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Conventional statistical analysis methods for functional magnetic resonance imaging (fMRI) data are very successful at detecting
brain regions that are activated as a whole during specific mental activities. The overall activation of a region is usually taken
to indicate involvement of the region in the task. However, such activation analysis does not consider the multivoxel patterns
of activity within a brain region. These patterns of activity, which are thought to reflect neuronal population codes, can be
investigated by pattern-information analysis. In this framework, a region’s multivariate pattern information is taken to indicate
representational content. This tutorial introduction motivates pattern-information analysis, explains its underlying assumptions,
introduces the most widespread methods in an intuitive way, and outlines the basic sequence of analysis steps.

INTRODUCTION
Conventional statistical analysis of functional magnetic reso-

nance imaging (fMRI) data focuses on finding macroscopic

brain regions that are involved in specific mental activities

(Friston et al., 1994, 1995a,b; Worsley and Friston, 1995). In

order to find and characterize brain regions that become

activated as a whole, data is usually spatially smoothed and

activity is averaged across voxels within a region of interest

(ROI). These analysis steps increase sensitivity to spatially

extended activations, but result in loss of sensitivity to

fine-grained spatial-pattern information. In recent years,

there has been a growing interest in going beyond activation

assessment and analyzing fMRI data for the information

carried by fine-grained patterns of activity within each func-

tional region (Norman et al., 2006; Haynes and Rees, 2006;

Kriegeskorte and Bandettini, 2007a). The goal of this tutorial

paper is to motivate the use of pattern-information analysis

and to provide a step-by-step introduction on how to imple-

ment this method.

A region’s involvement in task processing versus
its representational content
Conventional analysis focuses on regions that become acti-

vated as a whole during the performance of a specific task.

This motivates spatial smoothing of the data and averaging

of activity across an ROI. Since this approach focuses on

activations (in the sense of blobs consisting of multiple

voxels all showing effects in the same direction) we refer to

it as activation-based analysis. Activation-based analysis

aims to detect regional-average activation differences and

infer involvement of the region in a specific mental function.

Pattern-information analysis, by contrast, aims to detect

activity-pattern differences and infer representational content

(see Table 1, Figure 1).

Regional activity patterns can reflect the neural population

code (for a striking example, see Kamitani and Tong, 2005).

However, fine-grained pattern differences go undetected in

activation-based analysis unless the regional-average activa-

tion also differs (see Figure 1). Pattern-information analysis

is suited for detecting pattern changes even if they occur

in the absence of regional-average activation changes. For

example, a recent study using pattern-information analysis

showed that perceptually discriminable speech sounds

elicit different patterns of activity in right auditory cortex

(Raizada et al., 2008). The speech sounds elicited similar

regional-average activation, but the patterns were statistically

discriminable.

Scope and limitations
The use of pattern-information analysis is not restricted to

investigating functional regions defined by activation-based

analysis. It can also be used to investigate patterns of activity
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across more widely distributed sets of voxels (e.g. Haxby

et al., 2001; Carlson et al., 2003) or to define functional

regions by mapping the whole volume for effects using

a multivariate searchlight (‘‘information-based brain map-

ping’’, Kriegeskorte et al., 2006, 2007). The change that

activation-based analysis is sensitive to�all voxels changing

their activity in the same direction�can be viewed as a special

case of the changes that pattern-information analysis can

detect: any change of the pattern, including spatial-mean

activity changes as well as pattern changes where the

spatial-mean is unaffected. This general sensitivity makes

pattern-information analysis a powerful statistical tool.

