.

We used the following implementations: For PBKDF2, we used the imple-
mentation in the OpenSSL library calling PKCS5_PBKDF2_HMAC() with SHA512.



For bcrypt, we used a version available from the Openwall website (http://
www.openwall.com/crypt/), which was compiled on the target system gcc and
compiler �ags -O3 -fomit-frame-pointer -funroll-loops. For scrypt, we use
our own implementation in C, as the original implementation is packaged into a
larger project. The runtimes were comparable to those published by Percival [30].

Table 8 in Appendix B lists the platforms we used for the parameter deriva-
tion. We utilized di�erent CPUs, with an emphasis on server CPUs, and mea-
sured runtimes for each of them. Appendix B gives the full measurement results.
As there is no single system we can optimize for but are interested in general
statements, we take the average runtime over all CPUs we tested. Note that the
runtimes were, despite the wide variance of CPUs, grouped together relatively
closely, the worst-case being a factor of two between the fastest and the slowest
CPU, and in general much lower.

To investigate reasonable parameters and their resulting runtimes, one must
ask for the actual size of parameters used in real-world applications. First, we
need to note the this strongly depends on the application scenario. In an inter-
active login scenario the server must be able to quickly response to the user who
tries to authenticate with a password. The situation is di�erent if we consider
key derivation for storage encryption, where longer delays are acceptable. (But
note that the delay time is not the only bound for a practical implementation.
Also extensive memory usage may hinder a server from choosing according pa-
rameters.) In light of these di�erences in the security requirements for password
hashing, we make a comparison across a wide range of parameters and desired
runtimes.

We give four classes of parameters, for targeted runtimes of (approximately)
1ms, 10ms, 100ms, 1000ms. Percival [30] states 100 ms as an upper bound on
the delay for interactive login. For storage encryption, the acceptable runtime
is higher and may extend slightly higher than 1000ms. But note that the pa-
rameters used for scrypt in Android since version 4.4 [11] for storage encryption
(namely (N, r, p) = (215, 3, 1) [34]) yields moderate running times (around 100ms
on server CPUs, but higher on typical mobile devices).

Both bcrypt and scrypt o�er a relatively coarse control over the runtime (in-
crementing the hardness parameter by one approximately doubles the execution
time), thus no parameter will match exactly the target time. Therefore, we in-
terpolate the parameters from the measured values, to more accurately model
the desired runtimes and making the comparison fair. This means we have to
interpolate the runtimes for the attacking implementations in the same way.

The (interpolated) equivalent parameters are listed in Table 1, the detailed
measurements are listen in Table 9, 10, and 11 in Appendix B.

4.3 Comparing Di�erent Platforms

For comparing the ration between the runtime on the legitimate server and the
attacker, we also need a method to compare attacks using di�erent hardware
platforms.



Algorithm (Parameter) Target (CPU) runtime
1ms 10ms 100ms 1000ms

PBKDF2 (Iteration count) 313 3 138 31 347 313 925
bcrypt (Cost) 3.69 7.03 10.3 13.6
scrypt (log N (r=8, p=1)) 6.93 10.3 13.7 16.9

Table 1. �Equivalent� parameters for several target runtimes for PBKDF2, bcrypt,
and scrypt.

.

An attack scales linearly with invested resources, mainly cost of the equip-
ment and energy consumption, and thus we have to take their in�uence into
account. (In addition, one can consider development cost, but here we will as-
sume that implementations are already available. While GPU programming is
quite similar to CPU programming and thus generally quicker, code develop-
ment for FPGAs is substantially di�erent and usually requires more time, and
thus cost.) This leads to a time-cost trade-o�, which is a�ected by the amount
of devices the attacker uses in parallel to increase the hashrate, the costs per
device and the power costs.

Generally speaking, equipment cost is in favor of the graphic cards, as GPUs
are a consumer product that is sold in large quantities. Also, older versions
usually receive a discount, making them more cost-e�ective. Interestingly, FPGA
vendors use a di�erent strategy: with the release of a new product line, the price
of the old family stays roughly unchanged, while the new version is o�ered with a
small discount to make the consumers switch away from the abandoned hardware
platform. In terms of power consumption, recon�gurable hardware is by far more
e�ective than GPUs. We will consider equipment cost and energy consumption
for the di�erent devices when comparing those implementations.

5 Results

Finally, we present and compare the hash rates of di�erent implementations.

5.1 Comparing with oclHashcat

Before giving a more detailed comparison of di�erent platforms, we start with an
evaluation of our implementation of scrypt (given in Section 2.3) with existing
implementations of scrypt, in particular with the oclHashcat [33] implementa-
tion. The scrypt algorithm is supported by oclHashcat starting with version
1.30, released in August 2014. We used the latest version at the time of writing,
oclHashcat v1.31. To the best of our knowledge, oclHashcat is the only imple-
mentation of scrypt on GPUs allowing for a full variable choice of parameters.
The litecoin miner cudaMiner [3], as well as other mining software we are aware
of, only implement �xed parameter values (in particular (N, r, p) = (1024, 1, 1)



(212, 8, 1) (212, 4, 1) (212, 1, 1) (217, 8, 1) (217, 4, 1) (217, 1, 1)

oclHashcat v1.31 19.86 72.58 280.38 0.10 0.26 1.31
Our implementation 287.61 1171.82 27748.27 0.38 2.15 83.08

Table 2. Selected scrypt hashrates from oclHashcat and our GPU implementation.

which are the standard litecoin parameters), or partially �xed parameter val-
ues (in particular (N, r, p) = (N, 1, 1) which are the parameters for some other
scrypt-based altcoins). These constraints allow for deeper optimization tech-
niques.

Both our implementation as well as oclHashcat run on a single NVIDIA
Geforce GTX 480 card. Selected hashrates are listed in Table 2, more com-
prehensive measurements can be found in Appendix A. We can see that our
implementation outperforms oclHashcat by a factor of 10 to 100 for moderate
values of N < 214, which drops to approximately 4 for higher N ≈ 217 and r = 8.
We cannot investigate why oclHashcat is slower, as it is closed source software.

5.2 Measuring Hashrates

We use the following platforms in the comparison:

� Our GPU-based scrypt implementation is run on an NVIDIA Geforce GTX
480. Prices for GPUs have a substantial variability over time, being in�u-
enced by competing products, customer demand and releases of newer cards.
The GTX 480 was released at a price of $499 in the �rst quarter of 2010
and dropped to around $310 in the third quarter of 2011. For the subsequent
discussion, we estimate a reasonable price at $350. We assume an attacker
mounts three graphics cards on a single motherboard, a setup which was
empirically found to o�er a good balance [12]. A suitable motherboard is
estimated at $200, and a suitable 1600W power supply we estimate at $300.
Overall, a machine with 3 GPUs will cost approx. $1550, and the average
price per GPU (including peripherals) is approx. $517. The GTX 480 has
been benchmarked with up to 430W under full load, even though the TDP
is given as 250W only.

� The same setup was used to measure the speed of oclHashcat's implemen-
tation of bcrypt on GPUs.

� The bcrypt implementation from [38] runs on the zedboard, cf. Section 3.
The zedboard is currently available for approx. $319, and has a power con-
sumption of 4.2W.

Table 3 shows the results of the implementations for the derived parameter
sets. We can see a couple of interesting points already from this basic data.
First, we see that bcrypt is faster on the zedboard than it is on a GTX 480,
despite the latter being more expensive and more energy consuming. This is
a common observation, that specialized hardware implementations are faster
and more e�cient. Second, our scrypt implementation scales reasonably well



Target (CPU) runtime
1ms 10ms 100ms 1000ms

bcrypt
� zedboard 9 230 H/s 916.25 H/s 98.77 H/s 9.93 H/s
� GTX 480 2 868 H/s 319.37 H/s 33.73 H/s 2.71 H/s

scrypt
� GTX 480 42 650 H/s 2 333 H/s 49.06 H/s 0.37 H/s

(t=1) (t=2) (t=8) (t=4)

Table 3. Hashrates of attacking implementations.

Target (CPU) runtime
HW cost 1ms 10ms 100ms 1000ms

bcrypt
� zedboard $319 28.93 H/$s 2.87 H/$s 0.31 H/$s 0.03 H/$s
� GTX 480 $517 5.55 H/$s 0.62 H/$s 0.07 H/$s 0.01 H/$s

scrypt
� GTX 480 $517 82.50 H/$s 4.51 H/$s 0.09 H/$s 0.00 H/$s

(t=1) (t=2) (t=8) (t=4)

Table 4. Hashes per dollar-second for attacking implementations.

Target (CPU) runtime
Energy 1ms 10ms 100ms 1000ms

bcrypt
� zedboard 4.2 W 2198 H/Ws 218.15 H/Ws 23.52 H/Ws 2.36 H/Ws
� GTX 480 430 W 6.67 H/Ws 0.74 H/Ws 0.08 H/Ws 0.01 H/Ws

scrypt
� GTX 480 430 W 99.19 H/Ws 5.43 H/Ws 0.11 H/Ws 0.00 H/Ws

(t=1) (t=2) (t=8) (t=4)

Table 5. Hashes per watt-second for attacking implementations.

Cost Target (CPU) runtime
HW Energy 1ms 10ms 100ms 1000ms

bcrypt
� zedboard $319 $7.41 28.3 H/$s 2.81 H/$s 0.303 H/$s 0.0304 H/$s
� GTX 480 $517 $759 2.25 H/$s 0.250 H/$s 0.0264 H/$s 0.00212 H/$s

scrypt
� GTX 480 $517 $759 33.4 H/$s 1.83 H/$s 0.0384 H/$s 0.000287 H/$s

(t=1) (t=2) (t=8) (t=4)

Table 6. Hashes per dollar-second taking into account total cost for two years.



between the parameter classes for 1ms and 100ms, but then the pressure from
memory consumption becomes too large and speed drops substantially. Also,
as expected, with increasing runtime (and thus memory consumption) higher
trade-o� parameters become optimal, as they trade memory consumption for
computational load (except for the highest class of 1000ms). Third, even though
the hashrates for di�erent platforms are not directly comparable, we can already
see that, while the hashrates for bcrypt scale almost linearly with the CPU
runtime, scrypt scales much worse, which is caused by the increased memory
consumption.

5.3 Comparison taking cost into account

The comparison in the previous section has the advantage that, by using equiv-
alent parameters for the di�erent password hashes, we obtain a fair comparison
between the di�erent password hashes. However, results from di�erent hardware
platforms, most notably GPUs and FPGAs, are still hardly comparable, as both
have fundamentally di�erent characteristics.

There are two main parameters that are di�erent for the two di�erent plat-
forms: �rst, hardware cost is di�erent. On the one hand, most GPUs are con-
sumer products and are sold in huge quantities, while FPGA boards that are
easily usable by consumers are a niche product. On the other hand, GPUs are
equipped with additional units that are irrelevant for our speci�c application,
and FPGAs can fully be con�gured to the task at hand. Second, the energy cost
is fundamentally di�erent. FPGA designs only implement the logic required
to compute the desired functionality, which means that most overhead can be
avoided. This results in a decreased number of switching logic gates and thus
reduced power consumption. There are other factors one could consider, e.g, de-
velopment cost, but in this discussion we will concentrate on energy cost and
hardware cost.

Table 4 shows the results taking into account the hardware cost of the in-
dividual devices, as estimated in the previous section. Data is given in hashes
per second and dollar (H/$s). What we observe is that the in�uence of the price
is smaller than we expected, as the prices for a GPU including (shared) host
PC and an FPGA that sits on a development board are quite similar. Note here
that the devices used are one example only, and by using other GPUs or FPGAs
the prices are somewhat variable. Also, the price of a development board such
as the zedboard is substantially higher than a single FPGA only, but note that
an FPGA always will need some additional hardware to facilitate its operation,
e.g., to ensure network connectivity. Overall, while all these prices come with
some uncertainty, the overall picture of the comparison should be quite reliable.

Table 5 shows the results taking into account the energy costs of the di�erent
architectures. We listed the approximate power consumption of the GTX 480 and
the zedboard as 430 Watt and 4.2 Watt, respectively, which already illustrates
the fundamental di�erence between the two. Note that, again, these estimates
are somewhat variable and depend on the speci�c FPGA and GPU used, as well
as the exact load put on the device. What we see is that the zedboard is clearly



superior to the GTX 480 in this metric due to the signi�cantly higher power
consumption.

Finally, we aim to bring these di�erent results together and determine a total
cost, combining the energy and hardware cost for a duration of two years. We
estimate energy cost at a price of 10.08 cents per kWh (average retail price of
electricity in the United States in 2013, according to the U.S. Energy Information
Administration1). The results are shown in Table 6. Basically what this table
shows is that scrypt can be attacked rather e�ciently for low parameters with the
GTX 480. The attack is even stronger than the bcrypt attack with the zedboard.
But for higher parameters the FPGA attack on bcrypt is more e�cient than the
GPU attack on scrypt.

Finally, we can say that we were surprised by the fast operation of scrypt
on GPUs for moderate parameters. In scenarios where FPGA-based crackers
are unavailable (e.g., for the casual password cracker), or for applications where
power cost is not a critical factor, bcrypt is more resistant to password cracking
for parameters up to the 100ms class. When we additionally consider FPGA-
based attacks, the picture changes, as bcrypt can be computed quite e�ciently on
FPGAs, in particular in terms of energy cost. Except for low parameters from the
1ms class (where GPUs against scrypt are more e�cient FPGAs against bcrypt
in terms of hardware cost as well as total cost for two years), scrypt is harder
to attack, based on the implementations we are considering. This advantage is
almost exclusively caused by the energy cost (energy cost for a single GTX 480
is approximately a factor 100 higher than for a single zedboard).

6 Conclusion

In this work we have provided a methodology for comparing di�erent password
hashes on varying platforms. We have applied this methodology to bcrypt and
scrypt implementations on GPUs and FPGAs, including our own implemen-
tation of scrypt on GPUs, which may be of independent interest. Taking into
account all the attacking implementations we have considered, bcrypt and scrypt
o�er comparable strength for smaller parameters (that take about 1ms to 10ms
on the defenders side), while scrypt is stronger for larger parameters.
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A Full runtime listings for hashcat

(211, 8, 1) (212, 8, 1) (213, 8, 1) (214, 8, 1) (215, 8, 1) (216, 8, 1) (217, 8, 1)

oclHashcat v1.31 71.80 19.86 5.34 1.35 0.62 0.26 0.10
Our implementation 909.75 287.61 85.12 26.30 4.92 0.93 0.38

(211, 4, 1) (212, 4, 1) (213, 4, 1) (214, 4, 1) (215, 4, 1) (216, 4, 1) (217, 4, 1)

oclHashcat v1.31 146.29 72.58 20.41 5.05 1.33 0.62 0.26
Our implementation 3253.26 1171.82 365.22 108.52 31.86 7.94 2.15

(211, 2, 1) (212, 2, 1) (213, 2, 1) (214, 2, 1) (215, 2, 1) (216, 2, 1) (217, 2, 1)

oclHashcat v1.31 285.87 143.72 71.34 20.32 5.26 1.35 0.61
Our implementation 17887.84 5311.56 1967.22 660.43 191.21 54.62 15.64

(211, 1, 1) (212, 1, 1) (213, 1, 1) (214, 1, 1) (215, 1, 1) (216, 1, 1) (217, 1, 1)

oclHashcat v1.31 567.47 280.38 140.80 70.47 19.53 5.25 1.31
Our implementation 55694.39 27748.27 9179.61 3380.60 1075.55 313.39 83.08

Table 7. Comparison of hashrates for our implementation and oclHashcat v1.31.

