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The integration with different decisions in the supply chain is a trend, since it can avoid the suboptimal decisions. In this paper, we
provide an effective intelligent algorithm for amodified joint replenishment and location-inventory problem (JR-LIP).The problem
of the JR-LIP is to determine the reasonable number and location of distribution centers (DCs), the assignment policy of customers,
and the replenishment policy of DCs such that the overall cost is minimized. However, due to the JR-LIP’s difficult mathematical
properties, simple and effective solutions for this NP-hard problem have eluded researchers. To find an effective approach for the
JR-LIP, a hybrid self-adapting differential evolution algorithm (HSDE) is designed. To verify the effectiveness of the HSDE, two
intelligent algorithms that have been proven to be effective algorithms for the similar problems named genetic algorithm (GA) and
hybrid DE (HDE) are chosen to compare with it. Comparative results of benchmark functions and randomly generated JR-LIPs
show that HSDE outperforms GA andHDE.Moreover, a sensitive analysis of cost parameters reveals the useful managerial insight.
All comparative results show that HSDE is more stable and robust in handling this complex problem especially for the large-scale
problem.

1. Introduction

As a multiitem inventory replenishment policy, the joint
replenishment (JR) which can save the total costs by grouping
multiitems in the same order had received numerous atten-
tions [1]. While research on the classic joint replenishment
problem (JRP) reached a saturation point, many extension
versions had been proposed.These extensions can be divided
into two branches: (a) relax the assumptions (such as storage,
demand, and capacity limitation) of the classic JRP to simu-
late more realistic problems. The extensive literature review
is available in [1]; (b) integrate more supply chain decisions
(strategic or operational).

Silva and Gao [2] pointed out that three important deci-
sions, facility location decisions, inventorymanagement deci-
sions, and distribution decisions, are highly related within a
supply chain. Although independent policy always leads to
a degree of suboptimization [3], these decisions usually are
undertaken separately due to the complexity of integration.

The existing works of literature were mainly the any two
of three decisions integration. Wang et al. [4] proposed a
two-level joint replenishment and delivery problem (JRD)
by extending the model of Qu et al. [5]. The comparative
results verified that the hybrid differential evolution (HDE)
algorithm is effective. Cha et al. [6] considered the JRD
of a three-level supply chain. A heuristic algorithm and an
intelligent algorithm were proposed to solve this JRD. An
extension of this JRD by adopting the freight consolidation
policy was proposed by Moon et al. [7]. All the papers
mentioned above were the integration of inventory and
distribution decisions within one warehouse or distribution
center (DC). The cost-saving can be achieved by sharing
fixed ordering cost and transportation cost and economies of
scale. With the development of global purchasing and supply
chain management, there had been a strong move towards
integration of location and inventory decisions between
multi-DC (Berman et al. [8]).

http://dx.doi.org/10.1155/2013/270249


2 The Scientific World Journal

Except Berman et al. [8] and Silva and Gao [2], the early
studies on location-inventory problems (LIPs) had almost
exclusively assumed the continuous-review (𝑟, 𝑄) inventory
policy. Teo et al. [9] formulated a LIP ignoring the shipping
costs from the DCs to retailers. Daskin et al. [10] studied a
LIP including location cost, inventory related costs, transpor-
tation costs from the supplier to the DCs, and local deliv-
ery costs from the DCs to the retailers. They proposed a
Lagrangian relaxation solution algorithm for the proposed
model. Shen et al. [11] considered the similar problem of
Daskin et al. [10] by restructuring the model as a set-covering
model and used column generation to solve themodel. Based
on the work of Daskin et al. [10] and Shen et al. [11], several
works of literature had been published on this topic [3, 12–14].

The periodic-review (𝑅, 𝑆) policy was introduced into the
LIP by Berman et al. [8]. They pointed out that the (𝑅, 𝑆)
policy is easier to coordinate than the (𝑟, 𝑄) policy and inte-
grating the JRpolicy is a possible direction for future research.
Silva and Gao [2] firstly proposed a LIP by considering
the JR policy simultaneously. They solved this model using
a two-stage method, the first stage, a Greedy Randomize
Adaptive Search Procedure (GRASP) was used to determine
the location decision; the second stage solved the JRP cor-
responding to the locations defined in the first stage. The
proposed method is more suitable for the cases of specified
number of opened DCs. This is the only one paper about
the joint replenishment and location-inventory problem (JR-
LIP). Thus it is meaningful to extend the JR-LIP and provide
a new effective solving approach.

JRPs and uncapacitated facility location problems had
been proven to be theNP-hard problems and theywere rather
hard to find effective algorithms [15, 16]. Current solution
approaches for LIPs included different heuristics based on
the complex mathematical analysis of the models, that is,
Lagrangian relaxation based solution [10, 12], column gener-
ation algorithm [3, 11], conic integer programming approach
[17, 18], and greedy randomized adaptive search procedure
[2]. However the problem becomesmuchmore complex than
traditional LIPs because of the introduction of the JR policy
(the ordering frequency of each DC and the basic ordering
time needed to determine). It is rather hard to solve this
JR-LIP effectively by traditional approaches. Firstly, available
heuristics are too problem-specific and rather difficult to
design. There exists no versatility approaches. Secondly, the
enumeration is inefficient. It may take years to find a solution
for a large problem size. On the other hand, due to the
advantage of ignoring the mathematical property to search
the optimal solution by starting from a feasible solution,
intelligent algorithms had grown quickly in handling JRPs
and JRDs. Results of similar studies illustrated that genetic
algorithms (GAs) and differential evolution algorithms (DEs)
are comparable suitable approaches [4, 19–22]. Although the
existing works of literature hinted the superior of ant colony
optimization (ACO) in solving combinatorial optimization,
Wang et al. [22] pointed out that ACO was inferior in
convergence rate for the similar JRD and more difficult to be
expanded to complex problems.