Table 1 Overview of activation-based and pattern-information analysis

Activation-based analysis Pattern-information analysis

Goal of the analysis Investigating the involvement of regions in
a specific mental activity

Investigating the representational content of regions

Experimental contrast Difference between mental activity
including component of interest and mental
activity excluding component of interest

Difference between representation of object 1 and
representation of object 2

Analytical comparison Compare spatial-average activation across conditions Compare patterns of activity across conditions
Spatial resolution Benefits of high-resolution imaging will be limited

if data are smoothed
Fine-grained spatial information provided by high-resolution
imaging is used effectively

Statistical methods � Spatial smoothing
� Combine single-voxel signals by smoothing

and averaging activity within ROI
� Univariate analysis
� Group analysis in common stereotactic space

� No spatial smoothing
� Combine single-voxel signals by computing multivariate statistics
� Multivariate analysis (typically linear discriminant analysis)
� Single-subject analysis in native subject space
� Group analysis in common stereotactic space at the pattern-information level

Images in this table are reprinted with permission from Kriegeskorte and Bandettini (2007b).

Fig. 1 Activation indicates involvement, pattern-information indicates representational content. A specific ROI can show the same spatial-average activation resulting from
different patterns encoding different representational content. This figure shows a hypothetical ROI consisting of nine voxels. The ROI’s multivoxel pattern of activity is different
for /ra/ than /la/ speech sounds, but these different patterns result in the same spatial-average activation. This difference will go undetected by conventional
activation-based analysis. Pattern-information analysis can be used to show that an ROI’s multivoxel activity pattern differs significantly across conditions, i.e. that
the region contains information about the experimental conditions. Differences in multivoxel patterns across conditions can be interpreted as reflecting differences in underlying
neuronal population activity. This figure has been adapted with permission from Raizada et al. (2008).
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With many successful applications in neuroimaging, the

approach has gained momentum in recent years (e.g.

Haxby et al., 2001; Carlson et al., 2003; Cox and Savoy,

2003; Friston et al., 2008; Hanson et al., 2004; Kamitani

and Tong, 2005; Haynes and Rees, 2005; Haynes et al.,

2007; Kriegeskorte et al., 2007; Kriegeskorte et al., 2008a;

Mourao-Miranda et al., 2005; Mitchell et al., 2008; O’Toole

et al., 2005; Pereira et al., 2008; Raizada et al., 2008). Note

that related multivariate methods as well as prediction

frameworks have been explored before in neuroimaging

analysis (Strother et al., 2002; Worsley et al., 1997), but

with different conceptual goals.

The blood-oxygen-level-dependent (BOLD) fMRI signal

provides a complex reflection of underlying neural activity

and is affected by noise (Boynton et al., 1996; Logothetis,

2008). As a consequence, interpretation of the BOLD fMRI

signal in terms of underlying neural activity requires

caution. The BOLD fMRI contrast has been shown to reflect

stimulus-driven neural activity (Logothetis et al., 2001).

Although the fine-grained activity patterns measured by

fMRI may not precisely reflect neural activity patterns

because of hemodynamic blurring and distortion, a change

of signal (patterns) across conditions can be interpreted as a

change of neural population activity.

Pattern-information fMRI is fundamentally limited by the

amount of information about the neural population codes

that can be provided by fMRI. Voxel resolution is one

such limitation, thus motivating the use of high-resolution

fMRI in conjunction with pattern-information analysis

(Kriegeskorte and Bandettini, 2007a; Kriegeskorte et al.,

2007). A technique that also targets the representational con-

tent of functional regions and that is not limited by voxel

resolution is fMRI adaptation (Grill-Spector and Malach,

2001). This approach can potentially resolve sub-voxel

representations by inferring neural selectivity from fMRI

adaptation responses. However, the interpretation of posi-

tive findings (‘‘release from adaptation’’) in terms of neural

population selectivity relies on assumptions that have been

questioned by recent experimental results (Tolias et al., 2005;

Sawamura et al., 2006; Krekelberg et al., 2006). These results

showed that release from adaptation does not necessarily

reflect selectivity of the underlying neural population as

measured by classical electrophysiological methods. Other

explanations, e.g. attentional effects or carry-over of effects

from connected regions (Tolias et al., 2005; Krekelberg et al.,

2006), can account for release from adaptation as well. While

the fMRI adaptation paradigm compares activation between

pairs of either different or repeated stimuli and then infers

single-stimulus selectivity from these activation differences,

pattern-information fMRI follows the simpler logic of con-

trasting experimental conditions directly to determine if

there is an effect on the dependent variable: the activity

pattern within an ROI. Although its sensitivity is limited

by the measurement technique of fMRI, a positive result,

i.e. statistically distinct activity patterns, provides strong

evidence for a difference between the underlying neural

activity patterns in the region. It has recently been shown

that it is possible to combine pattern-information fMRI and

fMRI adaptation in a single experiment and simultaneously

estimate activity patterns and adaptation effects (Aguirre,

2007).