B Full runtime listings for the benchmark CPUs

CPU CPU Launch OS Type

CPU1 Intel Core i5-2400, 3.1 GHz Q1'11 Win7/CygWin Desktop
CPU2 AMD Opteron 6276, 2.3GHz Q1'13 CentOS 6.2 Cluster
CPU3 Intel Core i5-2520M CPU, 2.50GHz Q1'11 Win/CygWin Laptop
CPU4 Intel Xeon E5540, 2.53GHz Q1'09 Ubuntu 12.04 Server
CPU5 Intel Xeon E3-1220 V2, 3.10GHz Q2'11 Fedora 19 Server

Table 8. Hardware used to measure CPU runtimes.



Iteration count 250 500 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1024k

CPU1 0.63 1.27 2.53 5.05 10.06 20.22 40.44 80.92 162.43 323.12 646.22 1 287.80 2 603.60
CPU2 1.03 2.05 4.11 8.22 16.51 33.00 66.16 131.69 262.81 524.50 1 050.75 2 119.00 4 217.01
CPU3 1.04 2.09 4.18 8.36 16.62 33.38 66.74 133.53 266.86 532.74 1 063.15 2 135.65 4 263.50
CPU4 0.79 1.57 3.15 6.29 12.59 25.19 50.38 100.78 201.44 402.87 805.25 1 612.00 3 222.00
CPU5 0.50 0.99 1.98 3.97 7.93 15.87 31.72 63.47 127.00 254.00 507.75 1 015.00 2 035.00

Average 0.80 1.59 3.19 6.38 12.74 25.53 51.09 102.08 204.11 407.45 814.62 1 633.89 3 268.22

Table 9. Running times of PBKDF2 with HMAC and SHA-512 on CPUs (in ms).

N (r=8, p=1) 27 28 29 210 211 212 213 214 215 216 217 218 219

CPU1 1.13 2.29 4.53 8.95 17.81 35.49 71.57 143.47 287.04 578.58 1 159.10 2 324.40 4 664.31
CPU2 1.02 1.90 3.62 7.09 14.07 28.24 56.75 115.53 237.31 474.25 959.25 1 937.50 3 911.00
CPU3 1.19 2.42 4.74 9.45 18.88 37.98 76.00 152.93 307.32 616.79 1 235.92 2 478.85 4 957.59
CPU4 1.16 2.21 4.32 8.53 16.97 33.91 68.34 137.13 287.44 577.37 1 157.25 2 317.00 4 643.00
CPU5 0.72 1.38 2.70 5.33 10.59 21.12 42.56 86.00 173.50 346.87 694.50 1 388.50 2 780.00

Average 1.04 2.04 3.98 7.87 15.66 31.35 63.04 127.01 258.52 518.77 1 041.20 2 089.25 4 191.18

Table 10. Running times of scrypt on CPUs (in ms).

Cost 4 5 6 7 8 9 10 11 12 13 14 15 16

CPU1 1.28 2.40 4.63 9.12 18.04 35.93 72.15 143.96 288.21 576.61 1 148.18 2 307.25 4 612.91
CPU2 1.67 3.11 6.00 11.79 23.38 46.63 92.81 185.31 370.38 740.50 1 480.25 2 960.00 5 918.00
CPU3 1.35 2.52 4.87 9.55 18.92 37.76 75.20 150.39 301.18 600.41 1 203.52 2 410.25 4 842.19
CPU4 1.48 2.76 5.34 10.47 20.75 41.32 82.44 164.75 329.13 658.25 1 316.50 2 631.00 5 263.99
CPU5 1.04 1.95 3.77 7.41 14.68 29.23 58.34 116.50 232.94 465.50 931.75 1 862.50 3 728.00

Average 1.36 2.55 4.92 9.67 19.15 38.17 76.19 152.18 304.37 608.25 1 216.04 2 434.20 4 873.02

Table 11. Running times of bcrypt on CPUs (in ms).



C Full runtime listings for di�erent trade-o� parameters

for scrypt

log(N) (r=8,p=1) 6.93 10.35 13.66 16.94

No Tradeo� 42,650.62 2,053.98 30.97 -
Tradeo� = 2 22,153.09 2,333.11 39.84 -
Tradeo� = 4 15,870.75 1,552.01 45.02 0.37
Tradeo� = 8 9,548.42 949.73 49.06 0.23

Table 12. Obtained hashrates for scrypt. Computed as interpolation of the nearest
measurements.
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Abstract. SlidePIN is a PIN entry mechanism based on slide input
method combined with a random numeric keypad. As slide input method
ensures higher usability and security, a random numeric keypad intro-
duced, at a slight cost of usability, conspicuously enhances the security
of SlidePIN. As an indirect entry mechanism, SlidePIN keeps users away
from additional computation or memory burden. Theoretic analysis and
experiments show that SlidePIN performs effectively against one-time
shoulder surfing attack and better than 4-digit PIN mechanism against
multi-time shoulder surfing attack.
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1 Introduction

Smartphones have globally become the most popular communication tool
nowadays which gradually change our life and work. Great amounts of private
as well as business information are stored in our smartphones. As the foundation
of smartphone security against unwanted access, unlocking mechanisms get more
indispensable. 4-digit PIN (Personal Identification Numbers) mechanism that is
used most widely asks users to input the PIN directly, which makes it vulnerable
to shoulder surfing attacks [1, 2].

A wide range of research tried to resist shoulder surfing attacks to minimize
relevant security threats. Two main mechanisms, invisible entry mechanism [5–
10] and indirect entry mechanism [11–18], are proposed and developed. However,
these mechanisms need either additional hardware or extra computation to en-
sure security and usability, which motivates us to design a better unlocking
mechanism.

The Word-Gesture Keyboard [3, 4] concept was proposed by Montgomery
in 1982. The idea suggests using slide gesture to input English words on a
touch screen with a soft keyboard. Some implementations of this technology have
been developed into products put into market by some companies (ShapeWriter,
Swype, TouchPal and etc).

Inspired by Word-Gesture Keyboard, we propose SlidePIN as an indirect en-
try mechanism with a random numeric keypad and slide input method. SlidePIN
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inserts users’ 4-digit PIN into a slide sequence. Even if attackers captured the
slide sequence, extracting the 4-digit PIN from the sequence would still be a
conundrum.

To the best of our knowledge, SlidePIN is the first 4-digit PIN entry mecha-
nism that combines slide input method with a random numeric keypad. Gener-
ating PIN indirectly based on user’s gestures, SlidePIN can effectively prevent
one-time shoulder surfing attack and withstand multi-time shoulder surfing at-
tack with better performance, compared with 4-digit PIN.

In following sections of this paper, the concept of SlidePIN will be intro-
duced first. Afterward, theoretical and experimental analysis will be provided
to illustrate the improvement on security of SlidePIN and slight compromise of
usability, compared with 4-digit PIN.

2 Related Works

In order to withstand shoulder surfing attacks, current entry methods mainly
adopt invisible entry mechanism and indirect entry mechanism.

Invisible Entry Mechanism. An invisible entry mechanism [5–10] is to utilize
special human-computer interaction methods to implement the input process
of the PIN or password. Typical examples are eye tracking [5], tactile sensor
[6], pressure sensor [10], vibration sensors [7], back-of-device interaction [8] and
physical block [9], etc. It is difficult for the attacker to visually capture the
interactions between computers and humans, thus this mechanism has great ca-
pability to resist shoulder surfing attack. However, an invisible entry mechanism
is not suitable on smartphones because of its dependency on additional hardware
followed by extra deployment costs.

Indirect Entry Mechanism. An indirect entry mechanism [11–18] is built
with a human-computable challenge-response mechanism. Colors [11, 15], sym-
bols [12, 14] or directions [13, 16–18] are added as additional authentication fac-
tors based on a traditional keypad or even the layout of a keypad, as a challenge,
which is rebuilt with these factors. Generally in these methods, users use PINs
kept in mind to compute the response against the corresponding challenge. The
computation always involves collection attribution, color or symbol matching,
orientation comparison, table looking up, etc. Users input the response instead
of the PIN and it is hard to extract the PIN from the response, which leads to
an improvement on security of the mechanism. Additionally, less dependency on
auxiliary devices or hardware makes it compatible on smartphones, but addi-
tional computation or memory burden for users inevitably reduces its usability.

As an indirect entry mechanism, SlidePIN depends on no additional hardware
or devices, which hence avoids extra deployment costs. What is more, with slide
input method and a random numeric keypad introduced, SlidePIN accordingly
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generates the input response when a user slides to unlock. No additional compu-
tation or memory burden is imposed to users, which makes security potentially
improve as users of SlidePIN slide to unlock their smartphone habitually and
conveniently.

3 SlidePIN Concept

Fig. 1. SlidePIN Concept

Design. SlidePIN (Slide-based PIN entry) is one of sliding PIN entry methods
which is inspired by the concept of slide input English words introduced in
Word-Gesture Keyboard [4]. Two key mechanisms are introduced into our design
compared with 4-digit PIN: 1) Click input is replaced by slide input. 2) The fixed
layout keypad is substituted by the randomly distributed keypad.

We adopt these two mechanisms mainly because:

1. Slide input is faster. It has been proved [20, 21] that click input method is
more difficult to use, which suggests that slide input will help improve input
efficiency.

2. Slide input is more secure. As an indirect entry mechanism, a user’s
PIN is concealed in a slide sequence, which makes SlidePIN more secure
than traditional click input method against shoulder surfing attack.

3. Input with a random numeric keypad is more secure. A random
numeric keypad helps SlidePIN perform better against replay attack.

Implementation. There are two implementation phases of SlidePIN as follows:

• Setup Phase: Like 4-digit PIN, the user chooses 4 ordered digit numbers
as the master secret, usually referred to a PIN, between him/her and the
smartphone.
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• Unlocking Phase: The user touches and slides over a keypad passing all
digits of the PIN in order. As Fig.1 shows, the keypad is a random numeric
keypad. In addition, the sliding process should be started from ’*’ and ended
up with ’#’. If the slide sequence contains the PIN as its subsequence, the
authentication will be passed.

For instance, ’1245’ as a user’s PIN, the user needs to slide and generate a
trace starting from ’*’ and ending with ’#’ and subsequence ’1245’ has to be
contained in an exact order in the slide sequence. As Fig.1 shows, ’*381629458#’
is one of the valid slide sequences which can unlock the smartphone.

4 Theoretical Analysis

4.1 Model Definition.

Firstly, we will introduce some concepts.

• PIN(P): A PIN is an ordered sequence consisting of integers from 0 to 9.
{p1, p2...pn}, pi ∈ [0, 9], i ∈ [0, n]. In this paper, we set n=4.
• Layout(L): L is the distribution of keys in a keypad as Fig.1. A new layout

is generated randomly every time before a user inputs.
• Trajectory(T): A trajectory is the trace that is formed when the user slides.
• Sequence(S): S represents the keys a user slide over by fingers, which

forms an ordered sequence {s1, s2...sm}. S starts from ’*’, containing PIN
(p1, p2, p3, p4) and inserted numbers (i1, i2, i3, i4, i5 ) and then end with ’#’,
as Fig.2 shows.

Fig. 2. Model of Input Sequence

• Slide Map Function f : f defines the process that user creates the sequence
by sliding on the layout according to PIN:

f(L× P )→ S (1)

• Attack Function f−1: f−1 defines the reverse process or the attack pro-
cess based on keypad layouts and trajectories captured by an attacker who
aims at obtaining the PIN. Since a specific sequence is determined by a spe-
cific random keypad layout and a specific trajectory, the relationship can be
described as follows:
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L× T → S (2)

Accordingly, the attack function is defined as:

f−1(L× T )→ f−1(S)→ P (3)

4.2 Sequence Length Analysis.

The sequence length has a direct influence on security and usability of Slide-
PIN. Longer slide sequences make users’ PIN more secure but the usability is
impaired. Shorter ones lead to higher usability yet lower security. Therefore, se-
quence length analysis needs to be conducted to searching for a good tradeoff
between security and usability. First, we estimate the distance between keys of
keypad. Afterward, we estimate the distribution of PIN and finally the sequence
length.

Fig. 3. Category of Keypad and Distances Between Category A and Other Keys

Estimate of Distance between Keys. Keys on a SlidePIN keypad can be
divided into four categories (A, B, C, D) and distances between keys in category
A and others can be calculated as showed in the Fig.3 1. Then the average
distance between key A and others is D(A) = (1.03 + 2.24 + 1.11 + 2.08 + 3.03 +
2.25 + 2.84 + 4.00 + 3.33 + 3.83 + 4.88)/11 ≈ 2.78

Distances between keys in category B, C, D and others, as Fig.4 shows, are
D(B)=2.39, D(C)=2.25, D(D)=1.87, which can be calculated using the same
method.

As the keypad showed in Fig.1, the sequence in category A is started at *
and ended with #. As defined in the model, the average distance is D(A) at
position i1 and i5. Other than that, the average distance among 10 numbers is
Davg = (D(A)× 2 + D(B)× 2 + D(C)× 4 + D(D)× 2)/10 ≈ 2.31, which is the
distances at the position i2, i3, i4.

1The distances are calculated based on data from sequence length experiments.



6 SlidePIN: Slide-Based PIN Entry Mechanism on a Smartphone

Fig. 4. Distances Between Category B,C,D and Other Keys

Estimate of PIN Distribution. the Layout of a SlidePIN keypad can be
divided into area Z1, Z2, Z3. According to the method in the previous section,
we can separately calculate the average distance when all of the digits in a PIN
are in the area of Z1, Z2, Z3 , which is D(Z1)=8.08, D(Z2)=10.82, D(Z3)=11.55.2

We could calculate probability of P(Z3)=1, if PIN in the area of Z3. When
PIN in the area of Z2, P (Z2) = 7

10×
6
9×

5
8×

4
7 = 1

6 and P (Z1) = 4
10×

3
9×

2
8×

1
7 =

1
210 when PIN in the third and fourth row except ’*’ and ’#’.

Fig. 5. Distribution of PIN

Z3′ refers to the case in which at least one digit of PIN is distributed in
the first row. Then the probability of Z3′, P (Z3′) = P (Z3)− P (Z2) = 1− 1

6 =
5
6 ≈ 0.8333. Similarly, Z2′ represents one or more digits of PIN are distributed
in the second row and P (Z2′) = P (Z2) − P (Z1) = 17

105 ≈ 0.1619. P (Z1′) =
P (Z1) = 1

210 ≈ 0.0048. Therefore, the probability of Z3′, Z2′, Z1′ is approximate
to 0.8333, 0.1619, 0.0048.

In case of Z3’, the average length of sequence, D(Z3′) = D(Z2) × P (Z2) +
D(Z3′)× P (Z3′) = 11.39. Similarly, D(Z2’)=10.52, D(Z1’)=8.08.

2The calculating process is exemplified in following section, Estimate of Sequence
Length.
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Estimate of Sequence Length.

Mean Value of Sequence Length. As we have demonstrated above, the average of
sequence length when a PIN can be distributed randomly on the entire keypad
is (D(A)× 2− 1) + Davg × 3 = 11.55.3

Lower Threshold of Sequence Length. If the lower threshold is set to 8, approx-
imate to the average length of Z1, there are only

(
8
4

)
= 70 possible PINs in

an 8-bit-length sequence, making SlidePIN subject to guessing attack. However,
longer sequences lead to lower usability and SlidePIN cannot stand the impair-
ment on usability by 10 or more. Thus we set the lower threshold to 9 as a ideal
tradeoff with 126 possibilities to resist guessing attack.

Upper Threshold of Sequence Length. Excessively long sequences are vulnerable
to replay attack and with lower usability. As to replay attack, the attacker has
averagely at least 8 (D(Z1) = 8.08) target characters to input. According to the
previous section, a target character generally leads to about 2 input characters
(D(A)=2.78, D(B)=2.39, D(C)=2.25, D(D)=1.87). To further improve capability
of resisting replay attack, we conservatively use 1.87 as the factor to calculate:
8.08 × 1.87 ≈ 15.11. Therefore, we set the upper threshold to 15, which is a
reasonable upper threshold ensuring both security and usability. An illustration
will be provided later in the experiment section.