The aim of this study is to propose a new and effective
approach to handle the modified JR-LIP model based on the

study of Silva andGao [2].Thedifferences between ourmodel
and Silva and Gao [2] are as follows: (I) we assume that
the maximum number of DC is known (additional variables
were added in our model), the objective is to determine the
number of DC to be opened, the locations of these DC,
the assignment of customers, the replenishment frequency
of each DC, and the replenishment cycle time to minimize
the total system cost; (II) in Silva and Gao [2], the optimal
number of DCs is obtained through contrasting the total
cost by ADDING (or DROPPING) DC one by one. This
method is not suitable for large-scale problems.The proposed
hybrid self-adaptingDE (HSDE) can directly find the optimal
number of DCs through an intelligent search in a given space
and is relatively easier to extend for large-scale problems. In
fact, the HSDE can overcome the disadvantage of one-to-one
competition used by classic DE and can avoid the manual
parameter testing of mutation factor and crossover factor.
Results of benchmark functions tests andnumerical examples
show the robustness of the HSDE.

The rest of this paper is organized as follows. Section 2
proposes the mathematical model. In Section 3, a DE-based
algorithm is proposed to solve the JR-LIP. Section 4 is numer-
ical examples and results discussion. Section 5 contains the
conclusions and future research directions.

2. The JR-LIP Model and Analysis

2.1. Assumptions and Notations. A three-level supply chain
consisting of multidistribution centers (DCs), an outside
supplier, and multicustomers is considered. The item is
ordered and collected by the DCs and then is distributed to
customers. The objective is to decide the following policy: (1)
how many DCs should be opened, and where to locate them;
(2) how the customers are assigned to appropriate DCs; (3)
howmany and when to order, to minimize the total cost. The
JR-LIP model is studied based on the following assumptions.

(i) Demand rates and costs are known and constant.
(ii) Shortages are not allowed.
(iii) Replenishment lead time is constant.
(iv) Each customer is only assigned to oneDC,while other

DCs cannot serve it.
(v) There is no limitation for the capacity of storage and

shipment.
Only one item is considered in our model, DCs replenish

their demand jointly. DC 𝑖 replenishes its item at every integer
multiple 𝑘

𝑖
of the basic cycle time 𝑇 and then delivers them

to customer 𝑗. Figure 1 gives a simple description about our
model.

Notions used in the model are as follows:

𝑖: index of DCs, 1 ≤ 𝑖 ≤ 𝑛;
𝑗: index of customers, 1 ≤ 𝑗 ≤ 𝑚;
𝑙: index of potential sites for DC, 1 ≤ 𝑙 ≤ 𝑚;
𝐷
𝑗
: annual demand rate for the item per unit time at

customer 𝑗;
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Figure 1: The three-level supply chain of proposed JR-LIP.

𝑆: DCs’ major ordering cost;
𝑠
𝑙
: minor ordering cost of potential DC site 𝑙;

ℎ
𝑙
: annual inventory holding cost of item at potential

DC site 𝑙;
𝑐
𝑙𝑗
: the Euclidean distance between potential site 𝑙 and

customer 𝑗;
𝑓
𝑙
: the fixed cost of opening a DC at potential site 𝑙;

𝑇: basic cycle time (decision variable);
𝑘
𝑖
: ordering cycle time of item atDC 𝑖, integer number

(decision variable);
𝑍
𝑖
: the variable to decide whether DC 𝑖 to be opened

(decision variable), it is defined as

𝑍
𝑖
= {

1, if DC 𝑖 is opened,
0, otherwise;

(1)

𝑌
𝑖𝑙
: the location variable (decision variable), it is

defined as

𝑌
𝑖𝑙
= {

1, if DC 𝑖 is located at potential site 𝑙,
0, otherwise;

(2)

𝑋
𝑖𝑗
: the assignment variable (decision variable), it is

defined as

𝑋
𝑖𝑗
= {

1, if customer 𝑗 is assigned to DC 𝑖,
0, otherwise.

(3)

2.2. Mathematical Model and Analysis. The total cost is
composed of the fixed location costs ofDCs, assignment costs
of DCs, and replenishment costs of DCs. For a given problem,
we assume that the maximum number (𝑛) of DCs is known
and each site of customer is a potential site for a DC.

(a) Location Costs. The distance between customers is not
considered in ourmodel.Thus, besides the effect of replenish-
ment policy, the main concern for making the location deci-
sion is the fixed opening cost and the distances from DCs to
customers which are usually used to measure transportation

costs in a supply chain network [2, 4]. So the total location
costs (𝐶

𝐿
) can be written as

𝐶
𝐿
=

𝑛

∑
𝑖=1

𝑚

∑
𝑙=1

𝑓
𝑙
𝑌
𝑖𝑙
𝑍
𝑖
+

𝑛

∑
𝑖=1

𝑚

∑
𝑙=1

𝑚

∑
𝑗=1

𝑐
𝑙𝑗
𝑋
𝑖𝑗
𝑌
𝑖𝑙
𝑍
𝑖
. (4)

In (4), the first term is the fixed cost of locating DCs. The
second term is the transportation cost of shipping from DCs
to customers.