Study design
Both event-related and block designs can be used in com-

bination with pattern-information analysis. The choice will

largely be based on similar considerations as for studies

using activation-based analyses. Block designs yield a

higher functional contrast-to-noise ratio than event-related

designs. This holds both for constant inter-stimulus-interval

(ISI) event-related designs (Bandettini and Cox, 2000) and

jittered rapid event-related designs (Birn et al., 2002). This

implies that block designs will generally yield better estimates

of the average response pattern (i.e. the centroid) than event-

related designs. This is especially useful for discriminating

a small number of conditions (e.g. Haxby et al., 2001).

However, event-related designs can be preferable for psycho-

logical reasons as they are less predictable and can reduce

habituation effects. Moreover, event-related designs can

accommodate a larger number of conditions (Kriegeskorte

et al., 2008b). Another advantage of particular importance to

information-based analysis is that they yield more indepen-

dent data points than block designs and can therefore yield

a better estimate of the shape of each condition’s multivar-

iate response distribution. This can improve classification

performance and, thus, increase sensitivity in detecting

pattern information. On the other hand the condition-

mean pattern estimates (centroids) will typically be some-

what noisier. It should also be noted that rapid-event related

designs involve temporally overlapping hemodynamic

responses. The effects of temporal overlap can be accounted

for using the same design optimization techniques that have

proven useful for activation-based studies.

Imaging parameters
Most pattern-information analyses so far have utilized

lower-resolution fMRI data (see Haxby et al., 2001;

Kamitani and Tong, 2005; Haynes and Rees, 2005), indicat-

ing that larger-scale patterns�even if dominated by vascular

effects�can contain a considerable amount of information

even about quite fine-grained neuronal patterns (consider

Kamitani and Tong, 2005). If information on a fine spatial

scale is of interest, high-resolution fMRI (Kriegeskorte et al.,

2007) might be a better choice. However, the tradeoff

between the functional-contrast-to-noise ratio and the reso-

lution has to be carefully considered (Kriegeskorte and

Bandettini, 2007a). A voxel size of about 2 mm in each

dimensions appears to be a reasonable compromise at

3 Tesla.
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TESTING FOR PATTERN INFORMATION
In this section, we describe how to test for a multivariate

activity-pattern difference. A significant pattern difference

implies that the condition can be decoded (with some accu-

racy above chance level) from the activity patterns. In other

words, it implies pattern-information about the experimen-

tal condition.

A wide variety of multivariate methods can be used for

pattern-information analysis. All these methods aim to

determine whether the patterns of activity associated with

different conditions are statistically discriminable (i.e. signif-

icantly different). As in conventional analysis, every activity

pattern we estimate from the data results from a combina-

tion of true effects and noise. Noise is always present and will

make every pattern unique (just as in a univariate t-test there

is always a small difference between the estimates of the two

means to be compared, even if the null hypothesis is true).

We need to determine whether the patterns associated with,

say, condition A and condition B, are more different than

expected under the null hypothesis of equal activity patterns

in both conditions. Under the null hypothesis, any differ-

ences between the pattern estimates would be produced by

noise alone.

Univariate data is usually analyzed using a t-test or

analysis of variance (ANOVA). For multivariate data, the

equivalent method would be a multivariate analysis of (co)

variance (MANOVA). However, this method assumes that

the distribution of the residuals is multivariate normal, an

assumption that might not hold for fMRI data. This is one

reason why most of the cited studies approach pattern anal-

ysis as a classification problem: If we can classify the experi-

mental conditions (which elicit the representational states

we are interested in) on the basis of the activity patterns

better than chance, this indicates that the response pattern

carries information about the experimental conditions.