4.3 Security Analysis

Threat Model. Shoulder surfing attack refers to using direct observation tech-
niques, such as looking over someone’s shoulder, to get information. It can also
be done by camera (known as video attack) or other vision-enhancing devices.
Shoulder surfing attack can be catalyzed as one-time shoulder surfing attack
and multi-time shoulder surfing attack. Excluding threats like phishing attack or
malware attack, we only focus on attacks targeting weakness of human-computer
interface in this paper.

Besides, we also take guessing attack and replay attack into consideration in
this paper. A attacker conducts guessing attack to obtain users’ PIN by brute-
force attack or dictionary attack based on partial knowledge on users or not. In
this paper, replay attack refers to obtaining the a user’s complete slide sequence
when he successfully unlocks his smartphone and reusing this sequence or one
of its subsequences to illegally get access to the user’s smartphone.

Guessing Attack. Similar to traditional 4-digit PIN mechanism, a 4-digit PIN
is adopted in SlidePIN. Thus both traditional 4-digit PIN mechanism and Slide-
PIN have the same PIN space, 10000, and the capability of withstanding guessing
attack is equivalent.

3We excluded the start and the end point when estimating distance between keys.
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One-time Shoulder Surfing Attack. Given that the attacker has obtained
one valid unlock sequence. Because several invalid numbers are concealed with
the user’s PIN in a longer slide sequence, the attacker have to take major efforts
to extract the PIN. In the worst case, the attacker has successfully conducted
one-time shoulder surfing attack and obtained the exact slide sequence and the
length of sequence is 9, the lower threshold value, the probability of getting
the PIN will be 1/

(
9
4

)
≈ 0.79%. However when confronting shoulder surfing

attack, input process of traditional 4-digit PIN mechanism or even the PIN is
directly exposed to the attacker. Therefore SlidePIN is better at resisting one-
time shoulder surfing attack.

Multi-time Shoulder Surfing Attack. Assuming in the worst-case situation,
an attacker may capture several valid slide sequences when a user slides to un-
lock, and PIN can be calculated by using statistical methods. In this paper, we
calculate the longest common sequence (LCS) of slide sequences in a simulated
attack experiment to validate the security of SlidePIN against multi-time shoul-
der surfing attack. Longer sequences are more secure against multi-time shoulder
surfing attacks. In SlidePIN, the lower threshold of sequence length is set to 9
and due to that, SlidePIN owns capability of resisting such attacks, which will
be detailed in the attack experiment.

Replay Attack. In order to resist replay attack, a random numeric keypad is
introduced in SlidePIN. Every time before users input PIN, it generates a new
layout. So the layout and the sequence are indispensable when replay attack is
conducted. Moreover, merely reentering the entire slide sequence with another
randomly distributed layout leads a prominent prolonging on slide sequence that
will exceed the length limitation discussed in the sequence length analysis and
experiment.

Additionally, shoulder surfing attack has negative relevance with replay at-
tack. Longer sequences have stronger capability of resisting shoulder surfing at-
tack but weaker capability against replay attack. Therefore, it is an effective
solution and a reasonable tradeoff to set thresholds of sequence length discussed
above for SlidePIN.

4.4 Usability Analysis

In this section, usability is evaluated from perspectives of cost of learning,
unlock time, orientation time and error rate.

Cost of Learning. SlidePIN is easy to learn and use.

SlidePIN is built based on 4-digit PIN. A SlidePIN keypad is similar to the
keypad used in 4-digit PIN. However, clicking and sliding can both be processed
in SlidePIN and no mode-switch is demanded. Therefore SlidePIN is easy to
learn and provides a smooth transition for users from click input to slide input.
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SlidePIN is easy to use. As mobile devices (e.g. smartphones, tablet comput-
ers), particularly the ones with touch-screen, rapidly pervade the world, sliding
has become one of most common gestures for users. With slide input method,
SlidePIN provides an easy and comfortable way for users to unlock their devices.

SlidePIN is interesting to use. Doodling or scrawling being human’s inborn
preference, it is more interesting to ”doodle around” with slide input method
than to click fixed buttons mechanically.

Orientation Time. Users need to observe the keypad layout every time before
an unlocking movement and the duration of this process is defined as orientation
time. Since a random numeric keypad is adopted in SlidePIN, orientation time
in SlidePIN will be longer than that in traditional 4-digit PIN mechanism.

Unlock Time. Sliding is faster than clicking, however, as a random numeric
keypad is introduced and input sequences become longer, unlock time is in-
creased.

Sliding is faster. Clicking input can be considered as a task sequence consisting
of multiple single tasks. Each of these tasks can be described by Fitts’ Law [20,
21] as entering a single character by clicking. Similarly, slide input in SlidePIN
can be regarded as a task sequence including tasks that require sliding over a
character. Accot and Zhai have already proved that Fitts’ Law is applicable in the
case of slide input and sliding across target characters is faster than clicking.[22]

Input Sequences Become Longer. An input sequence contains 6 characters rather
than 4, including not only 4-digit PIN but a start point ’*’ and a end point ’#’,
which partly counteracts the advantage in input speed brought by slide input
method.

Random Numeric Keypad Increases Unlock Time. When using a random keypad,
some users tend to skip this observation process and input immediately as they
get the keypad layout. In this case, it will take them longer to search for next
target character after one has already been input.

A random numeric keypad apparently cannot help users form fixed gesture
and relevant memory to faster unlock after use experience is accumulated. How-
ever, movement that is easy to be transformed into stable memory is subject to
attack.

Error Rate. SlidePIN system is more complicated than 4-digit PIN system,
which leads to a slight increment on the error rate of unlocking by using SlidePIN.
Error rate increases mainly because: 1) Certain range of input sequence length
has been set up in SlidePIN. 2) Start point ’*’ and end point ’#’ is required
during each slide. 3) Participants in our experiments are not familiar enough
with this novel mechanism.
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5 Experimental Analysis

To evaluate the usability and security of SlidePIN, we recruited 20 students
as volunteers to conducted relevant experiments including sequence length ex-
periment, unlock experiment and attack experiment. Based on data obtained
from these experiments, we analyzed the reasonable range of slide sequence, dis-
tance between two digits of a PIN, orientation time, unlock time, error rate and
the capability of SlidePIN against multi-time shoulder surfing attacks.

5.1 Experiment Design

Settings. We designed and implemented an app as experiment software to
conduct sequence length experiment and unlock experiment. The app is deployed
on a ZTE U930 smartphone (4.2 inches screen, 960 * 540 resolution, Android
4.0).

Volunteers. we recruited 20 students from different majors as volunteers, rang-
ing in age from 18 to 26 (average: 24). 8 were female and 12 were male and all of
them have 2 more years experience of using a smartphone and a unlock system.

Fig. 6. Experiment Flow Chart

Description.

Preparation.

1. A quick training on how to correctly use SlidePIN is provided to volunteers.
They could practise for 5 minutes before experiments formally started.
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2. Some essential operation protocols, for example, sliding from ’*’ and ending
with ’#’, were additionally emphasized.

3. PINs used in the experiments are randomly generated to avoid the negative
effects brought by the preference of users.

Sequence Length Experiment Process. As mentioned above, the sequence length
has effects on security and usability. So we carried out an experiment to analyze
sequence length and distribution.

Fig. 7. Sequence Length Experiment UI

In this experiment, according to a 4-digit PIN randomly generated on the
screen, each volunteer slid to input the PIN six times without any limitation
on slide sequence length, as showed in Fig.7. Due to different keypad layouts
generated randomly, one PIN maps to 6 different slide sequences with different
sequence length. The slide sequences, sequence length, PINs and layouts are
recorded by experiment software in real time for further analysis.

Table 1. Group Setting of Unlock Experiment

Method Traditional Keypad Random Keypad

Click Group 1 (Traditional 4-digit PIN) Group 2

Slide Group 3 Group 4 (SlidePIN)

Unlock Experiment Process. In unlock experiment, each volunteer needs to fin-
ish inputing each PIN in 4 different groups and for each PIN, 6 more times are
conducted. Limitation of sequence was set up ranging from 9 to 15. The slide se-
quences beyond this limitation were identified as a invalid slide sequence leading
to a failure unlocking.

A 2-second countdown is set before keypad appears. As soon as the count-
down ends, a timer will start to record orientation time till volunteers touch the
keypad and begin to input.
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The duration from the screen being touched to unlocking being successfully
finished would be recorded as unlock time. Otherwise, times of failure would
be recorded. Application calculates the error rate and exits after 6 successful
unlocking.

Attack Experiment Process. Based on slide sequences obtained from unlock ex-
periment, attack experiment is conducted to evaluate SlidePIN’s security against
multi-time shoulder surfing attack. The minimum quantity of slide sequences
that can help one get the PIN statistically is evaluated by comparing LCS
(Longest Common Subsequence) of them with the PIN.

5.2 Experiment Analysis.

Fig. 8. Distribution of Sequence Length

Sequence Length Experiment. Based on statistical calculation, the average
of sequence length is 11.46, approximate to the theoretical value 11.55. Mean-
while, according to the previous section, the average distance between keys is
2.49 and the standard deviation is 1.16.

As Fig.8 shows, 9.0% of sequences are shorter than 9 (lower threshold), which
means that setting lower threshold to 9 leads to a loss on usability.

Additionally, all sequences are equal or shorter than 17. Only 4.1% are longer
than 15 (upper threshold), while sequences with 15 has reached 9.8%. So it’s
reasonable to set the upper threshold 15 to improve usability.

Based on theoretical and experimental analysis, it is a good tradeoff to set 9
as the lower threshold and 15 as the upper threshold. Nearly 13.1% of valid se-
quences are excluded in this case, which compromised usability a little, however,
the security is greatly improved.

Unlock Experiment.
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Orientation Time. We collect 4 groups of data about orientation time from
unlock experiment and put corresponding points on both sides of a time axis.
Then a diagram (Fig.9) describing distribution of orientation time is generated.
On each axis, ignoring the points with large error by setting up a threshold value
marked on the axis leads to a result of higher accuracy.

Fig. 9. Orientation Time

According to Fig.9 and Table 2, average orientation time in Group 2 and 4 is
longer than in Group 1 and 3, which demonstrates that random keypad increases
orientation time. However, orientation time in click input is approximate to that
in slide input, which means slide input method has almost no effect on orientation
time. Finally, SlidePIN has limited impact on orientation time, compared with
4-digit PIN mechanism.

Table 2. Orientation Time (s)

Groups Average Standard Deviation Threshold Value

1 0.687 0.133 0.989

2 1.064 0.199 1.510

3 0.798 0.293 1.846

4 1.186 0.225 1.713

Unlock Time. According to Table 2, we can conclude that ”random keypad”
leads to additional unlock time. Volunteers are more familiar with traditional
4-digit PIN mechanism. Besides, more digits, start point ’*’ and end point ’#’
included, need to be input in SlidePIN. Consequently, the slide input method is
not the main reason that increases the unlock time.

The average distance of two numbers to input is 2.49, we can find that average
elapsed time between two input in Group 4 (SlidePIN) is longer than that in
Group 1 (4-digit PIN) by only about 0.14 second. Even if target characters have
reached 6 after bring in start point and end point, the average unlock time of
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Fig. 10. Experiment Result of Unlocking Time with Fitts’ Law

SlidePIN, 3.552 seconds4, is longer than that of traditional 4-digit PIN, 1.597
seconds, by less than 2 seconds according to calculation based on data collected
in this experiment.

Table 3. Regression Equation on Sliding

Groups Regression Equation

1 T = 0.182*ID + 0.153, a = 0.153, b=0.182

2 T = 0.165*ID + 0.234, a = 0.234, b=0.165

3 T = 0.272*ID + 0.015, a = 0.015, b=0.272

4 T = 0.185*ID + 0.314, a = 0.314, b=0.185

Error Rate. Calculating the error rate, we can conclude that SlidePIN has higher
error rate than traditional 4-digit PIN and that both ”random keypad” and ”slide
input” separately have negative effects on error rate.

Table 4. Error Rate

Groups Group 1 Group 2 Group 3 Group 4

Error Rate 1.67% 3.33% 7.69% 13.04%

In Group 4, 69 input samples are valid for evaluating and 9 of them failed,
which makes the error rate reach 13.04%. And in all of these 9 samples, the

4For consecutive input tasks, input time can be calculated based on

Tn = N × a + b× k =
n−1∑
k=1

log2(
Dk,k+1

W
+ 1),

where W represents the offset on the movement direction, N represents the number of
characters and Dk,k+1 represents the distance between the k-th and the (k+1)-th keys
[20]
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sequence length was less than 9, the lower threshold of sequence length. Based
on the sequence experiment described above, length of 13.1% input sequences is
beyond the sequence length limitation, which is of high resemblance with error
rate. According to this, we believe that it is closely related to length limits of
slide sequence and that as the experience of using SlidePIN is accumulated, the
error rate will simultaneously increase.

Attack Experiment. We evaluate the SlidePIN’s capability of withstanding
multi-time shoulder surfing attacks or statistical attacks by calculating the LCS
of slide sequences and when the length of LCS is reduced to 4, we believe that
the PIN is exposed. In this experiment, we chose the first 10 valid slide sequences
from the previous experiment and calculated the LCS of their slide sequences
with incremental quantity till the PIN was exposed, as is shown in Table 5:

Table 5. LCS Analysis (”4” means PIN has been exposed)

Volunteer ID a b c d e f g h i j

LCS length of 2 slide sequences 6 6 6 6 7 6 6 7 6 4

LCS length of 3 slide sequences 5 5 4 4 4 4 4 5 4

LCS length of 4 slide sequences 4 4 4

As is showed in Table 5, a PIN was successfully extracted from 2 sequences
involved in just one sample and in many cases, 3 or 4 sequences were necessary for
extracting the 4-digit PIN. Thus SlidePIN performs better at resisting multi-time
shoulder surfing attacks (statistic attacks) than tradition 4-digit PIN mechanism.

6 Discussion

PIN Storage and Input Sequence Verification. Hash encryption methods
like MD5 are not feasible in SlidePIN for PIN storage and verification. Consider-
ing both the security of users’ credentials and the practicability on smartphones,
we provide a solution as follows:

PIN Storage: The device ID of a smartphone is chosen as the identity and a
secret key is calculated based is as well as the user’s PIN, and then the key is
stored after encryption.

Verification: The plaintext of the PIN is obtained and then it will be com-
pared with the input sequence. If the PIN is one of subsequences contained in
the input sequence, then authentication is passed.

Fixed Start Point and End Point. SlidePIN demands users to slide from ’*’
and end with ’#’, which makes users input 6 target characters. Although slide
input costs less time than clicking, additional digits make negative effects on
duration of a complete process of unlocking. However, if terminal points ’*’ and
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’#’ are not demanded, part of users prefer to slide from the first digit of their
PIN and to the last one, which leads to an impairment on security of SlidePIN
because merely two digits are concealed during a sliding with the first one and
last one exposed.

Same Adjacent Digits. PINs with same adjacent digits are supported in
SlidePIN. Given that PIN is ’1158’, the user needs to slide away from the first
’1’ to others and then slide back to ’1’ making the input sequence ’11’. However,
we highly recommend users to use PIN with no same adjacent digits in SlidePIN
to improve both security and usability.

Smudge Attack. A smudge attack [19] is a method to discern the PIN or pass-
word pattern of a touchscreen device such as a smartphone or tablet computer.
SlidePIN adopting a random numeric keypad, different slide tracks and keypad
layouts will be generated each time users slide, which makes SlidePIN effectively
resist smudge attack.

Attacks Based on Features. Besides unlock sequences captured by shoulder
surfing attack, users’ precise features (e.g. angles and dwell time of single digit of
slide sequences) can be captured and analyzed to attack SlidePIN. For instance,
if a user tends to take a sudden turn on a specific character when sliding, it is
of high possibility that this character is one digit of the PIN.

Attacks targeting weakness of human-computer interface discussed in this
paper can hardly accurately capture those features. We plan to evaluate the
how the attacks based on precise features will affect SlidePIN in our future
work.