(b) Replenishment Costs. Similar to the classic JRP, the replen-
ishment costs of DCs include ordering costs which consist of
major ordering cost and minor ordering cost and inventory
holding cost. The difference is the frequency of orders and
the basic ordering cycle time at each DC is determined by the
demand served by the DC. In turn, the demand served by the
DC is a function of the assignment of customers to the DC.
Thus the annual replenishment costs (𝐶

𝑅
) are formulated as

𝐶
𝑅
=
𝑆

𝑇
+

𝑛

∑
𝑖=1

𝑚

∑
𝑙=1

𝑠
𝑙

𝑘
𝑖
𝑇
𝑌
𝑖𝑙
𝑍
𝑖
+

𝑛

∑
𝑖=1

𝑚

∑
𝑙=1

ℎ
𝑙
𝑘
𝑖
𝑇𝐷
𝑖

2
𝑌
𝑖𝑙
𝑍
𝑖
,

(5)

where 𝐷
𝑖
= ∑
𝑚

𝑗=1
𝐷
𝑗
𝑋
𝑖𝑗
is the demand for the item by unit of

time allocated to DC 𝑖. The first term is the major ordering
cost of DCs; the second term is the total minor ordering cost
of DCs; the third term is the annual inventory holding cost of
DCs in (5).

(c)The Objective. According to the above analysis, the annual
total cost (TC) is

TC = 𝐶
𝐿
+ 𝐶
𝑅
=

𝑛

∑
𝑖=1

𝑚

∑
𝑙=1

𝑓
𝑙
𝑌
𝑖𝑙
𝑍
𝑖
+

𝑛

∑
𝑖=1

𝑚

∑
𝑙=1

𝑚

∑
𝑗=1

𝑐
𝑙𝑗
𝑋
𝑖𝑗
𝑌
𝑖𝑙
𝑍
𝑖

+
𝑆

𝑇
+

𝑛

∑
𝑖=1

𝑚

∑
𝑙=1

𝑠
𝑙

𝑘
𝑖
𝑇
𝑌
𝑖𝑙
𝑍
𝑖
+

𝑛

∑
𝑖=1

𝑚

∑
𝑙=1

ℎ
𝑙
𝑘
𝑖
𝑇𝐷
𝑖

2
𝑌
𝑖𝑙
𝑍
𝑖
.

(6)

The objective of JR-LIP model is

min TC (𝑋
𝑖𝑗
, 𝑌
𝑖𝑙
, 𝑍
𝑖
, 𝑘
𝑖
, 𝑇)

=

𝑛

∑
𝑖=1

𝑚

∑
𝑙=1

𝑓
𝑙
𝑌
𝑖𝑙
𝑍
𝑖
+

𝑛

∑
𝑖=1

𝑚

∑
𝑙=1

𝑚

∑
𝑗=1

𝑐
𝑙𝑗
𝑋
𝑖𝑗
𝑌
𝑖𝑙
𝑍
𝑖

+
𝑆

𝑇
+

𝑛

∑
𝑖=1

𝑚

∑
𝑙=1

𝑠
𝑙

𝑘
𝑖
𝑇
𝑌
𝑖𝑙
𝑍
𝑖
+

𝑛

∑
𝑖=1

𝑚

∑
𝑙=1

ℎ
𝑙
𝑘
𝑖
𝑇𝐷
𝑖

2
𝑌
𝑖𝑙
𝑍
𝑖

s.t.
𝑚

∑
𝑙=1

𝑌
𝑖𝑙
= 1, ∀𝑖,

𝑛

∑
𝑖=1

𝑋
𝑖𝑗
= 1, ∀𝑗,

𝑋
𝑖𝑗
− 𝑍
𝑖
≤ 0, ∀𝑖, ∀𝑗,

𝑌
𝑖𝑙
− 𝑍
𝑖
≤ 0, ∀𝑖, ∀𝑙.

(7)

The goal of this problem is to find the optimal𝑋
𝑖𝑗
, 𝑌
𝑖𝑙
, 𝑍
𝑖
,

𝑘
𝑖
, and 𝑇 to minimize the TC.
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3. Problem Solving Methodology

Since all involved costs in the model are associated with the
location of the DC, the thinking of solving methodology is
converting (7) to a function with 𝑌

𝑖𝑙
firstly. Assuming that

the index of opened DC (𝑍
𝑖
), the customers assigned to the

openedDC (𝑋
𝑖𝑗
), and the replenishment policy of the opened

DC (𝑘
𝑖
, 𝑇) are known, the problem we faced is where to

locate these opened DCs (𝑌
𝑖𝑙
) to minimize the total cost. For

simplification, we denote thatA is the set of opened DCs and
A
𝑖
is the customer set of DCs 𝑖.Then the annual total cost can

be rewritten as follows:

TC (𝑌
𝑖𝑙
) = ∑
𝑖∈𝐴

𝑚

∑
𝑙=1

𝑓
𝑙
𝑌
𝑖𝑙
+ ∑
𝑖∈𝐴

𝑚

∑
𝑙=1

∑
𝑗∈𝐴𝑖

𝑐
𝑙𝑗
𝑌
𝑖𝑙
+
𝑆

𝑇

+ ∑
𝑖∈𝐴

𝑚

∑
𝑙=1

𝑠
𝑙

𝑘
𝑖
𝑇
𝑌
𝑖𝑙
+
1

2
∑
𝑖∈𝐴

𝑚

∑
𝑙=1

ℎ
𝑙
𝑘
𝑖
𝑇𝐷
𝑖
𝑌
𝑖𝑙
.