This approach has been referred to as ‘‘brain reading’’

(Cox and Savoy, 2003) or ‘‘decoding’’.

Linear classification is the most widespread and
successful pattern-information analysis in
neuroimaging so far
Multivoxel patterns of activity can be viewed as points in

a multidimensional space (with as many dimensions as

voxels). Consider the simple case of patterns based on activ-

ity of only two voxels. Each pattern can then be thought of as

a point on a plane, where the activity in each voxel deter-

mines one of the coordinates (Figure 2). One way to classify

these patterns is to construct a line that separates the pat-

terns belonging to condition A from the patterns belonging

to condition B (solid green lines in Figure 2). Patterns on

one side of the line will be classified as condition A, patterns

Fig. 2 Linear classification methods all define a linear decision boundary, but the boundary is placed slightly differently. This is shown for a given set of hypothetical activity
patterns. The blue dots represent activity patterns for one experimental condition (e.g. the speech sound /ra/), the red dots represent activity patterns for a second condition (e.g.
the speech sound /ra/). For simplicity, the displayed activity patterns are based on activity of only two voxels. Nevertheless, the classification methods generalize to higher-
dimensional voxel spaces. The ellipses in the background of each panel are iso-probability-density contours describing the bivariate normal distribution of the activity patterns for
each condition. The yellow circles indicate the geometrical features that define the linear decision boundary (green) for each classifier. (A) Minimum-distance classifier. This
classifier first determines the centroids of the two multivariate distributions (large dots). Each activity pattern is then classified as the condition whose centroid it is closest to in
multivariate space (using Euclidean distance here, as shown by the dotted lines). This implies a linear decision boundary (i.e. a hyperplane) orthogonal to the centroid connection
line, equally dividing the distance between the two centroids. (B) Fisher linear discriminant analysis (FLDA). Response patterns are projected onto a linear discriminant dimension
by weighting each voxel’s activity in order to maximize the ratio of between-condition and within-condition variance. The voxel weights define a weight vector that points in the
direction of the linear discriminant dimension. The patterns (i.e. the data points) are orthogonally projected onto the discriminant dimension and a threshold is used for
classification. This implies a linear decision boundary (i.e. a hyperplane) orthogonal to the linear discriminant dimension. (C) Linear SVM. Same description as FLDA, except for the
way the voxel weights are computed. The voxel weights computed by linear SVM are set to yield a linear decision boundary that maximizes the margin (i.e. the distance of the
nearest data point to the decision boundary). To make this intuitive, we can imagine starting with a decision boundary that perfectly classifies the training set, then widening
the margin equally on both sides while adjusting the angle and position of the decision boundary, until the margin cannot be widened anymore without including one of the
training data points. The response patterns closest to the decision boundary (points in yellow circles) then define the margins and the decision boundary halfway in-between
the margins. These points are therefore called ‘‘support vectors’’. In order to handle overlapping distributions, SVM algorithms are typically set to allow for a few misclassifications
on the training set (see the two transparent points in our hypothetical example).
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on the other side will be classified as condition B. For more

than two voxels, the plane becomes a higher-dimensional

space and the decision line generalizes to a linear decision

boundary (also called a decision hyperplane). Classifiers

that use a linear decision boundary are referred to as linear

or hyperplane classifiers. Linear classification is the most

widespread and successful tool for pattern-information anal-

ysis in neuroimaging so far.1 A good introductory textbook

on the mathematics of pattern classification is Duda et al.

(2001).

The three most widespread linear classification methods in

pattern-information fMRI (Figure 2) are the minimum-

distance classifier (e.g. Haxby et al., 2001), Fisher linear dis-

criminant analysis (FLDA) (e.g. Carlson et al., 2003) and the

linear support vector machine (SVM) (e.g. Cox and Savoy,

2003). Each of these methods places the linear decision

boundary slightly differently (solid green lines in Figure 2).

These methods will perform optimally under different

assumptions about the distribution of the response patterns.