7 Conclusion and Future Work

SlidePIN performs better than 4-digit PIN against shoulder surfing attacks.
At the same time, it has acceptable usability.

In the future work, we plan to conduct more research on numeric keypad
layouts and using experiences to find out their impacts on usability and security.
In addition, we will try to design SlideText based on English letters.
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Abstract. Password is the foremost mean to achieve data and computer security. Hence,
choosing a strong password which may withstand dictionary attacks is crucial in estab-
lishing the security of the underlying system. In order to ensure that strong passwords
are chosen and that they are periodically updated, system administrators often rely on
password auditors to filter weak password digests. Several tools aimed at preventing di-
gest misuse have been designed to aid auditors in their task. We however show that the
objective remains a far cry as these tools essentially reveal the digests corresponding to
weak passwords. As a case study, we discuss the issues with Blackhash, and develop
the notion of Private Password Auditing — a mechanism that does not require a system
administrator to reveal password digests to an external auditor and symmetrically the dic-
tionaries remain private to the auditor. We further present constructions based on Private
Set Intersection and its variant, and evaluate a proof-of-concept implementation against
real-world dictionaries.

Keywords: Password, Auditing, Password cracking, Private Set Intersection, Private Set
Intersection Cardinality.

1 Introduction

Passwords are pervasive to data and computer security. However, despite their utmost reliance
on passwords, users often deliberately choose one which is common and easy to remember.
This has been confirmed by the data leakages over the recent past1. In addition to revealing
the password habits of users, these leakages have further increased the number of dictionar-
ies containing common and weak passwords. These dictionaries form the basis of password
cracking tools such as John the Ripper2 and Hashcat3. Furthermore, Narayanan et al. [5] show
that as long as passwords remain human-memorable, they are vulnerable to “smart dictionary
attacks” even when the space of potential passwords is large.

The advances made in password crackers and the ever evolving dictionaries have forced
system administrators to take drastic measures to protect their users. Password auditing is one
of them. System administrators periodically audit system passwords to inform users to change
their passwords in case they are found to be weak (with respect to the available dictionaries
and the cracking tools). Typically, they extract password digests from systems and then they
themselves perform an internal audit. Another alternative is to outsource this task to an expert
third-party security auditor or to an in-house security team. Since a system administrator has

1 http://bit.ly/19xscQO
2 http://openwall.com/john/
3 http://hashcat.net/oclhashcat/

http://bit.ly/19xscQO
http://openwall.com/john/
http://hashcat.net/oclhashcat/


privileged access to several sensitive user information, revealing the weakness of a user pass-
word to him may lead to massive security breach. Furthermore, considering the expertise of
external auditors and to ensure transparency of the process, the latter approach to auditing is
often preferred.

Several proprietary tools such as l0phtcrack.com as well as free softwares have been
developed to aid password auditors. Most of these auditing tools go beyond determining whether
a password is weak. For instance, they also allow the auditor to verify whether the passwords
are periodically changed by the users. Some free softwares, a notable example being Black-
hash [1], are essentially restricted to knowing whether system passwords are weak. However,
these tools can be easily adapted to perform a full scale auditing.

While tools capable of performing full scale auditing require the password digests of all the
users, some specialized tools such as Blackhash claim to filter weak passwords without having
access to the full digests. Contrary to the claims, we highlight that these password auditing
tools, in particular Blackhash require the system administrator to reveal the password digests
corresponding to easy-to-crack passwords. Eventually, these tools require the administrator
to reveal weak passwords. A malicious auditor may use these passwords for his own benefit
before reporting its potential weakness to the administrator.

To this end, we present Private Password Auditing: a mechanism that allows a user or a
system administrator to filter weak passwords from the password digests without revealing
the digests to the auditor. Furthermore, the dictionaries used for auditing remain private to the
auditor. The presented tool relies on Private Set Intersection [4] and Private Set Intersection
Cardinality [3]. We finally evaluate the performance of a proof-of-concept implementation of
the tool. This leads us to the conclusion that in the general auditing scenario, private password
auditing tools are practical.

2 Password Auditing

Password auditing may be considered as a preventive mechanism to resist password crack-
ing tools. In its restricted form, password auditing consists of determining whether any of the
system passwords are weak and hence susceptible to cracking tools. This is essentially per-
formed with the help of an auditor who uses dictionary based tools to filter weak digests. In the
following we present existing approaches to password auditing of this kind and analyze their
weaknesses.

2.1 Naive Approach

A naive approach to password audit would typically involve extracting password digests from
systems and then sending them to a third-party security auditor or an in-house security team.
The auditor relying on tools such as John the Ripper or Hashcat may easily uncover potentially
weak passwords. However, such an approach ensues serious risks. The password digests may
be lost or stolen from the security team. Furthermore, a rogue security team member may
secretly make copies of the password digests and may mount pass-the-hash attacks. Worse,
some of these digests may correspond to easy-to-crack passwords. The auditor may recover in
clear the weak passwords and use it for malicious purposes before reporting it to the system
administrator.

Consequently, it is hard to guarantee that the password digests are handled and disposed
of securely and that access to the digests is not abused. Indeed, only the system administrator
and his team should have access to password digests. Extracting the digests and giving them to
someone else fundamentally compromises the security of the system.
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2.2 Auditing Without Full Hashes

This kind of auditing checks system digests for weak passwords without actually having access
to the full digests. A notable example is Blackhash [1], which is based on Bloom filters [2]. In
the following we briefly describe Bloom filters and in the sequel we present Blackhash.

Bloom Filter. Bloom filter [2] is a space and time efficient probabilistic data structure that
provides an algorithmic solution to the set membership query problem, which consists in de-
termining whether an item belongs to a predefined set.

Classical Bloom filter as presented in [2] essentially consists of k independent hash func-
tions {h1, . . . , hk}, where {hi : {0, 1}∗ → [0,m− 1]}k and a bit vector z = (z0, . . . , zm−1)
of size m initialized to 0. Each hash function uniformly returns an index in the vector z. The
filter z is incrementally built by inserting items of a predefined set S . Each item x ∈ S is
inserted into a Bloom filter by first feeding it to the hash functions to retrieve k indices of z.
Finally, insertion of x in the filter is achieved by setting the bits of z at these positions to 1.

In order to query if an item y ∈ {0, 1}∗ belongs to S, we check if y has been inserted into
the Bloom filter z. Achieving this requires y to be processed (as in insertion) by the same hash
functions to obtain k indexes of the filter. If any of the bits at these indexes is 0, the item is not
in the filter, otherwise the item is present (with a small false positive probability).

The space and time efficiency of Bloom filter comes at the cost of false positives. If |S| =
n, i.e. n items are to be inserted into the filter and the space available to store the filter is m
bits, then the optimal number of hash functions to use and the ensuing optimal false positive
probability p satisfy:

k =
m

n
ln 2 and ln p = −m

n
(ln 2)

2
.

Blackhash

Blackhash [1] is a tool for restricted auditing of passwords, i.e. check for weak password
digests in the system file without having access to the full digests. It works by building a
Bloom filter from the system password digests. The system manager extracts the password
digests and then uses Blackhash to build the filter. The filter is saved to a file, then compressed
and given to the audit team. The audit team maintains a set of dictionaries of weak passwords
against which the password digests are to be tested. Upon reception of the filter, the auditor
simply checks for each entry of the dictionary, whether or not it is present in the filter. If weak
passwords are found to be present in the filter, the security team creates a weak filter of these
passwords and sends it back to the system manager. Finally, the system manager tests the weak
filter against the system digests to identify individual users with weak passwords.

Bloom filter parameters. The filter size m to store the system digests is 226 bits, and can
accommodate up to 1 million digests. The number of hash functions k = 2, and the hash
functions employed are either MD4 or MD5. Developers claim to achieve a false positive
probability of 0.0008. Clearly, these parameters are not optimal. To achieve a false positive
probability of 0.0008 for 1 million digests, a filter of size 14, 842, 031 ≈ 224 bits is required.

Issues with Blackhash. Developers claim that Blackhash does not reveal password digests
to the auditor. Hence, it constitutes a better and secure tool compared to the naive approach.
Contrary to the claim, using a Bloom filter of password digests instead of full digests does not
improve user’s privacy. The most serious issue with Blackhash is that the auditor while finding
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the weak passwords with the help of dictionaries actually retrieves the weak passwords in clear.
To paraphrase, Blackhash requires the system administrator to reveal the weak passwords.
Furthermore, due to the false positive probability of Bloom filters, strong passwords might get
detected as being weak. Keeping the false positive probability extremely low however comes
at the cost of space/time required to store/query the filter.

3 Private Password Auditing (PPA)

In the previous section, we highlighted the issues with Blackhash. The most serious one being
that, it requires the administrator to reveal weak passwords. To this end, we propose Private
Password Auditing (PPA), a mechanism which does not require a user or the administrator to
reveal password digests while auditing. Two scenarios may be considered where PPA may play
important role:

Multi-user scenario: There is a system administrator with a list of system password digests
and wishes to know the ones which correspond to easy-to-crack passwords. Once these
passwords are identified, the respective owners are contacted and asked to change their
passwords.

Single user scenario: There is a user who wishes to know whether his password digest is
easy-to-crack.

We suppose that auditing in both the scenarios is performed with the help of an external
auditor who may be malicious and that auditing is restricted to verifying whether provided
password digests contain weak ones. We also suppose that the auditor performs a dictionary
based password cracking, i.e. the auditor checks whether a password digest corresponds to the
digest of a word in the given dictionary (or a set of dictionaries).

Privacy guarantees. In addition to the fact that the user or system digests are not revealed
to the auditor, the external auditor himself may not wish to reveal the dictionaries he uses for
password auditing. This is usually the case for proprietary tools. Hence, PPA simultaneously
ensures privacy for both the system administrator/user and the auditor. The digest(s) hence
remain private to the user/administrator and symmetrically, the dictionaries used for auditing
remain private to the auditor.

In the following, we present construction of a PPA tool that relies on a primitive called
Private Set Intersection and its variant. The construction can be seen as an application of
private set intersection in password auditing. We succinctly present private set intersection
protocols and in the sequel we present its variant called Private Set Intersection Cardinality.
For each primitive, we discuss its applicability to private password auditing.

3.1 PPA based on Private Set Intersection

Private Set Intersection (PSI) considers the problem of computing the intersection of pri-
vate datasets of two parties. The scenario consists of two sets U = {u1, . . . , um}, where
ui ∈ {0, 1}` and DB = {v1, . . . , vn}, where vi ∈ {0, 1}` held by a user and the database-
owner respectively. The goal of the user is to privately retrieve the set U ∩ DB. The privacy
requirement of the scheme consists in keeping U and DB private to their respective owner.
There is an abounding literature on novel and computationally efficient PSI protocols. The
general conclusion being that for security of 80 bits, protocol by De Cristofaro et al. [4] per-
forms better than all other protocols, while for higher security levels, other protocols supersede
the protocol by De Cristofaro et al.
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PSI provides a primitive to design a PPA tool in the multi-user scenario where a sys-
tem administrator has a list of system digests and wishes to know the digests which cor-
respond to weak passwords. We suppose that the auditor has a dictionary of weak digests
DB = {w1, . . . , wn} and the administrator owns the digest set U = {d1, . . . , dm}. Then by
invoking a PSI protocol on the sets, the administrator may know the digests which are easy-to-
crack. The security of PSI ensures that the sets remain private to their respective owner.

3.2 PPA based on Private Set Intersection Cardinality

Private Set Intersection Cardinality (PSI-CA) is a variant of PSI where the goal of the client is
to privately retrieve the cardinality of the intersection rather than the contents. While generic
PSI immediately provide a solution to PSI-CA, they however yield too much information.
While several PSI-CA protocols have been proposed, we concentrate on PSI-CA protocol of
De Cristofaro et al. [3], as it is the most efficient.

PSI-CA builds a PPA primitive in the single user scenario, where a user wishes to know
if his password is weak with respect to the existing dictionaries. As earlier, the auditor has a
dictionary of digests DB = {w1, . . . , wn} and the user owns a digest d. Clearly, invoking an
instance of PSI-CA protocol on the sets, the user may privately know if his password digest is
easy-to-crack: if the intersection set is of cardinality 1, then the password digest is weak. The
security of PSI-CA again ensures that data remain private to their respective owner.

4 Practicality of PPA Tool

We implemented the PSI protocol by DeCristofaro et al. [4] and the PSI-CA protocol of [3],
since they are the most efficient. Recommended parameters of |p| = 1024 and |q| = 160 bits
have been used for PSI-CA, while an RSA modulus of 1024 bits has been considered for PSI.
For both the primitives, SHA-1 hash function has used for signatures. These parameters ensure
a security of 80 bits in the semi-honest adversary model.

We evaluated PPA tools based on these protocols and compared their performance with
Blackhash. The tests were performed on a 64-bit processor desktop computer powered by an
Intel Xeon E5410 3520M processor at 2.33 GHz with 6 MB cache, 8 GB RAM
and running 3.2.0-58-generic-pae Linux. We have used GCC 4.6.3 with -O3
optimization flag. The implementation uses GMP library4 v4.2.1.

For Blackhash and PSI based tool, we fix the number of system digests to be 59, 169.
This corresponds to a representative data provided with the Blackhash source code. In order
to evaluate the performance of the techniques, we tested these implementations against real-
world dictionaries of varied sizes, from 100 entries up to 14 million entries. The dictionaries
are presented in Table 1a.

Table 1b presents the results obtained for unsalted SHA-1 password digests. We observe
that while Blackhash is not privacy-friendly, it is the most efficient. This is due to the time
efficiency of the underlying Bloom filters. PPA tool based on PSI-CA is faster than Blackhash
for smaller dictionaries since PSI-CA considers only one digest. Moreover, even for moderately
large dictionaries (2M), the audit time remains very practical, i.e. 3 mins. PSI based tool incurs
considerable cost for large dictionaries. In fact, both PSI and PSI-CA based private auditing
against large dictionaries are suitable in the settings where password auditing is not supposed
to be instantaneous, which usually is the case. Indeed a security audit may last for days.

4 https://gmplib.org/
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Table 1: Dictionaries used and the results obtained for 59, 169 unsalted system digests.

(a) Dictionaries used.

Dictionary # entries
Top-100 100
John the Ripper (JtR) 3107
Xato Top-10k (Xato) 10,000
Cain & Abel (C&A) 306,706
Dazzlepod 2,151,220
RockYou 14,344,391

(b) Cost incurred by different auditing tools.

Time
Tool Top-100 JtR Xato C&A Dazzle. RockYou

Blackhash [1] 6s 6s 6s 15s 1m 2m

PPA
PSI-CA [3] 47ms 359ms 1s 28s 3m 23m

PSI [4] 1m 1m 2m 6m 37m 4h

We highlight that auditing of salted digests is very similar to the unsalted ones. To this
end, we assume that the salts are public and hence known to the auditor. In case of single user
digest, the auditing time remains largely unaffected. While in the multi-user scenario, the size
of the set on the auditor’s side gets increased by a factor of m to incorporate the salt of each
user, where m is the number of users. The auditing time hence is increased by a factor ≈ m.