(8)

For a given set {𝑋, 𝑍, 𝑘, 𝑇}, the total cost of each opened
DC at each potential site (TC∗

𝑖𝑙
) can be calculated easily.

Sorting the total cost of each opened DC of all potential sites
by ascending, the optimal 𝑌∗

𝑖𝑙
and TC∗

𝑖𝑙
of DC 𝑖 is the first

site in the list. If there are 𝑝 DCs with the same best location
index, the optimal 𝑌∗

𝑖𝑙
and TC∗

𝑖𝑙
is obtained by comparing at

least 𝑝 combinations and at most 𝑝! combinations from the
first site to the 𝑝th site in the list. Finally, sum TC∗

𝑖𝑙
and the

optimal total cost TC∗(𝑌
𝑖𝑙
) are obtained.

3.1.The ProposedHybrid Self-Adapting DEAlgorithm (HSDE).
Due to its easy implementation, quick convergence, and
robustness, DE has turned to be one of the best evolutionary
algorithms in a variety of fields [23–26]. However, the
limitations on DE structure had inspired many scholars to
improve upon DE by proposing modifications to the original
DE fields [27].

3.1.1. The works of Literature on DE’s Modification. Neri and
Tirronen [28] made a comprehensive study on DE’s recent
advances. They used twenty-four benchmark functions to
survey the performance of eight DE-based algorithms. The
comparative results showed that self-adapting parameters of
DE (jDE) proposed by Brest et al. [29] were the effective and
most simple improvement. Furthermore this modification
also can avoid the manual parameter setting of 𝐹 and CR.

The DE-based algorithms referred in Neri and Tirronen
[28] were the modification for DE structure and many
scholars also devoted to integrate other algorithm’s supe-
rior scheme into DE. The most common integration is
the combination of DE and GA operations. He et al. [30]
combined GA and SQP operation into DE which is rather
complex to be carried out for complex application cases.
To avoid the limitation of one-to-one competition in DE,
Lin [31] integrated the roulette wheel selection into DE.
Further, Wang et al. [4] proposed a hybrid DE (HDE) which
adopted a simpler selection scheme of GA named trunca-
tion selection. The numerical results showed that HDE is
effective and can easily be applied in practical problems. The
newest integration algorithm of DE that appeared recently is
quantum-inspired differential evolution algorithms (QDEs)

Table 1: HSDE’s notations.

Notation Explanation
𝑁
𝑝

Population: the number of individuals
𝑁
𝑑

The dimension of the specific problem
GenM Themaximum generation for evolution
𝑥𝐺
𝑡

The target vector of individuals t in G generation
V𝐺
𝑡

Themutated vector of individuals t in G generation
𝑢𝐺
𝑡

The trial vector of individuals t in G generation
𝐹𝐺
𝑡

Mutation factor of individuals t in G generation
CR𝐺
𝑡

Crossover factor of individuals t in G generation

[32–35]. Since a quantum system with 𝑛 qubits can represent
2𝑛 states simultaneously, the population size of the algorithm
can be smaller, even one individual [36]. However, due to the
complex encoding and decoding scheme, it was not easy for
complex practical problems.

Based on the above analysis, we propose a DE-based
algorithm named HSDE by integrating the GA and self-
adapting parameters of DE.

3.1.2.TheOperations of HSDE. Thedifference betweenHSDE
and original DE is the structure of individual and selection
operation. Table 1 lists the notations used in the intelligent
algorithm. The details are discussed as follows.

(1) Individual Structure. In HSDE, the control parameters
mutation factor and crossover factor are related to the
individual and evolution generation, not constant for all
individuals in the whole evolution process. Based on the
study of Brest et al. [29], the individual structure of HSDE
is

𝑥
𝐺

𝑡
= {𝑥
𝐺

𝑡,1
, 𝑥
𝐺

𝑡,2
, . . . , 𝑥

𝐺

𝑡,𝑁𝑑
, 𝐹
𝐺

𝑡
,CR𝐺
𝑡
} , (9)

where 𝐹𝐺
𝑡
and CR𝐺

𝑡
are updated by the following formulation:

𝐹
𝐺

𝑡
=
{

{

{

𝐹min + rand
1
⋅ 𝐹max, if rand

2
< 𝜏
1
,

𝐹𝐺−1
𝑡

, otherwise,
(10)

CR𝐺
𝑡
=
{

{

{

rand
3
, if rand

4
< 𝜏
2
,

CR𝐺−1
𝑡

, otherwise,
(11)

where rand
1
, . . . , rand

4
are randomly generated number with

uniform distributed between 0 and 1; 𝜏
1
and 𝜏

2
are con-

stant values which represent the probabilities of parameters’
update; 𝐹min and 𝐹max are the minimum and maximum 𝐹,
respectively.