In practice, they tend to perform somewhat similarly on

fMRI data and there is no strong evidence to date suggesting

a general superiority of any one of them in this context

(but see Ku et al., 2008; Mourao-Miranda et al., 2005).

Importantly the differences concern the sensitivity for detec-

tion of pattern information, not the specificity (i.e. the false-

positives rate for detecting information). Thus, any of

the methods can provide a valid statistical test of pattern-

information when correctly applied.

Subtle differences between linear classifiers
In this section we provide a conceptual description of the

three methods to give the interested reader an intuitive sense

of how the linear decision boundary is placed in each

method (solid green lines in Figure 2).

The minimum-distance classifier assigns each activity pat-

tern to the condition whose centroid (multivariate mean)

it is closest to in multivariate space. This results in a linear

decision boundary orthogonal to the centroid connection

line and equally dividing the distance between the two cen-

troids (Figure 2A)�assuming that the multivariate

distance is simply measured as the length of a straight line

connecting the two points (i.e. the Euclidean distance).

Using Euclidean distance, this method performs optimally

when the distributions associated with the two conditions

are identical (homoscedasticity) and isotropic (i.e. they fall

off in the same way in all directions of multivariate space).

Alternatively, the correlation of the patterns across voxels

can be used to compare patterns. A correlation-based

distance can be obtained as 1-r, where r is the correlation

coefficient. Minimum-distance classification using the cor-

relation distance is equivalent to the method used by Haxby

et al. (2001). Note that using pattern correlation renders the

analysis insensitive to regional-average differences (activa-

tion effects), which may be desirable. With either distance

measure, the minimum-distance classifier implies a linear

decision boundary.

Unlike minimum-distance classification, FLDA

(Figure 2B) takes the covariance structure of the data into

account. FLDA is equivalent to modeling each condition’s

distribution as a multivariate normal distribution (with a

covariance estimate pooled across the two conditions) and

classifying each pattern as the condition that has the greater

probability density at that point in the space. As a conse-

quence, FLDA performs optimally when the distributions

associated with the two conditions actually are approxi-

mately multivariate normal2 (but not necessarily isotropic)

and have the same covariance structure (homoscedasticity).

Linear SVM does not assume multivariate normality.

Instead it searches for a linear decision boundary that not

only discriminates the two sets of points but also has the

maximum margin (greatest distance to the nearest points on

both sides; Figure 2C). The response patterns on the margins

are referred to as the ‘‘support vectors’’, because they

‘‘support’’ the margins and define the decision hyperplane.

In other words, linear SVM only uses the most informative

subset of data (the support vectors) for constructing the

boundary. A linear SVM decision boundary will not

change when data points (response patterns) far away from

the boundary are moved�as long as the support vectors

do not change. In contrast, an FLDA or minimum-

distance-classifier decision boundary will move when any

data point is shifted.

Mathematically, the linear decision boundary is defined

by a vector w that points orthogonal to it in multivariate

activity-pattern space and by a parameter that shifts it to the

best location. We can think of each linear classifier as using

a different rule for determining the vector w and the shift

parameter. For a given linear decision boundary, we can

use the vector w to determine which side a pattern falls

on. To this end, we compute a weighted sum (also called a

linear combination) of the voxel responses using the entries

of the vector w as the weights, which is why w is also known

as the weight vector.3 Geometrically, computing a weighted

sum of voxel responses corresponds to orthogonally project-

ing an activity pattern (point in multivariate space) onto a

1 Nonlinear classification algorithms have also been used for pattern-information analysis (e.g. Cox and

Savoy, 2003; LaConte et al., 2005). These algorithms can capture more complicated class boundaries than

linear classifiers. However, non-linear classification methods are more prone to overfit the data than linear

classification methods. Overfitting is a particularly severe problem in fMRI because the number of data points

(condition repetitions or time points) is typically not very large in relation to the number of ROI voxels.

Overfitting leads to lower generalization performance (i.e. lower accuracy on the test data set) and a decrease

in power for detecting linear pattern effects (STEP 5).