5 Conclusion

In this work, we discussed the issues faced by system administrators in face with malicious
auditors. The existing password auditing tools essentially require the system administrator or
the user to reveal weak passwords. While password auditing tools like Blackhash may prevent
pass-the-hash attacks, they are yet susceptible to revealing weak passwords to the auditor. Con-
sidering the extreme sensitivity of passwords, more secure means must be deployed to ensure
the privacy of passwords. To this end, we provide a private password auditing tool which does
not require the user to reveal the password digests to the external auditor. Symmetrically, the
auditor keeps his dictionaries private. The tool is based on private set intersection and its vari-
ants. An evaluation reveals that privacy friendly tools are practical in scenarios where password
auditing is not instantaneous (which usually is the case). We highlight that the primitives used
in PPA require heavy public key operations, a future work consists in designing efficient and
dedicated PPA protocols relying only on symmetric cryptographic primitives.
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Abstract. Most visual code authentication schemes in the literature
have been shown to be vulnerable to relay attacks: the attacker logs into
the victim’s “account A” thanks to credentials that the victim provides
with the intent of logging into “account B”. Visual codes are not hu-
man readable and therefore the victim cannot distinguish between the
codes for A and B; on the other hand, codes must be machine-readable
in order to automate the login process. We introduce a new type of vi-
sual code, the SAVVIcode, that contains an integrity-validated human-
readable bitmap. With SAVVIcode, attackers have a harder time swap-
ping visual codes surreptitiously because the integrity check prevents
them from modifying or hiding the human-readable distinguisher.

1 Introduction

A current area of research in the field of authentication is visual code authenti-
cation schemes (VCASs). In such schemes, the user logs into a remote system
by acquiring a visual code with a scanning device rather than (or, sometimes, in
addition to) typing a password. Examples of such systems include Snap2Pass [5],
our own Pico [9], tiQR [10], QRAuth [1] and SQRL [6], as well as patents filed by
GMV solutions [2] and Google [4]. The “visual code” is a kind of two-dimensional
barcode — often the QR-code that modern smartphones are already equipped
to decode. Indeed, in many of the authentication schemes above, the device that
scans the visual code is the user’s smartphone.

Jenkinson et al [7] have shown that, without an additional out-of-band secure
communication channel from the device to the terminal, these schemes are in-
herently vulnerable to “Mafia fraud relay attacks” when they use existing types
of visual code.

We propose an extension to visual codes that prevents an attacker from
undetectably substituting a visual code for another. By making any attacks
obvious to the user, we hope this mechanism will greatly reduce the likelihood
that such attacks can succeed.

Pre-proceedings version. Do not circulate.
Final version to appear in Proceedings of Passwords 2014, Springer LNCS.
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2 The problem: Mafia Fraud Relay Attacks

Jenkinson et al [7] outline the typical operation of a VCAS, which we summarize
as the following exchange of messages between Website (W ), Browser (B) and
Scanning device (S) owned by user (U), using session identifying nonce nrecipient:

Scanner Browser Website

S B W

1. W −→ B : W,nB

2. B −→ S : W,nB (visual channel)
3. S ←→W : authentication
4. S −→W : nB , U
5. B −→W : nB

6. W −→ B : authenticates as U

A mafia attack, first described as such by Desmedt et al [3], introduces a two-
faced man-in-the-middle attacker A. With one face, A masquerades as a website
W ′ to browser B and its user U , while with the other it masquerades as a browser
B′ to the original website W . In the example of Jenkinson et al [7], website W
is a bank where user U has an account, whereas the attacker-controlled website
W ′ is an online gaming forum where U has another account. The attacker A
thus tricks the victim U into believing they’re logging into forum W ′, whereas
in fact they are giving A the credentials to log into bank W .

Attacker A

Gaming forum Bank
S B W ′ B′ W

1. W −→ A : W,nA

2. A −→ B : W,nA

3. B −→ S : W,nA (visual channel)
4. S ←→W : authentication
5. S −→W : nA, U
6. A −→W : nA

7. W −→ A : authenticates as U

Note in step 3 that the browser B need not be aware that it is transmitting
information to the scanning device S, as it may simply show a pre-rendered
image of a visual code, so cannot detect that it is allowing authentication to a
different service.

The practical implication of this attack is that, if a scanning authenticating
device S holds credentials for multiple services, one of which an attacker can
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successfully impersonate or modify, then the attacker could cause the S to au-
thenticate the attacker’s browser B′ to a high-value service W , while the user
imagines themself to be authenticating to a lower-value service W ′. This is sim-
ilar to a phishing attack but differs in that the user can’t distinguish between
being asked to authenticate to the bank or to the gaming forum, because visual
codes are not human readable and all look alike to users.

In theory, this attack only applies to visual codes: users would not type their
banking password into their gaming forum login page because the contexts don’t
match. But in practice the attack would also work, without visual codes, against
victims who reuse passwords across high and low value web sites.

Our proposal is to bind some context to the visual code, thus alerting users
when an authentication visual code is being presented in the wrong context.

3 Our solution: the SAVVIcode

The mafia attack is possible when a visual code does not have to match its
context. If the scanner could recognise when a code is displayed in the wrong
context, it could stop this attack. In the general case, this is a hard problem
involving computer vision and contextual knowledge. We simplify it by observing
that:

1. A scanner that can read a visual code must inherently be able to read “pixels”
of a given size, as it must read the matrix of the visual code itself.

2. As in a visual code, a pixel matrix can be serialised into a string of bits.
3. Even if text is pixellated and blocky, humans can very easily read it – and

will do so effortlessly.
4. It is difficult for a person to scan a visual code without looking at it, therefore

any obvious text alongside the code will most likely be read by the user.

These observations suggest a solution initially outlined by the first author [8]
whereby an image is placed above the visual code at the same block-resolution.
It should appear as text or an image identifying the service requiring authenti-
cation.

At this point we assume that the remote service has an “identity keypair”
which it uses to prove its identity—either through a Public Key Infrastructure,
or without one as in Pico. This key can be used to sign the serialised image and
the payload of the visual code. This signature should be included in the visual
code, allowing a scanner to determine if the scanned image matches the one
intended for display alongside the visual code. If we assume a hacker cannot, in
reasonable time, forge a valid signature, then, under this scheme, a valid visual
code cannot be displayed without revealing the image that its creator wanted the
user to see. This ensures that a mafia attack is easily evident to the user before
it occurs. We name the image described a Serialised And Visually Verified Image
Code or SAVVIcode, and suggest that it should be hyphenated with the visual
code type used, e.g. QR-SAVVIcode when used with a QR code.
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It is worth noting that multiple systems could very easily choose to display the
same image at the point of logging in. This is, however, no risk to the scheme as
their authentication credentials would be different, and thus the authentication
device would not authenticate to one as if it were the other. In other words, the
malicious online forum operator may well say “I’m your bank” in the picture of
his SAVVIcode (but that’s not going to entice the user to log in to the forum);
what he cannot do is to modify the bank ’s SAVVIcode to say “I’m the online
forum”, because then the bank’s signature would not verify.

The picture below exemplifies what a QR-SAVVIcode might look like. It
consists of a QR code containing a payload, a public key and a signature, and an
image above containing text and a number of patterns that may be used to detect
the bounds. As the QR code itself contains finding patterns which will align the
reader, only rudimentary additions should be required on the SAVVIcode.

4 Challenges and future work

Many visual codes, including at least QR-code, Aztec, Data Matrix and Maxi-
code, use Reed-Solomon error correction to compensate for inaccuracies in the
decoded bit-stream,1 thus allowing a significantly less than perfect scan to re-
cover the original contents. For a SAVVIcode to be effective, however, we don’t
want error correction to allow an attacker to pass a modified code for a genuine
one, so we must be careful.

To clarify, the attack would consist of taking the bank’s SAVVIcode, whose
human-readable text says “I’m the bank”, then modifying that text to say “I’m
the online forum” but with sufficiently few pixel changes that the error correction
would still accept it as a slightly noisy version of “I’m the bank”, thus allowing

1 Another mechanism used by visual codes to improve scanning accuracy is to use
encodings that break up large contiguous blocks of the same colour. The SAVVIcode
does not use this method for resynchronisation because we want the bitmap to be
immediately readable, even without meaning to, by the person scanning the code.
We thus want a high-contrast bitmap in which the black ink stands out against a
background of white space.
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the signature to verify. The attacker would have then succeeded in persuading
the user that they are logging in to the online forum (because the text says
so and the digital signature verifies OK) while instead they’d be logging the
attacker into the bank. We must absolutely prevent this.

We propose two approaches to implement a SAVVIcode. Their trade-offs
should be evaluated and compared after writing prototype implementations.
In both cases a free-form bitmap is drawn in an area above the main visual
code, within a border with reference markers, as in the previous picture. The
recognition software that turns the main visual code image into a boolean matrix
is modified to recognize and digitize this extended region as well.

In the first approach, the free-form bitmap is also compressed and appended
to the original payload; the whole payload is then digitally signed before being
encoded in the main visual code. The SAVVIcode thus contains two versions of
the bitmap: one that is also human-readable but whose integrity is not digitally
protected, and one embedded in the code and digitally signed. The recognition
software must compare the two versions and the challenge is to ensure that
all fraudulent modifications of the human-readable version are detected by the
recognizer, while allowing for some amount of non-malicious bit errors.

In the second approach, a detached error detection and correction (EDC)
code for the free-form bitmap is generated. The concatenation of the serialized
bitmap, the detached EDC code and the original payload is digitally signed. The
concatenation of the detached EDC code, the original payload and the digital
signature (but not the serialized bitmap) is then encoded in the main visual
code. The recognition software thus extracts the bitmap, the EDC, the original
payload and the signature; then applies the EDC to the bitmap to correct errors;
then verifies the signature. This approach seems at first more robust, and carries
only one copy of the bitmap, but it is still vulnerable to the same attack. A
malicious adversary could subtly change the bitmap in a way that tricked the
human viewer; but then the EDC would “undo” those changes and allow the
verification to pass, yielding a false accept and thus a successful attack.

Fine-tuning the false accept (fraud) rate against the false reject (failure to
admit honest customers) rate is, as ever, going to be the crucial security trade-
off. The two approaches must be evaluated experimentally against malicious
alterations to determine which one offers the best characteristics.

Although the SAVVIcode makes the visual code partially human-readable, a
structural limitation of our strategy is its reliance on the alertness of the user. A
“rushing user” (the kind that wants to get on with their real work and presses
the OK button no matter what the annoying dialog box says) may well scan the
code without paying any attention to the bitmap. We recognize this limit. The
SAVVIcode is not an absolute defence against the man-in-the-middle attack on
visual code authentication, but we believe it is still an improvement on the status
quo: even though users may not pay attention to the bitmap, it is cognitively
difficult to scan the visual code without reading it (as in “Do not think of an
elephant!”). The SAVVIcode thus makes it difficult to mount the MITM attack
without someone noticing.
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5 Conclusions

Most visual code authentication systems (Pico excepted [7]) are vulnerable to
middleperson attacks. The SAVVIcode adds an integrity-protected human-readable
bitmap to the visual code. It is hard for a person to scan a SAVVIcode without
reading this bitmap and thus, while the scheme relies on the user’s cooperation,
such cooperation happens almost automatically.

While the protection offered by the SAVVIcode does not claim to be absolute,
it might prove remarkably effective compared to its modest cost of deployment.
We believe its adoption would greatly reduce the impact of the inherent vulner-
ability to Mafia relay attacks that affects most existing visual schemes.
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Abstract. Shared Cues is a password management system proposed
by Blocki, Blum and Datta at Asiacrypt 2013. Unlike the majority of
password management systems Shared Cues passwords are never stored,
even on the management device. The idea of the Shared Cues system
is to help users choose and remember passwords in a manner proven to
avoid brute force searching under reasonable assumptions.
Blocki et al. analysed Shared Cues theoretically but did not describe any
practical tests. We report on the design and implementation of an iOS
application based on Shared Cues, which we call PassCue. This enables us
to consider the practicality of Shared Cues in the real world and address
important issues of user interface, parameter choices and applicability on
popular web sites. PassCue demonstrates that the Shared Cues password
management system is useable and secure in practice as well as in theory.

1 Introduction

Passwords are used to secure valuable data for banking, voting, mail, social net-
works, commerce and enterprise resources. The typical user has multiple pass-
word protected accounts and needs to manage each password. As the number of
accounts increases, the management of passwords gets complicated. As a conse-
quence, many users tend to adapt weak password management schemes which
can significantly reduce the security of the system.

This problem has become widely understood in recent years and several pass-
word management schemes developed, in addition to methods for selecting pass-
words in a manner which can help users to remember the correct password for
a given account. However, until recently there has been no systematic method
to compare password management schemes with regard to either their usability
or their security. At Asiacrypt 2013 Blocki et al. [4] proposed a mathematical
model to address this deficiency. This model, which we call the BBD model from
now on, allows a quantitative comparison of both usability and security based
on assumptions about human memory and adversary capability.

A fundamental assumption of the BBD model is that persistent memory on
user devices (hard disks, tokens, mobile devices, cloud storage) is insecure. This
assumption rules out many popular password management systems as funda-
mentally insecure and requires that users store passwords in their own human
memory. Some may regard this assumption as too pessimistic and unnecessary,



but experience shows that it is realistic in general. Moreover, if a high level of
security and usability is achievable with this assumption then it is surely prefer-
able to assume that it holds. Given this assumption, the BBD model can be used
to compare systems based on two criteria.

Usability is measured by the expected number of extra rehearsals required by a
system. Extra rehearsals are reminders to the user memory which are addi-
tional to those that automatically occur when a user logs on to an account.

Security is measured by the adversary expected effort to crack a target pass-
word which includes three scenarios:
1. the attacker is offline and has access only to persistent memory;
2. the attacker has the ability to test passwords online up to a given limit;
3. the attacker has access to one or more passwords of the user (which in

general can be related in some way).

Having defined and explored their model, Blocki et al. [4] proposed a pass-
word management scheme called Share Cues. Shared Cues provides a good level
of security and usability as measured in the BBD model. However, despite a
thorough theoretical treatment in the model, until now it has not been imple-
mented. It has therefore been unclear whether it could successfully be used in
practice or whether there are obstacles to solve.

The main object of this paper is to determine how Shared Cues can be
designed and implemented in software in a manner that is both usable and
secure. We report on an implementation of Shared Cues as an iOS application
— we call our application PassCue. We solve the following specific issues which
arise in making the Shared Cues scheme into a real-world system.

– We choose suitable parameter values for the number and combinations of
private and public cues to achieve an acceptable balance of usability and
security.

– We identify and solve problems with password composition policies which
would otherwise prevent the Shared Cues system from being used with many
popular websites.

– We identify suitable ways to generate public and private cues for Shared
Cues on a typical mobile device.

Outline Section 2 presents the background including the security and usabil-
ity challenges with password management. Section 3 presents the Shared Cues
password management model. Section 4 covers the design of PassCue. Section 5
presents the analysis of the designed system.

2 Background

This section presents key concepts required to understand the design and analysis
of password management schemes, in particular the Shared Cues scheme.



2.1 Password Management Schemes

Informally we can regard a password management scheme as any method for
creating passwords intended to be stored in human memory. In the BBD model
such a scheme includes both a generator and a rehearsal schedule, the latter
being a necessary part of defining usability.

Strong passwords are hard for attackers to guess, but they are also hard for
users to remember. This results in the inherent trade-off between usability and
security [9]. Smith notes, “the password must be impossible to remember and
never written down” [22]. Wilderhain et al. [11] describe 15 different schemes and
compare them in terms of usability and security. Many password management
schemes are vague and unclear [11] in their description which may lead the user
to select a weak password.

Following Blocki et al. [4], we highlight five password management schemes;
Reuse Weak, Reuse Strong, Lifehacker, Strong and Independent and Randomly
Generated described in Table 1. We will use these for comparison later.

Table 1: Password Schemes
Scheme Password creation Use Example
Reuse Weak Select a word w randomly

from a dictionary
w for all accounts horse

Reuse Strong Select four words w1w2w3w4
randomly from a dictionary

w1w2w3w4 for all
accounts

appledoghorseblue

Lifehacker Select three words w1w2w3
randomly as base. Use a
derivation rule d() to derive
a string from account name

w1w2w3d(Aname)
unique for each
account

appledoghorsefac
d(A) is first three let-
ters of account name

Strong Random
and Indepen-
dent

Select four words w1w2w3w4
randomly from a dictionary

w1w2w3w4
unique for each
account

appledoghorseblue

Randomly Gen-
erated

Generate a random pass-
word using a password gen-
erator

random unique
for all accounts

bcxtabf2owale89n

2.2 Person-Action-Object

The human memory is limited in remembering sequences of items [14] and has
a short-term capacity of approximately seven items [20]. It has been shown that
humans remember well when the sequence of items is familiar chunks in words
or familiar symbols. The human memory is semantic [4], so in order to facilitate
usability the number of chunks should be minimized. The human memory can
be characterised as associative, which means that memories are associated with



other memories. We are more capable at remembering information we can encode
in multiple, redundant ways [28].