(2)Mutation.Themutated vector is obtained according to the
following equation:

V𝐺+1
𝑡,1:𝑁𝑑

= 𝑥
𝐺

𝑟1 ,1:𝑁𝑑
+ 𝐹
𝐺+1

𝑡
∗ (𝑥
𝐺

𝑟2 ,1:𝑁𝑑
− 𝑥
𝐺

𝑟3 ,1:𝑁𝑑
) ,

𝑟
1
̸= 𝑟
2
̸= 𝑟
3
̸= 𝑡,

(12)

where 𝐹𝐺+1
𝑡

is obtained by (10); 𝑟
1
, 𝑟
2
, 𝑟
3
, 𝑡 ∈ [1, 2, . . . , 𝑁

𝑝
].
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(3) Crossover. The crossover operation mixes the mutated
vectors and the target vectors to increase the diver-
sity of the parameter vector. The trial vector 𝑢𝐺+1

𝑡
=

{𝑢
𝐺+1

𝑡1
, 𝑢
𝐺+1

𝑡2
, . . . , 𝑢

𝐺+1

𝑡𝑁𝑑
} can be generated as:

𝑢
𝐺+1

𝑡𝑞
=

{{

{{

{

V𝐺+1
𝑡𝑞

, if rand (𝑞) ≤ CR𝐺+1
𝑡

or 𝑞 = rand 𝑛 (𝑡) ,

𝑥𝐺
𝑡𝑞
, otherwise,

(13)

where 𝑞 ∈ [1, 2, . . . , 𝑁
𝑑
]; rand(𝑞) ∈ [0, 1] is a randomly gen-

erated number with uniform distribution CR𝐺+1
𝑡

is obtained
from (11); rand 𝑛(𝑡) ∈ [1, 2, . . . , 𝑁

𝑑
] is a randomly selected

integer to ensure that the trial vector gets at least one gene
from mutated vector [37].

(4) Selection. Considering that the one-to-one competing
scheme may obsolete the superior individual exclusively,
the advantage of GA in selection is utilized. The modified
selection scheme is as follows: generate a new population
{𝑥
𝐺

1
, 𝑥𝐺
2
, . . . , 𝑥𝐺

𝑁𝑝
, 𝑢𝐺+1
1

, 𝑢𝐺+1
2

, . . . , 𝑢𝐺+1
𝑁𝑝

}by combining the pop-
ulation {𝑥𝐺

1
, 𝑥𝐺
2
, . . . , 𝑥𝐺

𝑁𝑝
} and {𝑢𝐺+1

1
, 𝑢𝐺+1
2

, . . . , 𝑢𝐺+1
𝑁𝑝

}; compute
the fitness value of the new population; sort the fitness value
obtained; select half individuals those fitness value at the front
as the next generation population {𝑥𝐺+1

1
, 𝑥𝐺+1
2

, . . . , 𝑥𝐺+1
𝑁𝑝

}.

3.2. The Procedures of HSDE for the JR-LIP. Figure 2 shows
the flow chart of HSDE-based procedures for the JR-LIP.
Since the common operations of HSDE have been described
in Section 3.1, we only focus on the procedures for the specific
problem in this section, that is, initialization and decoding
scheme, which are bolded in Figure 2.

3.2.1. Initialization. In the stage of initialization, we should
determine the parameters of HSDE, the representation of
chromosome, and the encoding and decoding scheme for the
JR-LIP.

The Parameters of HSDE. Since the mutation factor and
crossover factor for HSDE are encoded in the individual,
the parameters that need to be determined are population
size (𝑁

𝑝
), the number of iterations (GenM), the lower bound

(𝐹min) and upper bound (𝐹max) of mutation factor, and the
probabilities of parameters’ update (𝜏

1
, and 𝜏

2
). As suggested

in Brest et al. [29], we set 𝐹min = 0.1, 𝐹max = 0.9, and 𝜏
1
=

𝜏
2
= 0.1. The values of 𝑁

𝑝
and GenM should be confirmed

according to the practical problem as discussed in Section 4.

TheRepresentation of the Decoded Individual.The proper rep-
resentation of a solution plays a key role in the development
of the HSDE. There are four parts included in the solution,
the first part is the assignment information of customers;
the second part is the replenishment frequency of DCs; the
third part is the basic replenishment cycle time of DCs; the
fourth part is the control parameters ofHSDE.Thedimension
of the specific problem is 𝑁

𝑑
= 𝑚 + 𝑛 + 1 (𝑚 customers’

assignment information; 𝑛 DCs’ ordering frequency; a basic
ordering cycle time), and the total length of chromosome

Start

individuals randomly

Main procedure

Mutation

Crossover

Selection
(a) Decode the chromosome

fitness as next population

G = G + 1

Save the optimal result

Stop

G > GenM
Y

N

(a) Update mutation factor using (10) 

(c) Select Np individuals with better

(b) Obtain mutation vector by (12) 

(a) Update crossover factor using (11) 
(b) Obtain crossover vector by (13) 

(b) Calculate fitness by (8)

Initialization: create Np

Figure 2: Flow chart of HSDE for the JR-LIP.

1 1 2 1 2 1 3 2 1 3 2 2 2 1 1 0.24 0.56 0.31

Assignment information
ki T F CR

Figure 3: A decoded chromosome (𝑚 = 12, 𝑛 = 3).

equals to 𝑁
𝑑
+ 2. Figure 3 shows a decoded chromosome of

twelve customers, three DCs.
The first part of the decoded individual represents that

customers 1, 2, 4, 6, and 9 are assigned to DC
1
; customers

3, 5, 8, 11, and 12 are assigned to DC
2
; customers 7, 10 are

assigned to DC
3
. Thus, the decision variables 𝑋

𝑖𝑗
and 𝑍

𝑖
can

be confirmed by assignment information.The rest of solution
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Table 2: Benchmark functions.