2 Note that, in contrast to MANOVA, the specificity of FLDA is not dependent on the assumption of

multivariate normality of the residuals because classification algorithms use independent data sets for training

and testing. Strong violations of multivariate normality will affect sensitivity, but not specificity, so a test of

pattern information is valid.

3 Intuitively, we would like to weight each voxel by how well its activity discriminates the two conditions.

This could be achieved by using the t-values for the contrast between these two conditions (A-B) as weights.

This means that a voxel responding more to condition A than B (positive t-value) will be given a positive

weight, and a voxel responding more to condition B than A (negative t-value) will be given a negative weight.

A voxel that responds similarly to A and B will be given a weight close to zero. The methods for voxel

weighting shown in Figure 2b and c are mathematically more complex, but conceptually similar to using

contrast t-values as voxel weights.
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linear discriminant dimension, which is a line in multivariate

space. (These orthogonal projections are denoted by dashed

lines in Figure 2B and C.) The weight vector points in the

direction of the discriminant dimension, i.e. orthogonal

to the decision boundary. We can apply a decision threshold

to the weighted sums for all patterns so as to classify the

patterns with the greatest accuracy. The threshold defines the

shift of the decision boundary to the best location (Figure 2).

For the minimum-distance classifier, w is the difference

between the centroids. For FLDA, w is the weight vector that

maximizes the ratio of between-condition and within-

condition variances (this constitutes an alternative but

equivalent definition of FLDA to the one given above).

For the linear SVM, w depends on the support vectors as

determined by the training algorithm.

None of these methods is superior in general. Minimum-

distance classification is expected to perform better than

FLDA when its assumption of isotropic distributions is actu-

ally true. FLDA is expected to perform better than linear

SVM when the data are actually multivariate normal or

approximately so. Actual performance will crucially depend

on the amount of data available, with limited amounts of

data and greater numbers of voxels favoring simpler classi-

fication methods. Minimum-distance classification is the

most conceptually simple, statistically stable, and computa-

tionally efficient method. FLDA is sensitive to the covariance

structure of the data, but requires more data to capitalize

on this advantage. FLDA also requires slightly more com-

putation. Compared to linear SVM, FLDA is more

computationally efficient and arguably more straightfor-

ward, conceptually as well as mathematically. However,

linear SVM handles limited data in high-dimensional

spaces naturally and gracefully, whereas FLDA might require

a regularized covariance estimate (Ledoit and Wolf, 2003).

PATTERN-INFORMATION ANALYSIS: STEP-BY-STEP
In this section, we provide a step-by-step description of the

methods for extracting patterns of activity from fMRI data

and for analyzing these patterns. These steps are summarized

in Figure 3.

STEP 1: Data splitting and preprocessing
Before analysis, the data should be split into an independent

training and test set to ensure unbiased testing results.

The training data set should be used for voxel selection

(STEP 3) and classifier training (STEP 4). Both of these

steps involve voxel weighting, either binary (voxel selection)

or continuous (classifier training). Voxel weighting can bias

testing results if performed on the same data and therefore it

is crucial to use an independent data set for classifier testing

(STEP 5). To make sure the data are independent, the two

sets should be based on different scanner runs (e.g. even and

odd runs) that use independent stimulus sequences. One

option is to split the data into two halves. However, the

training data set is generally chosen to be larger than the

test set in order to obtain stable voxel weights. Efficient

use of the data can be achieved by cross-validation: divide

the data into a number of independent subsets (e.g. single

runs in your experiment), use all but one subset as training

data and use the left out subset as test data; then repeat this

procedure until each subset has been used as test data once.

Performance on the different subsets is combined to obtain

overall classifier performance. Ideally, preprocessing should

be performed separately for training and test data sets so as

to avoid introducing dependencies between the data sets.

Preprocessing steps are the same as in activation-based anal-

ysis (i.e. slice-scan-time correction, motion correction, trend

removal). In order to preserve fine-grained pattern informa-

tion, spatial smoothing of the data should be omitted or

strongly reduced.