Mnemonic techniques are methods to help retaining memories and many such
techniques exist. The effectiveness of a technique is individual, and common
devices include music, names, pictures, expressions, words and models. It has
been shown that users can exploit mnemonic strategies in order to remember
passwords [3]. Blocki notes, “Competitors in memory competitions routinely use
mnemonic techniques which exploit associative memory” [4].

Models for the human memory [17,26,1] differ in some details, but all of them
model an associative memory with cue-association pair. Cues are the context in
which a memory is created. The cue can be a sound, surrounding environment,
a person, an object or anything that is associated with a specific memory. In
order to remember the password the user associates it with a cue. The human
memory is lossy, so the cue strength is often reduced as time passes. To prevent
the user from forgetting the cue-association pair, it is essential to create strong
associations and maintain them over time through rehearsal. The rehearsal pro-
cess should be as natural as possible, and a part of the users normal activities
so the usability is not decreased.

A Person-Action-Object (PAO) story is a mnemonic technique that consists
of a picture of a person, an action and an object. The person could, for example,
be Elvis Presley with the action shooting and the object banana. The resulting
PAO story would be; “Elvis Presley is shooting a banana”. The PAO pattern
is very simple and with randomly generated persons, actions and objects, the
story can be quite surprising [4]. It has been shown that memorable sentences
use strange combination of words in a common pattern [7]. A modified version
of the PAO mnemonic technique is used in Shared Cues. The modified version
also includes a picture of a place or a background type image.

2.3 Password Composition Policy

Password composition policies (PCPs) are used by system administrators, usu-
ally in order to prevent users from selecting weak passwords. While it is com-
monly understood that PCPs make passwords harder to guess, that is not always
the case [16,18] because a PCP not only affects the password, but also the user
behaviour. A policy that ensures a complex password could also lead users to
write down the password, adapt insecure management schemes [18] or be adverse
to password changes. Websites differ in their PCP, but common guidelines in-
clude use of: both lowercase and capital letters; a combination of letters, numbers
and special characters; passwords with minimum length.

PCPs vary and in some cases it is not possible to follow common guidelines.
The German bank Berliner Sparkasse and the financial services cooperation Fi-
delity are examples of websites that only allow alphanumerical characters. The
Bank of Brazil only allows numbers, and in Virgin Atlantic the passwords are
not case-sensitive [8]. Websites also put restrictions on which type of special
characters can be used and restrictions on maximum length. The banking com-



pany Charles Schwab has a password length limit of eight characters [15] and
Outlook.com has a maximum password length of 16.

PCPs can conflict with a password management scheme by disallowing pass-
words generated in the scheme. Problems can be that the password does not
include symbol types demanded by the policy or that it is too long (or possibly
too short). This can be a serious problem when implementing a password man-
agement scheme in the real world. Later we show how we solve this problem in
PassCue and analyze its implications.

3 BBD model and the Shared Cues scheme

The BBD model is based on a usability assumption about the human memory.
The assumption is that a user who follows a specific rehearsal schedule will
maintain the corresponding memory. This assumption has been proven successful
in different studies by using various rehearsal schedules [23,3,4].

The rehearsal schedule is necessary for keeping the cue-association pair (ĉ, â)
in associative memory. A rehearsal schedule is sufficient if the user maintains the
cue-association (ĉ, â) by following the rehearsal schedule [4]. A rehearsal schedule
is simply a sequence of times for each cue; the association with that cue must
be rehearsed within a window (for example, 1 day) around that time.

Definition 1 ([4]). A password management scheme consists of:

1. a generator which is a randomised function of the user’s knowledge (and can
also depend on the rehearsal schedule and user’s logon actions) and outputs
a set of cues c1, . . . , cm and associated passwords p1, . . . , pm; and

2. a rehearsal schedule which the user must follow for each cue.

3.1 Usability Model

The usability depends on the rehearsal requirement for each cue, visitation sched-
ule for each site and the number of cues the user needs to maintain. The usability
of the password scheme is measured in numbers of extra rehearsals, Xt,ĉ, the user
needs to perform to maintain the associations in memory. Block et al.[4] consider
three rehearsal assumptions;

Constant Rehearsal Assumption (CR): The rehearsal schedule is at a con-
stant rate. For example, rehearsals can be scheduled one per day.

Expanding Rehearsal Assumption (ER): The rehearsal schedule follows the
pattern 2i. For example, rehearsals can be scheduled on day 1, day 2, day 4,
day 8, and so on.

Squared Rehearsal Assumption (SQ): The rehearsal schedule follows the
pattern i2. For example, rehearsals can be scheduled on day 1, day 4, day 9,
day 16, and so on.



The CR assumes that memories are not strengthened every time the user re-
hearses, hence the user must rehearse every σ days. The ER and SQ in contrast,
assume that memories strengthen every time the user rehearses and therefore
the number of rehearsals decreases over time. Studies have shown that the avail-
ability of a memory is dependent on recency [2] and the pattern of previous
rehearsals. The difference between SQ and ER is not significant, but ER is
consistent with known memory studies [23,27]. Based on these observations we
follow Block et al. [4] and use ER as the basis of our PassCue implementation.

3.2 Security Model

Many breaches occur because users choose to put personal information in their
password, such as hobbies and birth dates, assuming that this information is
private. The BBD model assumes that the adversary has background information
about the user, in addition to the public cues c1, . . . , cm stored in persistent
memory and the details of the password management scheme. The secrecy of
the passwords lies in the random string used to generate the set of passwords —
in the Shared Cues scheme this corresponds to the randomly chosen association
between public cues and secret cues.

Measuring the security and password strength can be performed in differ-
ent ways. Min-entropy and password meters, which are often used to measure
password strength, have in several studies been proven to be a weak measure
of password security [4,6]. The BBD model measures the security of a password
management scheme by estimating the cost of guessing, cracking, the password
by a potential attacker. Three types of attacks are considered; online attack,
offline attack and plaintext leak attack.

In the Shared Cues system, as its name implies, cues are shared across ac-
counts in order to improve the usability because the number of cue-associations,
α, is reduced and the rate of natural rehearsals increases. A (n, l, γ) sharing
set family uses n separate cues (pictures) where each password consists of l
public/private cue pairs and no more than γ cues are shared between any two
passwords. Theorem 1 is the main security result proven by Blocki et al.[4], which
shows that public cues can be securely shared across accounts if the public cues
{c1, . . . cm} are a (n, l, γ) sharing set family.

Theorem 1 ([4]). Let {c1, . . . , cm} be a (n, l, γ) sharing set of m public cues
from the generator algorithm. If each association is chosen uniformly at random
then the success probability of an adversary, δ, is limited by

δ ≤ q

αl−γr
where

– q is the number of offline guesses performed by the adversary;
– l is the number of cues used per password;
– γ is the maximum number of shared cues between passwords:
– α is the number of number of cue-associations.



4 Design

This section presents the design choices, required to implement the Shared Cues
systems into the real implementation PassCue. We highlight the factors which
affect the security and usability of PassCue.

4.1 Public Cues
The PassCue system uses n public cues supplied by the user. Each of the public
cues consists of a picture of a known person and a picture of a known place/loca-
tion/background. One action and one object are randomly selected from a large
set and assigned to the public cue. The example in Figure 1 illustrates how a
public cue is assigned an association. In the example, the user selected a public
cue that consists of a trampoline and his grandmother. The randomly selected
action is surfing and the object is banana. The action and object represents the
association of the cue. The user should imagine his grandmother surfing a banana
on the trampoline in his garden. The association is private and only displayed
the first time a public cue is used. After initialization, the association is deleted
and non-retrievable. The user must keep the association in associative memory.
The next time this particular cue is used, only the public cue with a picture of a
trampoline and his grandmother will be visible. The user must remember what
the grandmother did on the trampoline.

Fig. 1: Creating a PAO-story

Since the association is only stored in the associative memory of the user, it
is important that the associations are strong. Studies have shown that people
tend to create stronger associations when they see pictures of people they know
and a place where they can imagine an action taking place [12]. In the PassCue
application pictures come from from the user phone when initializing the public
cues. In order to create strong association the user is forced to use private pictures
from the photo library.



4.2 Sharing Set

The distribution of the public cues to each account is performed using (n, l, γ)-
sharing sets where n is the total number of public cues, l is the number of cues
used for each account, and γ is the maximum number of cues that can be shared
between two accounts. A sharing set is selected for each new account.

PassCue strives to provide a usable and secure way to manage passwords.
There is a clear usability-security trade-off when defining l and γ. A large l
requires the user to invest a lot of effort to retrieve a password, but as the
usability decreases, the security increases, and a large l provides higher security.
PassCue is designed with l = 4 because it provides a reasonable compromise
between security and usability.

The sharing of the public cues between the accounts is essential in order to
maintain the required associations without forcing the user to invest additional
time. γ should be close to l in order to utilize the sharing property and increase
usability. In order to minimize the number of extra rehearsals, the PassCue
application is designed with γ = 3. In order to preserve the security, the number
of cues must be larger than the maximum number of cues two accounts can share
to avoid two accounts having identical passwords.

The number of public cues, n, does not affect the security, but it determines
the number of accounts/passwords that can be generated with PassCue. When
l = 4 and γ = 3, the number of unique passwords that PassCue can generate
is 35 if n = 7. For n = 8 it could accommodate 70 different passwords. This
may be sufficient for the some users, but as the technology develops the need for
new accounts increases. Increasing the number of cues to n = 9 enables PassCue
to generate 126 unique passwords, which should be enough for the active users.
Therefore PassCue is designed with a (9, 4, 3)-sharing set.

It seems reasonable to assume that the user has nine pictures of a person and
nine pictures of a background on his phone, or that it is obtainable using the
phone’s camera. The (9,4,3)-sharing set is incrementally designed. This means
that the first six accounts all share cues 1, 2 and 3. After creating six accounts
in PassCue, the user already knows all the cue-association pairs. The next 120
passwords generated use cues the user already knows. This makes it easier for
the user to start using PassCue and it significantly increases the usability.

4.3 Rehearsal Schedule

When a cue is used for the first time, a rehearsal schedule is created. The ob-
jective of the rehearsal schedule is to assure that the association assigned to the
public cue is kept in the associative memory of the user and not forgotten. The
user is notified according to the rehearsal schedule when he needs to rehearse a
specific cue-association in order to maintain the memory of the association.

Designing PassCue with the CR rehearsal schedule would force the user to
practice all the cue-association pairs every day, and significantly reduce the us-
ability of the system. If PassCue creates strong cue-association pairs, it is rea-
sonable to assume that daily rehearsal is not required in order to maintain the



association. The difference between SQ and ER is not significant, but ER is
consistent with known memory studies [23,27] and was therefore chosen as the
rehearsal schedule for PassCue.

4.4 Password Composition

It is important to understand that, because the passwords are never stored, the
method for choosing passwords can only be suggested by the PassCue application
and cannot be enforced. The design of PassCue features such as the rehearsal
schedule is based on the assumption that users will apply the recommended
method. Moreover, the security and usability analysis is valid only when users
follow the method described in this subsection.

The password is created using the first three letters of the action and object
for each of the associations. The first character is capitalized in order to cope
with common PCPs. The whole action/object words could have been used but
this is not recommended because passwords can be rejected due to restrictions
on either maximum password length or the use of dictionary words. In any case,
this results in no loss of entropy in most cases.

Figure 2 shows how private associations can be used to derive a password.
The associations for each of the public cues are only stored in associative memory
and are not available for a potential attacker. Account Gmail uses cue 1, 2, 3
and 4. All the cues consist of two public pictures and a private association of two
pictures. In cue 1, the user selected a trampoline and his grandmother as public
pictures. For cue 2, he selected a picture of a toilet and his mother. In cue 3, a
picture of his garden was selected as background picture and his father as person
picture. Cue 4 uses a picture of a hallway and his sister. The first three letters
of each action and object are used to create a password for account Gmail.

Due to remote system PCPs, embedding numbers and special characters in
the PassCue application would in some cases make the generated passwords
unusable. As a consequence, PassCue is designed to have an account note field
where the user can specify numbers, special characters and other information in
order to fulfill the PCP of a specific site. This information is displayed in plaintext
and is therefore assumed accessible by a potential attacker in the analysis.

4.5 Association Set

The associations are only displayed when a cue is initialized and the user must
use the public pictures to retrieve the associations from memory. For the first
part of the Gmail password the user must imagine his grandmother on the
trampoline, and retrieve the memory surfing and banana. The second part is his
mother on the toilet presenting a dog. The third cue is his father in the garden
drawing a bunny. For the last part of the Gmail password, cue 4 displays a
picture of the user’s sister and a hallway. The user must ask himself; “What did
my sister do in the hallway?”. The answer from associative memory is inspecting
a gift. By combining the three first letters in the action and object for each of the
four cues, the Gmail password is derived as “Surbanpredogdrabuninsgif”. Since



Fig. 2: Deriving password from actions and objects

account Gmail and PayPal share cue 1, 2 and 3, the 18 first letters are the same
and the last six differ.

Section 3.2 and Theorem 1 show that the security in the BBD model is
dependent on the association set size. Larger set size means larger password space
and higher security. The association size is also bound to the password creation
strategy. The security bound on PassCue assumes that each of the actions and
objects is uniquely encoded and that each of the actions and objects, given a
password creation strategy, produce a unique string.

All the actions and objects must be supplied with the application and each
represented by an image. In order to provide reasonable security while not de-
manding too much storage and system resources, the action and object size in
PassCue is 200. How the association set size affects the security is presented in
Section 5.2.The association set size can easily be extended in cases where higher
security is required, or lowered to save system resources.

4.6 Specification

The PassCue specification is based on the above design choices. The design and
implementation of PassCue fulfils the specification given in Table 2.

5 Analysis

This section covers the analysis of the PassCue implementation. The first part
examines the usability of PassCue by calculating the additional time the user



Table 2: PassCue Specification
System
iOS application
Application data must be stored in persistent memory
A set of action and object with image must be included
Stand alone application with no external connection
Usability
(9,4,3)-sharing set
9 person images and 9 background images must be supplied by the user
4 cues are used for each account
Maximum 3 cues can be shared between two accounts
Support up to m = 126 accounts
Possible to remove accounts
The user must be notified when to rehearse according to the rehearsal schedule
Account notes to cope with password composition policies
Possible to reset a cue-association pair if association is forgotten
Natural rehearsing effects the rehearsal schedule
Use the ER rehearsal schedule
Security
Random numbers must be cryptographically secure
No cue-associations pairs are possible to retrieve after initialization
Action-Object set size must be 200

must invest in rehearsing the cues. The second part covers the security analysis:
password entropy is calculated and the resistance against plaintext leak attacks,
online attacks and offline attacks is evaluated.

5.1 Usability

The most important part of the usability of PassCue is the additional time the
user must invest in order to maintain all the cue-association pairs. A rehearsal
schedule is created for each cue-association pair and updated every time the cue
is used for log in. Given the ER rehearsal schedule a cue-association pair must
be rehearsed at least eight times per year in order maintain the cue-association
pair in the user’s associative memory. PassCue uses a (9,4,3)-sharing set, where
maximum three cues can be shared between two accounts. This property signif-
icantly improves the usability, and reduces the extra amount of time the user
must invest in rehearsing the cue-association pairs.