Test functions L M Global optimum (fmin)
𝑓
1
(𝑥) = ∑

𝐿

𝑙=1
𝑥2
𝑙

10, 30 [−100, 100]
𝐿 0

𝑓
2
(𝑥) = ∑

𝐿

𝑙=1

𝑥𝑙
 + ∏

𝐿

𝑙=1

𝑥𝑙
 10, 30 [−10, 10]

𝐿 0
𝑓
3
(𝑥) = ∑

𝐿

𝑙=1
(∑
𝑙

𝑔=1
𝑥
𝑔
)
2 10, 30 [−100, 100]

𝐿 0
𝑓
4
(𝑥) = ∑

𝐿

𝑙=1
(⌊𝑥
𝑙
+ 0.5⌋ )

2 10, 30 [−100, 100]
𝐿 0

𝑓
5
(𝑥) = ∑

𝐿

𝑙=1
−𝑥
𝑙
sin(√𝑥𝑙

) 10, 30 [−500, 500]
𝐿

−12569.5

𝑓
6
(𝑥) = −20 exp(−0.2√(∑𝐿

𝑙=1
𝑥2
𝑙
) /𝐿)

− exp ((1/𝐿)∑𝐿
𝑙=1

cos 2𝜋𝑥
𝑙
) + 20 + 𝑒

10, 30 [−32, 32]
𝐿 0

𝑓
7
(𝑥) = (1/4000)∑

𝐿

𝑙=1
𝑥
2

𝑙
−∏
𝐿

𝑙=1
cos (𝑥

𝑙
/√𝑙) + 1 10, 30 [−600, 600]

𝐿 0

represents that DC
1
replenishes its item at every 2𝑇 interval;

DC
2
and DC

3
replenish their item at each 𝑇 interval.

The Initialization. According to the representation of the
decoded individual, the dimension of initial individual can
be confirmed as𝑚+ 𝑛 + 3. Then the values of𝑁

𝑝
individuals

with 𝑚 + 𝑛 + 3 dimension are generated between 0 and 1
randomly and then are mapped into practical values (see
Figure 3) through decoding scheme.

3.2.2. Decoding Scheme. The target of decoding is converting
the initial chromosome to practical solution. Denote 𝑥𝐺

𝑡,𝑞
as

the value of gene 𝑞 of individual 𝑡 in 𝐺 generation; 𝑝𝐺
𝑡,𝑞

as the
practical value by decoding 𝑥𝐺

𝑡,𝑞
; 𝑝𝐿
𝑞
as the lower bound of 𝑥𝐺

⋅,𝑞
;

𝑝𝑈
𝑞
as the upper bound of 𝑥𝐺

⋅,𝑞
. Since the practical values of the

first two parts of chromosome are integer, the formulation of
decoding is as follows:

𝑝
𝐺

𝑡,𝑞
= round (𝑝𝐿

𝑞
+ 𝑥
𝐺

𝑡,𝑞
⋅ (𝑝
𝑈

𝑞
− 𝑝
𝐿

𝑞
)) , 𝑞 = 1, . . . , 𝑁

𝑑
,

𝑡 = 1, . . . , 𝑁
𝑝
; 𝐺 = 1, . . . 𝐺𝑒𝑛𝑀.

(14)

The practical values of the last two parts of chromosome
are between 0 and 1, since the value of gene can directly map
into practical value.

From (14), we can see that the lower and upper bound
is the key for decoding. It is obvious that the lower bound
of opened DC and basic order cycle time are equal to 1. As
to the upper bound, if the value is set too small, the optimal
solutionmay be excluded; if the value is set too big, the search
scope is enlarged which has directly impact on performance
of algorithm. The maximum number of opened DCs (𝑛)
is usually decided according to the number and scope of
customers; the upper bound of replenishment frequency (𝑘

𝑖
)

is set to 15 which is almost 4 times of the maximum optimal
replenishment frequency obtained by Silva and Gao [2].

4. Numerical Examples and Results Discussion

To verify the performance of the proposed HSDE, three
numerical examples were designed. Another two intelligent
algorithms, GAs and HDE which had been proven to be
effective approaches for solving JRPs and JRDs [4, 19, 20],

were chosen to compare with it. Example 1 is numerical
optimization problems with benchmark functions; Example
2 is used to compare three algorithms by different sizes of
the JR-LIPs; Example 3 is designed to observe the impact of
different cost parameters on the optimal decision.

The decoding scheme of GA and HDE is the same
with HSDE. Besides the number of populations (𝑁

𝑝
) and

maximum number of iterations (GenM) and the rest of
common parameters for three numerical examples are set
as follows: (a) for HSDE, the parameters had been given in
Section 3.2.1; (b) for HDE, crossover rate CR is set to 0.3, 𝐹
is set to 0.6; (c) for GA, the probabilities of crossover and
mutation are set to 0.9 and 0.1, respectively. The decisions for
using these values are based on the experience from theworks
of literature [4, 29, 38].

4.1. Example 1: Comparative Study by Benchmark Functions

4.1.1. Seven Benchmark Functions. In order to verify the per-
formance of HSDE, seven well-known benchmark functions
are used in the following experiments. To assure a relatively
fair comparison, the functions were selected according to
their different properties [29]. Functions 𝑓

1
–𝑓
3
are unimodal

functions, 𝑓
4
is a step function, and 𝑓

5
–𝑓
7
are multimodal

functions which appear to be the most difficult class of
problems for many intelligent algorithms. The details about
seven test functions are listed in Table 2 (𝐿 denotes the
dimension and𝑀 denotes the decision space of the problem).