STEP 2: Estimating the single-subject activity patterns
Previous studies have used several methods to estimate

single-subject activity patterns. For block designs or slow

event-related designs, where BOLD responses to different

conditions do not overlap in time, it is possible to stay

close to the raw data and use single-volume signal intensity

values (Polyn et al., 2005) or temporally averaged normal-

ized signal intensity values as patterns of activity (e.g.

Kamitani and Tong, 2005). Single-subject patterns can also

be estimated by univariate analysis at each voxel using the

general linear model (GLM) (Friston et al., 1994, 1995a,b;

Worsley and Friston, 1995). This is useful, in particular, for

rapid event-related designs (e.g. Kriegeskorte et al., 2007,

2008a, 2008b) because of the hemodynamic response over-

lap, but has also been used in combination with block

designs (e.g. Haxby et al., 2001). An advantage of using

the GLM is the possibility to include motion and trend pre-

dictors in the model in order to obtain better estimates. Each

condition or each example belonging to a condition (if esti-

mating the shape of the response distribution) is entered as

a predictor in the model. This part of the analysis is identical

to activation-based analysis and will yield a beta-value for

each predictor and voxel. The beta-values for one predictor

across voxels form the pattern of activity for a specific con-

dition. Pattern estimation yields a set of training patterns

and a set of test patterns. In order to preserve fine-grained

subject-specific information, the patterns should not be

averaged across subjects. Therefore, pattern-information

analysis is performed in native subject space. Group analysis

can be performed as a second-level analysis based on

pattern-information ROI estimates or pattern-information

maps (Kriegeskorte et al., 2006, 2007).

STEP 3: Selecting the voxels
Once activity values are computed, the next step is to decide

which voxels to include for pattern-information analysis.

These voxels are selected using the training data set or

another data set independent from the test set (e.g. anato-

mical data or functional data from a separate block-localizer
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Fig. 3 Pattern-information analysis: step-by-step. Schematic illustration of the five steps of pattern-information analysis as described in the text. First, data are split into a
training and a test data set and preprocessed separately. Then, single-subject patterns of activity are estimated from the data using univariate analysis (GLM) at each voxel. This
results in whole-brain activity patterns consisting of beta-estimates. Black boxes indicate activated voxels; white boxes indicate nonactivated voxels. Note that activity levels are
continuous in analysis and only stated as binary here for simplicity. There will be as many patterns as there are predictors (conditions) in the model. Pattern-estimation is done
separately for the training and test data set. The third step consists of selecting voxels for pattern-information analysis. This can be done based on anatomy, function or both. For
simplicity, the shown example region consists of four voxels only. Voxel selection should be based on the training data set or another data set that is independent from the test
data set in order to prevent biased testing results. This also applies to STEP 4: voxel weighting should be performed on the training data set to prevent biased testing results.
Voxels are weighted in order to maximize discriminability of the patterns belonging to the two conditions. The voxel weights computed in STEP 4 can then be tested on the test
data set in STEP 5. If the weights capture true differences between the two conditions, good performance (classification accuracy) on the training data set will generalize to the
test data set. Performance significantly better than chance indicates that the ROI contains information about the experimental conditions, i.e. the representational content of the
region differs across conditions. The image for STEP 3 has been adapted with permission from Raizada et al. (2008).
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experiment). One option would be to analyze the patterns of

activity in a specific ROI. If defined by activation-based

analysis, ROIs will be spatially contiguous sets of voxels,

but they do not have to be. For example, to investigate

object-category discrimination, the most visually responsive

voxels in object-selective cortex could be selected for subse-

quent analysis, irrespective of whether these voxels are adja-

cent or not. A computationally more demanding option

would be to analyze the pattern of activity across all brain

voxels. This might increase informational content, but it will

definitely also add substantial amounts of noise. Typically

there will a decrease in performance as the number of voxels

becomes very large. Possible solutions include selecting fewer

voxels and transforming the original voxel space into a lower

dimensional space (dimensionality reduction). Voxels can

also be selected using information-based brain mapping

(Kriegeskorte et al., 2006, 2007). This can be seen as the

multivariate equivalent of univariate statistical parametric

mapping (SPM) (Friston et al., 1995b).