Table 3 shows the cue distribution for the first ten accounts in PassCue
(9,4,3). The sharing set has been incrementally designed in order to make it easy
for the user to start using PassCue. As given in Table 3, the first six accounts
use cue 1, cue 2 and cue 3. After the first account is created, the user only needs
to remember one new cue each time a new account is created. After creating



the sixth account, the user knows all the nine cue-association pairs. The next
126− 6 = 120 accounts use cues which the user already knows.

Table 3: Sharing set for the first 10 accounts
Part 1 Part 2 Part 3 Part 4

Account Cue Cue Cue Cue
1 1 2 3 4
2 1 2 3 5
3 1 2 3 6
4 1 2 3 7
5 1 2 3 8
6 1 2 3 9
7 1 2 4 5
8 1 2 4 6
9 1 2 4 7
10 1 2 4 8

Creating a new account forces the user to rehearse some of the cues used
in other accounts. Creating passwords for 25 accounts in PassCue would be
sufficient yearly rehearsal for all the nine cues. Table 4 shows how many times
each of the cue-association pairs are rehearsed when creating 25 accounts in
PassCue. The average number of extra rehearsals, additional time invested in
PassCue, for a normal user is close to zero.

Table 4: Number of cue rehearsals performed when creating 25 accounts
Cue 1 2 3 4 5 6 7 8 9

Times Rehearsed 25 21 10 10 7 7 7 7 6

5.2 Security

Online Attack. Most online services have a k-strike policy where the user is
locked out after trying k wrong passwords. The number of guesses the attacker
can perform online is limited to km, where m is the total number of passwords.
Applying Theorem 1, the probability that the attacker can successfully retrieve
the password (n, l, γ) for a sharing set of m public cues produced by PassCue is

Pr = km

(|Actions| × |Objects|)l−γr , (1)



where r is the number of plaintext password leaks and k is the number of guesses
permitted.

PassCue resistance against online attacks is highly dependent on previous
plaintext password leaks because cues are shared between accounts. Assuming
k = 3, r = 0 andm = 126 gives Pr(Attacker retrieves password) = 3×126

(200×200)4−3×0 =
1.48 × 10−16. The probability that the attacker is able to guess the Gmail or
PayPal password from Figure 2, assuming no previous password leaks r = 0, is
1.48×10−16. For the other password management schemes, P(Attacker retrieves
password) is calculated using Equation 2, where H is the password entropy,
k = 3 and m = 126:

Pr = km

2H (2)

Table 5 presents the probability that an account is compromised as a result of
an online attack for various password management schemes. The online security
of PassCue (9,4,3) is calculated using equation (1). PassCue (9,4,3) provides
high resistance against online attacks even if one password is leaked, but online
security breaks down if two plaintext passwords are leaked.

Table 5: Online Security Results
Scheme m r=0 r=1 r=2

PassCue (9,4,3) 126 1.47656 × 10−16 0.00945 1
Reuse Weak 126 0.019 1 1
Reuse Strong 126 2.36 × 10−15 1 1
Lifehacker 126 2.69 × 10−15 1 1

SRI 126 2.36 × 10−15 2.36 × 10−15 2.36 × 10−15

Random Generated 126 4.75 × 10−23 4.75 × 10−23 4.75 × 10−23

Offline Attack The offline attacker has access to the hash of the user’s pass-
word. There are many examples of online services that have been hacked and
the cryptographic hash released [25,24,19]. The attacker can guess the password,
compute the hash and compare it to the leaked password hash. Hashcat [10] is
state of the art cracking software optimized for speed using the GPU. MD5 is
considered the fastest of the common hash algorithms. The estimates below as-
sume that MD5 is used in order to estimate a worst case security scenario. The
estimates are based on renting computing capacity on the Amazon Elastic Com-
pute Cloud (EC2) and assume that Hashcat can run 2100 million MD5 guesses
per second on EC2 [5,10].

Given that there are no leaks (r = 0), each password generated by PassCue
is equally likely, so there is no better searching strategy than brute-force search.



The number of possible passwords is (|actions|× |objects|)l and the time to find
search through all passwords in seconds is

Tcrack = (|actions| × |objects|)l−γr

guesses/sec
(3)

The guaranteed cracking time in seconds for a PassCue password hashed
with MD5 using Hashcat with 2100 million guesses per second, assuming (9,4,3)-
sharing set, association set of 200 and r = 0 is:

Tcrack = (2002)4

2100× 106 = 1219047619s

Renting the cg1.4xlarge GPU instance on EC2 costs $2.1 per hour. Thus the
estimated cracking cost in USD for a PassCue password if r = 0 is:

Ccrack = 1219047619× 2.1
3600 = 711111

In order to crack a PassCue (9,4,3) password, given no previous password
leaks r = 0, the attacker must invest $711, 111.1 and it would take 14109 days,
over 38 years, on a single GPU on Amazon EC2. The full analysis of the PassCue
configurations is given in Table 6.

Table 6: Offline Security Results
r=0 r=1

Scheme Time (days) Cost ($) Time (days) Cost ($)
PassCue (9,4,3) 14109 711111.1 2 × 10−5s ≈ 0
Reuse Weak < 10−5s ≈ 0 ≈ 0 ≈ 0
Reuse Strong 881.82 44444.15 ≈ 0 ≈ 0
Lifehacker 774.95 39057.6 ≈ 0 ≈ 0

SRI 881.82 44444.15 881.82 44444.15
Rand. Gen. 4.39 × 1010 2.21 × 1010 4.39 × 1010 2.21 × 1010

PassCue (9,4,3) provides significantly higher offline security compared to the
reuse weak scheme when r = 0. PassCue (9,4,3) provides almost twice the offline
security compared to the reuse strong, lifehacker and strong random and inde-
pendent scheme for r = 0. After one password leak occurs, the offline security
for PassCue (9,4,3), reuse strong and lifehacker breaks down.

In the full version of this paper [21] we provide also analysis for different ver-
sions of PassCue with parameters (43,4,1) and (60,5,1). This shows that PassCue
(43,4,1) maintains a certain level of protection for r = 1 and PassCue (60,5,1)
remain very secure. The strong random and independent scheme and the ran-
domly generated scheme provide high security regardless of password leaks. Even
if PassCue does not provide as high security as the strong random and indepen-
dent scheme, it is much more usable. For r = 0 the security is also comparable.



Effect of Password Composition Policies. If the online service enforces
a PCP with maximum length, and the password must contain numbers and
symbols, it can reduce the password entropy. This is because the extra numbers
and symbols included in the password are displayed in plaintext in the account
notes in PassCue.

We recommend, where possible, that the user chooses the three first letters of
each action and object unless there is a restriction on maximum password length.
If the number of cues per account is l and we use an equal number of characters
for actions and objects, then the upper limit for the number of characters from
each action and object is:

|chars per act/obj| = (|max password length| − |chars PCP|)
2l (4)

Assume, for example, that the PCP that requires a mix of letters, numbers
and symbols, and has a maximum password length of 20. One character will be
used for the number and one for the symbol. As the number and the symbol will
be displayed in plaintext in the account notes, only 18 characters are available
for the rest of the password. If the user selects three characters from each action
and object, only the first three cue-association pairs will fit. This will result in
an entropy reduction of log2(2008)− log2(2006) = 15.28 bits. If the user selects
two characters from each action object, there will be no entropy reduction. As
a result, the user should use two letters from each action and object if the
maximum password length is less than 26.

6 Conclusion

PassCue has been implemented as an iOS application, which can be used to log
on to a system. PassCue uses a (9,4,3)-sharing set, ER as rehearsal schedule and
account notes to cope with PCPs. PassCue has an association set size of 200,
and the public cues are created using pictures supplied by the user. The PassCue
application utilizes less then 1% of the CPU and only 5.9 MB of memory in idle
state of an iPhone 5.

PassCue (9,4,3) proved to provide higher online and offline security compared
to the popular used password management schemes reuse weak, reuse strong and
lifehacker. Unlike the other methods assessed, PassCue (9,4,3) provides a strong
level of online security when r = 1, but the offline security of PassCue (9,4,3)
breaks down when one password plaintext leak occur. PassCue (9,4,3) requires
no extra rehearsals in order to maintain the cue-associations in the associative
memory of the user.

It would be useful to test the PassCue application on different types of users
in order to improve the design and application experience. User feedback can
provide valuable insight into how the application is used and could reveal un-
known needs or user difficulties. It would be possible to add support for multiple
rehearsal schedules and allow the user to select and specify a rehearsal sched-
ule according to personal needs. It may also be possible to adjust the rehearsal
schedule based on the actual visitation schedule for a particular user.
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A PassCue

The public pictures in the following example figures are taken by the author and
used with persons’ permission. The private action and objects pictures are used
with permission from morguefile.com.

Figure 3 shows the application screens for the initialization process. The
initialization process is only required the first time the application is launched.
The user is told to select a background image and select a person image for the
nine required cues. The user is able to select pictures from the photo library or
downloaded images. When the user push the Select Background Image button, an
image picker screen is displayed and the user can select the appropriate picture.
The user can quit the application in order to obtain the images or take the
images with the camera on the phone.

The cue pictures are saved within the document directory in the application,
and the path is saved in the database. If the images where to be deleted from the
photo library, it will not affect the application. In this example the user selects
a picture of the trampoline in his garden and a picture of his grandmother as
the first cue. Once pressed the Next-button, the user can select images for cue
number two. The user must continue the process until cue nine is initialized.
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Fig. 3: Select Cue Images



When the user has selected images for all nine cues the top left screen in
Figure 4 is displayed. The user can add an account by pushing the + button.
The user must select an account name and write account notes if desired. As
we saw in Section 2.3, many sites puts restrictions on the password selection in
order to force the user to select a strong password. In this case, for the Gmail
account, Google recommends using a mix of letters, numbers and symbols in the
password [13]. The user inputs “23&.” in the account notes field, and will use
this when deriving the password. The account notes are displayed in plaintext
and are assumed to be accessible to an attacker. How this affects the security is
detailed explained in the security analysis in Section 5.2.

Fig. 4: Create New Account

When the Next button is pushed, the first cue and the randomly selected
association is displayed. In the example in Figure 4 the user must imagine the
following setting; “My grandmother is surfing a banana on the trampoline”.
Surfing and banana is the private part of the cue and will never be displayed after
the cue initialization. Surfing and banana will be used to create the password.
The public picture of the user’s grandmother and his trampoline will later be
used to trigger the association of surfing and banana from the users associative



memory. In cue two the user must reflect over the following story; “My mother is
presenting a dog on the toilet”. Cue three gives the following story; “My father is
drawing a bunny in the garden”. In cue four the user must imagine the following;
“My sister is inspecting a gift in the hallway”.

Once the user presses the Done button in part 4, a warning message alerts
the user that the associations are non-retrievable after this step. A rehearsal
schedule is created for cue 1, 2, 3 and 4. This is performed to ensure that the
user does not forget the actions and objects associated with the cues.

Figure 5 shows how PassCue can be used to log in to a system. In this
example, PassCue holds two accounts, Gmail and PayPal. If the user is to log
in to the Gmail account, he selects the Gmail account and the account cues
and notes are displayed. The user will use the cues in order to retrieve the
associations from associative memory. The user must ask himself; “What did
my grandmother on the trampoline?” and should remember that she was indeed
“surfing a banana!”. The next cue retrieves the association presenting and dog.
Cue three reveals that “My father was drawing a bunny in the garden”. The last
cue was “My sister is inspecting a gift in the hallway”.

Fig. 5: Log in to Gmail and PayPal

In this example the user always uses the account notes as the first part of
the password, and uses the three first letters from each action and object with
capital first letter for all the action derived letters. The password for Gmail will
be “23&.SurbanPredogDrabunInsgif”. The user must press the LogedIn button
for the rehearsal schedule to be updated. Once pressed LogedIn the application
calculates a new rehearsal time for the involved cues according to the rehearsal



schedule. The LogedIn button is not connected to the Gmail online interface or
any other online interface. The Logedin button is solely for use in the PassCue
application in order to manage the rehearsal schedules. Pressing the Logedin
button does not provide automatic login to the specified account. The user
must derive the password using the cues, and press LogedIn for the applica-
tion to update the rehearsal schedule. Cue five in Figure 5 gives the following
setting; “My grandfather is kicking an elephant in the bed”. Since Gmail and
PayPal share the first three cues, parts of the password is identical. By using
the same derive method as for the Gmail account, the password for PayPal is
“2@!65SurbanPredogDrabunKicele”.

If the user selects the Cues button from the main screen, he is able to see
information about the cues. The first screen in Figure 6 shows the overview of
the cues with pictures, and number or accounts. The user is able to choose one
of the cues for more information. The cue information shows the next time for
cue rehearsal, which accounts the cue is used in, and an option to reset the cue.
The user can select one of the displayed accounts and the application will make
a transition to the log in screen for the account, as shown in Figure 5. This is
illustrated in Figure 5. In the event that the user forgets the action and object
associated to a cue, the user can reset the cue. If the cue is reset, all accounts that
use the particular cue is deleted, and a new association and rehearsal schedule
is created for the cue.

Fig. 6: Cue information

The main objective with the rehearsal schedule is to ensure that the user does
not forget the action and object associated with each of the cues. This is done by



notifying the user to rehearse the cue-association according to specific intervals.
Figure 7 shows how PassCue notifies the user when rehearsal is required. The first
screen shows that the application icon reflects a notification, and the next screen
shows the notification in the notification center. If the user has the application
open, or opens the application after a notification has been fired, the message
is displayed in the application. In this example, the user must practice the cue-
association for cue 1 in order to not forget the association.

Fig. 7: Rehearsal notification

The user rehearses the cue-association by logging in to one of the accounts
that use the cue. The cue overview, shown in Figure 6, can be used to help the
user see which account he must log in to for rehearse. In this example, both
Gmail and PayPal are using cue 1, so the user can choose which account to log
in to. If the user logs in to Gmail the rehearse schedule for not only cue 1, but
cue 2, 3 and 4 is updated.
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Abstract. One of the most important tradeoff for a password-hashing scheme is the Time-Memory
Tradeoff (TMTO) and any such scheme needs to have a strong TMTO defense. A strong TMTO
defense would mean that the attacker would not be able to reduce memory consumption at the cost
of increased runtime. GPUs, FPGAs and custom ASICs provide tremendous amounts of computa-
tional power. A good password-hashing scheme must not allow the attacker to compute a password
faster than possible on general purpose CPUs. In this work, we provide a technique to analyze
algorithms which can be represented as a DAG (Directed Acyclic Graph) to estimate the expected
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the DAG and obtain the real-world execution times. Even though our technique is applicable to
other algorithms, we consider the two designs Catena and Rig for our analysis.
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1 Introduction

‘Password Hashing’ is a technique for performing a one way transform on a password to convert
it to a fixed length array of bytes. The password-hashing operation has the following major
requirements:

– One-wayness: It should not be possible to obtain the password given the resulting hash.

– Memory Hardness: It should take a fixed amount of memory (RAM) to perform the
hashing operation. If less memory is available than predetermined, the operation should
take significantly longer time (preferably exponential).

– Constant Time Operation: The algorithm should take a fixed amount of time irrespective
of the given input for a fixed set of parameters.

The Memory Hardness requirement is to make sure that the user has at-least a certain
amount of memory in order to perform the hashing operation. This is to prevent attackers
using GPU clusters, FPGAs and ASICs from brute-forcing a password from a given hash. A
general purpose cryptographic hash function like SHA-2, BLAKE etc. are too fast in hardware
or software implementations. An attacker can perform billions of tests per second for a given
password hash, and, as a result recover the original password with ease.

The Password Hashing Competition [1] has several candidates which claim memory-hardness,
but, there is no easy way to test memory hardness directly from an algorithmic description. In
this paper, we provide a technique to analyze algorithms which can be represented as a DAG
(Directed Acyclic Graph). We also provide an algorithm to traverse the DAG with low mem-
ory, and compute the re-computation penalties for different tradeoff options. The technique is
applied to Catena [5] and Rig [3] to analyze them and obtain TMTO (see below) values for
various combinations of options.