4.1.2. Comparative Results and Analysis. Three algorithms
including HSDE, HDE, and GA are compared with two
different dimensions, that is, the speed of convergence and the
ability to obtain optimal solution. In all cases, the number of
populations (𝑁

𝑝
) is 100; the maximum number of iterations

(GenM) is 300 and 500 for 𝐿 = 10 and 𝐿 = 30, respectively.
The average 𝑓min± standard deviations of each algorithm for
different test functions over 10 independent runs are shown
in Tables 3 and 4.The best results are highlighted in bold face.
Furthermore, in order to have an intuitive understanding
about the convergence speed performance of each algorithm,
Figures 4, 5, 6, and 7 present the average fitness curve of
two unimodal functions (𝑓

1
and 𝑓

3
), step function 𝑓

4
and

multimodal function 𝑓
6
, with thirty dimensions.
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Table 3: Results of seven functions with three algorithms (𝐿 = 10).

Function HSDE HDE GA
f 1 0 0 0.0714 ± 0.0341

f 2 0 0 0.0482 ± 0.0090

f 3 1.4868e − 06 ± 5.3600𝑒 − 06 8.3092𝑒 − 06 ± 2.6265𝑒 − 05 81.1709 ± 57.6638

f 4 0 0 0.6928 ± 0.2275

f 5 −4.1646𝑒 + 03 ± 53.1791 −4.1898e + 03 ± 9.5869𝑒 − 13 −3.7682𝑒 + 03 ± 0.3011

f 6 8.8820e − 16 ± 2.0788e − 31 8.8820e − 16 ± 2.0788e − 31 0.1348 ± 0.0492

f 7 0.0138 ± 0.0107 0.0143 ± 0.0084 0.1653 ± 0.0395

Table 4: Results of seven functions with three algorithms (𝐿 = 30).

Function HSDE HDE GA
f 1 1.4139e − 13 ± 1.2000𝑒 − 13 3.8990𝑒 − 12 ± 1.5278𝑒 − 12 133.5903 ± 37.2994

f 2 8.3180e − 09 ± 4.2406𝑒 − 09 5.6406𝑒 − 08 ± 2.3898𝑒 − 08 2.7869 ± 0.4786

f 3 5.1928e + 02 ± 1.1432𝑒 + 03 1.4403𝑒 + 03 ± 890.9681 3.8840𝑒 + 03 ± 1.7548𝑒 + 03

f 4 0 0 148.8000 ± 43.3585

f 5 −1.1944𝑒 + 04 ± 439.6241 −1.2475e + 04 ± 93.0797 −1.2417𝑒 + 04 ± 35.5129

f 6 7.5180e − 08 ± 3.3095𝑒 − 08 3.9619𝑒 − 07 ± 1.1968𝑒 − 07 4.1132 ± 0.3369

f 7 0.0012 ± 0.0032 0.0016 ± 0.0042 2.1764 ± 0.3635
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Figure 4: Convergence results of 𝑓
1
(𝐿 = 30).

Results in Tables 3 and 4 and Figures 4–7 show that

(1) the ability to obtain optimal solutions of HSDE is
better than HDE and GA, especially for functions
with the large dimension (when 𝐿 = 10, the cases to
obtain best performance of HSDE, HDE, and GA are
6, 5, 0; for 𝐿 = 30, the cases are 6, 2, 0, resp.);

(2) although HSDE and HDE can both obtain the global
optimum for 𝑓

4
with thirty dimensions, the con-

vergence curves presented in Figure 6 illustrate that
HSDE has better convergence speed. In summary, the
proposedHSDE has better performance for the large-
scale optimization problems.
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Figure 5: Convergence results of 𝑓
3
(𝐿 = 30).
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Figure 6: Convergence results of 𝑓
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(𝐿 = 30).
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Table 5: Parameters for test problems.

Parameters Value
Common parameters
𝐷
𝑗
, 𝑗 = 1, 2, . . . , 𝑚 Annual demand rate 𝑈 (80, 800)

𝑆 Major ordering cost 45
𝑠
𝑙
, 𝑙 = 1, 2, . . . , 𝑚 Minor ordering cost 𝑈 (1, 10)
ℎ
𝑙
, 𝑙 = 1, 2, . . . , 𝑚 Annual inventory holding cost 𝑈 (0, 1)

𝑓
𝑙
, 𝑙 = 1, 2, . . . , 𝑚 Fixed location cost 𝑈 (400, 800)

Changed parameters
𝑛 Maximum number of opened DCs 5, 10, 20
𝑚 Number of customers (potential sites of DCs) 30, 50, 100
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Figure 7: Convergence results of 𝑓
6
(𝐿 = 30).

4.2. Example 2: Performance Comparison for the JR-LIPs

4.2.1. Basic Data for the JR-LIP. In this section, three different
scales of the JR-LIPs are used to test the performance of three
intelligent algorithms. The part of basic data listed in Table 5
comes from Silva and Gao [2]. In all examples, the demand
points were randomly located in a 50 × 50 square.