STEP 4: Training the classifier
To investigate whether a region’s pattern of activity discri-

minates two conditions, we first use the training data set to

determine a set of weights (one for each voxel) that linearly

combines the voxel responses in such a way as to maximize

the difference between the two conditions (classifier train-

ing). We described three different linear classifiers that can

be used for pattern-information analysis: the minimum-

distance classifier, FLDA, and linear SVM. These may

differ in sensitivity, depending on factors including the

brain region, experimental events, the amount of data avail-

able, and the number of voxels in the ROI. Any of the three

methods can provide a valid test of pattern-information.4

Most classifiers can also be trained on data from multi-

condition experiments (Pereira et al., 2008). However,

multi-class discriminations are often approached as a com-

bination of multiple two-class discriminations. This

approach is motivated by the fact that two-class discrimina-

tions are generally of neuroscientific interest, even if

an experiment contains more than two conditions. For a

detailed overview on using linear classification algorithms

in neuroimaging, and their mathematical descriptions, see

Pereira et al. (2008). Several pattern analysis toolboxes are

listed in the reference section of this paper.

STEP 5: Testing the classifier
The weights computed during training are set to yield opti-

mal classification performance on the training data set.

To test whether good classification performance generalizes

(i.e. is not based largely on noise present in the training data

set), the weights are applied to an independent test data set.

Performance of the classifier on the test data set can be

measured by percent correct classification (accuracy). The

null hypothesis is that the classifier performs at chance

level. To test whether classification accuracy is significantly

better than chance, we can use a chi-square test (or a Monte-

Carlo method in case of few observations). If the statistical

test shows a significant result, this indicates that the region’s

response contains information about the experimental con-

ditions.5 Another way to test the classifier is to perform a

univariate t-test on the projected test patterns (Kriegeskorte

et al., 2007). As described above, projection (voxel weight-

ing) converts the activity patterns into one-dimensional

values. These values can then be analyzed by a conventional

univariate t-test. Similar to a classification accuracy that is

significantly better than chance, a significant t-value for the

difference between the two conditions would indicate that

the region’s response contains information about the experi-

mental conditions.

CONCLUSION
Pattern-information analysis investigates the representa-

tional content of a region by analyzing the information car-

ried by a region’s pattern of activity. This information would

not be detected by conventional activation-based analysis

and can significantly contribute to our understanding of

neural representations of mental content. In combination

with high-resolution fMRI, pattern-information analysis

can detect fine-grained activity-pattern information. The

most popular method is linear classification, which analyzes

a region’s activity patterns by means of a weighted sum of

the single-voxel responses, with the weights chosen to maxi-

mally discriminate different conditions. Statistical inference

is performed on a data set independent of that used for ROI

definition and voxel weighting so as to prevent statistical

circularity.

The conceptual appeal of pattern-information fMRI is

that it allows us to ‘‘look into’’ the regions and investigate

their representational content. Recent neuroscientific suc-

cesses in the domain of sensation and perception suggest

that higher-order cognitive functions in the domain of

social and cognitive neuroscience might also benefit from

the pattern-information approach.

Pattern-information analysis toolboxes
AFNI 3dsvm plug-in (http://www.cpu.bcm.edu/laconte/

3dsvm.html)

Princeton MVPA toolbox (http://www.csbmb.princeto-

n.edu/mvpa/)

PyMVPA toolbox (http://pkg-exppsy.alioth.debian.org/

pymvpa/)

LIBSVM toolbox (http://www.csie.ntu.edu.tw/�cjlin/

libsvm)

4 If more than one method is used, all results should be reported. (Picking the significant result among

different analyses would require correction for multiple comparisons.)

5 In addition to the overall accuracy, we can examine the frequency of all four possible classifier outcomes

(true/false positives, true/false negatives). This is important, in particular, when the frequencies of the two

conditions are not equal.
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