2 Preliminaries

2.1 Time-Memory Tradeoff

Hellman in [6] introduced the idea of Time-Memory Tradeoff (TMTO) wherein the attacker
tries to optimize the product T ·M for a task where T is the number of operations performed
(time) and M is the number of words of memory. The relative cost of CPU cycles is much lesser
than RAM space, as a result most attacks attempt to reduce memory at the cost of increased
algorithmic runtime.

2.2 Directed Acyclic Graph (DAG)

A directed graph is an ordered pair (V, E) such that V is a set of nodes and E are a set of edges.
Every edge e = (Xi, Xj) in the set E is ordered and {Xi, Xj} ⊆ V. A directed graph G is acyclic
if it does not contain any directed cycles.

2.3 Bit-Reversal Permutation

A bit reversal permutation is a permutation of a sequence of m elements with m = 2k. The
elements are indexed from 0 to m − 1 and the bits are reversed in the binary representation.
Each element is then mapped to the new location as per the reversed value. Example, for k = 3,
m = 23 and indices are 0, 1, · · · , 7 :

0 000 1 001 2 010 3 011 4 100 5 101 6 110 7 111

0 000 1 001 2 010 3 011 4 100 5 101 6 110 7 111

Fig. 1: Bit-Reversal Permutation

3 Graphs

In this paper, we analyze DAGs consisting of a two dimensional matrix of nodes. The connec-
tivity (dependency) between the nodes determines the overall characteristics of the graph.

To define the various graphs we use the following 4 types of edges as shown in Figure 2. All
the graphs analyzed will be the result of overlaying these graph types in various combinations.

The type BitReversed is obtained by applying bit-reversal permutation as shown in Figure
1 to all the layers in the graph, and the type Butterfly [4, 2] is obtained by placing two back-
to-back Fast Fourier Transformation (FFT) graphs after omitting one row in the middle. The
double-butterfly graph being described here was originally defined in [5].
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(a) Sequential (b) Vertical

(c) BitReversed (d) Butterfly

Fig. 2: Types of edges

3.1 (N , λ)-Straight Graph

A (N , λ)-Straight Graph with V vertices and E edges can be formed by overlaying the Sequential
and Vertical edge types. N = 2k where, k ∈ N and k ≥ 1.

It is a simple and symmetric graph, without any permutations. We use it to show the working
of the DAG traversal algorithm (defined below) with respect to the other designs Catena and
Rig.

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1

0,2 1,2 2,2 3,2 4,2 5,2 6,2 7,2

Fig. 3: (8,2)-Straight Graph
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3.2 (N , λ)-Bit-Reversal Graph

A (N , λ)-Bit-Reversal Graph with V vertices and E edges can be formed by overlaying the
Sequential and BitReversed edge types. N = 2k where, k ∈ N and k ≥ 1; definition adapted
from [5].

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1

0,2 1,2 2,2 3,2 4,2 5,2 6,2 7,2

Fig. 4: (8,2)-Bit-Reversal Graph

As per the definition, it performs bit-reversal permutation at each level. Or, it is a stack of
λ bit-reversal permutation operations.

3.3 (N , λ)-Bit-Reversal-Straight Graph

A (N , λ)-Bit-Reversal-Straight Graph with V vertices and E edges can be formed by overlaying
the Sequential, Vertical and BitReversed edge types. N = 2k where, k ∈ N and k ≥ 1; definition
adapted from [3].

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1

0,2 1,2 2,2 3,2 4,2 5,2 6,2 7,2

Fig. 5: (8,2)-Bit-Reversal-Straight Graph

This graph describes the Rig construction, considering, the attacker stores all the values at
the ith location for both the memory arrays at the same time. A more efficient attack might use
some other strategy where the two arrays are handled separately, but, for the sake of analysis
we consider this graph.

3.4 (N , λ)-Double-Butterfly Graph

A (N , λ)-Double-Butterfly Graph with V vertices and E edges can be formed by overlaying
the Sequential, Vertical and Butterfly edge types. N = 2k where, k ∈ N and k ≥ 1; definition
adapted from [5].
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0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1

0,2 1,2 2,2 3,2 4,2 5,2 6,2 7,2

0,3 1,3 2,3 3,3 4,3 5,3 6,3 7,3

0,4 1,4 2,4 3,4 4,4 5,4 6,4 7,4

0,5 1,5 2,5 3,5 4,5 5,5 6,5 7,5

Fig. 6: (8, 1)-Double-Butterfly Graph

As per the description of Catena, this operation is stacked λ times. The original traversal
pattern comes from the original FFT butterfly structure. Due to the significantly large number
of operations and large number of layers this Graph traversal is significantly slower than the
previous types, but, it has 3 input dependencies per node and the re-computation effort is
exponential.

4 Traversing a Dependency Graph

A DAG representing the memory dependencies in a password hashing algorithm can be analyzed
in many ways, for the purpose of Time-Memory Tradeoff analysis we have devised an algorithm
(Algorithm 2) for traversing the nodes efficiently in order to obtain the tradeoff penalties for
various combinations of memory configurations.

As the algorithm traverses nodes we define a data structure to keep the state of the nodes
during traversal.

structure Node

{
integer X = 0, Y = 0;

boolean MemoryAllowed = false, MemoryValid = false, Traversed = false;

array Node [ ] Dependencies;

}

The password hashing algorithms we are analyzing need memory equal to the number of
nodes in one row. If the attacker has enough memory, then there is no need to do any TMTO,
and the runtime will equal the time it takes to process all the nodes once. If the attacker cannot
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store all the nodes, then he will need to perform significantly large number of operations to
calculate the node values.

As defined above, the structure Node has the field MemoryAllowed to let the algorithm
know which node has memory and allow it to store the value when it is available/calculated
during traversal.

Algorithm 2: DAG Traverse

Input: graph〈Node〉 {Dependency Graph to Traverse}, integer M {Columns}, integer N {Rows}
Variables: Node n, stack〈Node〉 proc, dep, boolean depfound, list〈Node〉 traverse
Output: list〈Node〉 {A list of nodes traversed by the algorithm.}

1. nd = graph[M-1, N-1];
2. while(true) do
3. if(n.Traversed == false)
4. foreach dep in n.Dependencies do
5. if dp.MemoryValid = false
6. dep.push(dp)
7. end if
8. end foreach
9. n.Traversed ← true

10. else
11. if dep.count > 0
12. n = dep.pop()
13. proc.push(n)
14. if n.MemoryValid = false
15. traverse.add(n)
16. end if
17. depfound ← true;
18. foreach Node d in n.Dependencies do
19. if d.MemoryValid = false
20. depfound ← false
21. end if
22. end foreach
23. if depfound = true
24. while proc.count > 0 do
25. temp = proc.pop()
26. if temp.MemoryAllowed = true
27. temp.MemoryValid ← true
28. end if
29. end while
30. graph.clearAllTraversed()
31. end if
32. else break
33. end if
34. end if
35. return traverse

Algorithm 2 (as defined) is considering pointer arithmetic, so, when nd is pushed and then
popped from the stack dep, any changes to nd will be reflected in the initial graph structure
and all the associated lists are stacks.

The algorithm starts from the output node and runs iteratively, traversing node-to-node
until all the dependencies are fulfilled. There can be a large number of possible combinations
of allowed-memory locations and the overall effort (computations) will depend on the allowed
memory and its allocation in the complete graph. The algorithm can be better understood with
the help of an example. Figure 7 shows a (4, 2)-Bit-Reversal Graph.

Let us consider that all the nodes allow memory storage. The algorithm traverses the nodes
in the following order for the graph in Figure 7. The procedure can be performed by traversing
the nodes in the following order:
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0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

Fig. 7: (4, 2)-Bit-Reversal Graph

(3,2) → (3,1) → (3,0) → (2,0) → (1,0) → (0,0) →
(2,1) → (1,1) → (0,1) → (2,2) → (1,2) → (0,2)

To explain the traversal we will follow the following notation:

(N i
x,N i

y) → { (Dj
x,Dj

y),(Dj+1
x ,Dj+2

y ), . . . } ⇒ (N i+1
x ,N i+1

y ) → . . .

Where, (N i
x,N i

y), ((N i+1
x ,N i+1

y )) . . . are the nodes and (Dj
x,Dj

y),(Dj+1
x ,Dj+2

y ), . . . are the
dependencies discovered during the traversal. So, according to this notation the traversal for a
(4, 2)-Bit-Reversal Graph having 12 steps is described by the following path:

(3,2) → {(2,2),(3,1)} ⇒ (3,1) → {(2,1),(3,0)} ⇒ (3,0)→ {(2,0)}⇒
(2,0) → {(1,0)},(1,0) → {(0,0)}⇒(0,0) → { }⇒(2,1) → {(1,1)} ⇒

(1,1) → {(0,1)}⇒(0,1) → { }⇒(2,2) → {(1,2)}⇒(1,2) → {(0,2)} ⇒ (0,2) → { }

The aim is to find out the value of node (M-1,N-1) where M is the number of columns and
N is the number of rows, while only the input (0,0) is known. All the nodes in between need to
be calculated along the way. The simplified description of the algorithm is as follows.

– Set the node to be found.

– Find all the dependencies of the provided node.

– Continue finding dependencies until a node is found with no dependencies while adding the
intermediate nodes to an array (initial value at (0,0) or node with MemoryValid set to true).

– Process the array and update all values and memory; set the MemoryValid flag for the
memories as valid if the MemoryAllowed flag is set.

– During the previous step all the newly found dependencies are added to an array.

– Visit all nodes in the array which are found to be dependencies and continue until no more
nodes are in the stack with dependencies.

Considering the node (3,2) as the starting point in Figure 7. The dependencies (2,2) and
(3,1) are found; for (3,1) the dependency (2,1) and (3,0) is found; for (3,0) the dependency
(2,0) is found; for (2,0) the dependency (1,0) is found; for (1,0) the dependency (0,0) is found.
Whenever a dependency is found it is put in the stack. As the dependency (0,0) is known, all
the nodes can be processed in the current stack, as a result the value and memory in (1,0),
(2,0) and (3,0) is updated and now those dependencies can be readily met. Now, we process
(2,1) which is already in the stack and it is found that (1,1) was a dependency and we add it to
the stack. The stack is then processed again and the process continues until all the nodes are
processed and all the dependencies are met. This complete operation is shown in Table 1.
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1,0 2,0 3,0

1,1 2,1 3,1

1,2 2,2 3,2

0,0

0,1

0,2

Fig. 8: (4, 2)-Bit-Reversal Graph with only memory in the first column.

Lets consider Figure 8, here, only the first column is allowed memory storage. The rest of
the nodes have no memory and during traversal (MemoryValid set to false), they need to be
re-calculated every time they are encountered.

The complete traversal for a (4, 2)-Bit-Reversal Graph as shown in Figure 8 has 35 steps, it
is shown as follows:

(3,2) → {(2,2), (3,1)} ⇒ (3,1) → {(2,1), (3,0)} ⇒ (3,0) → {(2,0)} ⇒
(2,0) → {(1,0)} ⇒ (1,0) → {(0,0)} ⇒ (0,0) → {} ⇒ (2,1) → {(1,1), (1,0)} ⇒

(1,0) → {} ⇒ (1,1) → {(0,1), (2,0)} ⇒ (2,0) → {(1,0)} ⇒ (1,0) → {} ⇒
(0,1) → {(3,0)} ⇒ (3,0) → {(2,0)} ⇒ (2,0) → {(1,0)} ⇒ (1,0) → {} ⇒

(2,2) → {(1,2), (1,1)} ⇒ (1,1) → {(2,0)} ⇒ (2,0) → {(1,0)} ⇒ (1,0) → {} ⇒
(1,2) → {(0,2), (2,1)} ⇒ (2,1) → {(1,1), (1,0) } ⇒ (1,0) → {} ⇒ (1,1) → {(2,0)} ⇒

(2,0) → {(1,0) } ⇒ (1,0) → {} ⇒ (0,2) → {(3,1) } ⇒ (3,1) → {(2,1), (3,0) } ⇒
(3,0) → {(2,0) } ⇒ (2,0) → {(1,0), } ⇒ (1,0) → {} ⇒ (2,1) → {(1,1), (1,0)} ⇒

(1,0) → {} ⇒ (1,1) → {(2,0)} ⇒ (2,0) → {(1,0) } ⇒ (1,0) → {}

Table 1: Traversal for Figure 7
Position Dependency

(3,2) (2,2), (3,1)
(3,1) (2,1), (3,0)
(3,0) (2,0)
(2,0) (1,0)
(1,0) (0,0)
(0,0)
(2,1) (1,1)
(1,1) (0,1)
(0,1)
(2,2) (1,2)
(1,2) (0,2)
(0,2)

5 Results

The DAG traversal algorithm given in the previous section can be used to calculate the traversal
penalties for any graph. We apply the said algorithm to the following cases and come up with
re-computation penalties in different scenarios.
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As a large number of memory configurations are possible, in this work we allow a limited
set of configurations, i.e. only columns can be enabled or disabled. As a result when a column
is enabled all the nodes for that column will have memory storage abilities and vice versa. For
analyzing reduced memory scenarios, we take the fraction of memory concerned and evenly
distribute the memory along columns starting from the first column.

– (N , λ)-Straight Graph (SG)
– (N , λ)-Bit-Reversal Graph (Catena BRG)
– (N , λ)-Double Butterfly Graph (Catena DBG)
– (N , λ)-Bit-Reversal-Straight Graph (Rig Graph)
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Fig. 9: Re-computation Penalties for Graphs

The cumulated results for the graphs are as shown in Figure 9. The results show the variation
of the re-computation effort with change in allowed memory proportion. It is clearly visible that
the re-computation effort needed increases drastically for reductions in memory size.

Table 2: Re-computation Penalties for Graphs with 4 rows (λ = 3)
Memory Proportion (%) Straight Graph Bit-Reversal Graph Bit-Reversal-Straight Graph

50 15 19 97
25 75 93 551

12.5 460 909 5036
6.25 3181 8019 43143

We have taken M=64 (columns) for these experiments. We also tried with larger values like
256 and greater, but, the results are comparable as the characteristics for the DAGs in question
do not depend significantly on the value of M, but, the runtime becomes large. From the graphs
and tables we could conclude that Catena-DBG and Rig are exponential in nature, whereas
Catena-BRG and Straight-Graph is not.
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Table 3: Re-computation Penalties for Graphs with 5 rows (λ = 4)
Memory Proportion (%) Straight Graph Bit-Reversal Graph Bit-Reversal-Straight Graph

62.5 32 48 445
31.25 254 401 4190
15.625 2724 10215 92483
7.8125 35120 197389 1707950

Table 4: Re-computation Penalties for Graphs with 6 rows (λ = 5)
Memory Proportion (%) Straight Graph Bit-Reversal Graph Bit-Reversal-Straight Graph

75 63 113 1971
37.5 777 1736 31270
18.75 14378 119358 2152596
9.375 341447 5060331 -

Table 5: Relative Re-computation Penalties for Double-Butterfly Graph (λ = 1)
Memory Proportion (%) Double-Butterfly Graph

50 18
25 922

12.50 60504
6.25 2043702

The algorithm uses stacks during calculations, but, the maximum size of the stack is bounded
by the maximal length of a single path (plus sub paths). As a result, the algorithm does not
consume large amount of memory even for huge re-computation dependency tree calculations.

6 Conclusion and Future Work

We have provided a technique for traversal of DAGs which can be used on various algorithms to
analyze the Time-Memory Tradeoff. We then applied it on two designs from the Password Hash-
ing Competition [1] and performed preliminary analysis with various parameters and TMTO
options. The technique is flexible, and can be used in analysis of several cryptographic designs
(some with minor simplification). It is possible to adapt the provided DAG traversal algorithm to
suit various situations and combinations of operations to help us analyze complex cryptographic
designs for which making a mathematical model is significantly difficult.
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