4.2.2. Results and Analysis. We denote 𝑃 𝑛 𝑚 as the scale of
problems. As for𝑁

𝑝
of the HSDE and HDE, Storn and Price

[38] proposed that the population size 𝑁
𝑝
∈ [4𝑁

𝑑
, 10𝑁
𝑑
];

Nobakhti and Wang [39] and Wang et al. [40] suggested
that 𝑁

𝑝
∈ [2𝑁

𝑑
, 20𝑁
𝑑
] is rational. According to their

experiments, we set 𝑁
𝑝
= 200, 300, and 450 for 𝑃 5 30,

𝑃 10 50, and 𝑃 20 100, respectively. Table 6 reported the
results of the average CPU times (Avg CPU times), the
optimal total cost, the average minimum total cost for 20
times (Avg TCmin), and the ratio of finding the optimal total
cost. Figures 8 and 9 showed the convergence trend of three
algorithms (based on average fitness) for 𝑃 5 30 and 𝑃 10 50.

Results in Table 6 show that (1) both HSDE and HDE
can find the optimal results with 100% for the smaller
scale problem; (2) with the increasing of problem size, the
performance of HSDE is better than HDE and GA whatever
in CPU times and total cost. Furthermore, the running time
ofHSDE for𝑃 10 50 (99 seconds) is superior to Silva andGao
[2] in which the running time is more than 270 seconds when
𝑚 = 50.
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Figure 8: Convergence trend (𝑃 5 30).
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Table 6: Comparison of the results for different scales.

𝑃 𝑛 𝑚 Algorithm Avg. CPU times Optimal TC Avg. TCmin Ratio of finding the optimal TC

𝑃 5 30
HSDE 17.6 1397.4 1397.4 100%
HDE 17.3 1397.4 1397.4 100%
GA 19.2 1397.4 1397.4 100%

𝑃 10 50
HSDE 99.0 2511.2 2511.2 100%
HDE 105.1 2511.2 2511.2 100%
GA 114.1 3064.8 3126.0 0%

𝑃 20 100
HSDE 613.2 4444.7 4709.2 45%
HDE 689.9 7318.3 7846.4 0%
GA 742.3 8539.4 9497.5 0%

Table 7: Comparative results using three algorithms under different ℎ
𝑙
.

Δℎ
𝑙
(%) Algorithms Location sites (DCs) CPU time 𝑘

𝑖
𝐶
𝐿

𝐶
𝑅

𝐶
𝐿
+ 𝐶
𝑅

−40 HSDE 36, 39, 32 85.6 1, 1, 1 2174.7 298.7 2473.4
HDE 32, 39, 36 81.0 1, 1, 1 2174.7 298.7 2473.4

−20 HSDE 32, 39, 36 89.5 1, 1, 1 2177.0 342.3 2519.3
HDE 32, 39, 36 88.3 1, 1, 1 2177.0 342.3 2519.3

20 HSDE 39, 36, 32 106.4 1, 1, 1 2177.0 419.2 2596.2
HDE 32, 39, 36 113.6 1, 1, 1 2177.0 419.2 2596.2

Table 8: Comparative results using three algorithms under different S.

Δ𝑆 (%) Algorithms Location sites (DCs) CPU time 𝑘
𝑖

𝐶
𝐿

𝐶
𝑅

𝐶
𝐿
+ 𝐶
𝑅

−40 HSDE 31, 9, 3 105.4 2, 1, 1 2888.9 394.5 3283.4
HDE 3, 31, 9 109.9 2, 2, 1 2881.4 403.0 3284.4

−20 HSDE 49, 31, 3 96.7 1, 1, 1 2951.2 358.2 3309.4
HDE 3, 31, 9 106.8 1, 1, 1 2924.2 401.2 3325.4

20 HSDE 31, 49, 3 107.9 1, 1, 1 2966.1 429.2 3395.3
HDE 31, 49, 3 111.5 1, 1, 1 2966.1 429.2 3395.3

Figures 8 and 9 also show that HSDE is more stable and
suitable for the large-scale problem.

Section 4.2 mainly focuses on the performance of algo-
rithm in handling different scales of JR-LIPs. The more
detailed analysis about the impacts of cost parameters on the
optimal decision is presented in Section 4.3.

4.3. Example 3: Impacts of Cost Parameters on Optimal Deci-
sion. The size of problem in this section is 𝑃 10 50 which
is the middle scale of three problems in Section 4.2 and the
optimal TC can be found at each running by HSDE and
HDE. GA is not used in this section due to its inferior
performance (the ratio to find optimal TC is 0%). Tables 7
and 8 show the computational results by varying the values
of inventory holding cost and major ordering cost. From the
tables we can see clearly the impacts of cost parameters on
DC selection, replenishment frequency (𝑘

𝑖
), location costs

(𝐶
𝐿
), replenishment costs (𝐶

𝑅
), and total running time of

algorithms.
The comparative results of Tables 7 and 8 show the

following useful conclusions.

(1) The robustness of HSDE is better than HDE.

(2) When inventory holding cost and major ordering
cost vary from −40% to 20%, the optimal number of
DCs is always three. Moreover, the location sites of
DCs have little change (Δ𝑆 = 20%), and the varied
direction of replenishment cost is the same with the
cost parameters.

(3) DCs havemoremotivation to order item jointly when
the major ordering cost S increases (𝑘

1
= 𝑘
2
= 𝑘
3
= 1

indicates that DCs replenish jointly in each order).
This observation is consistent with the principle of JR
policy.

5. Conclusions and Future Research

In this paper, we proposed an effective intelligent algorithm
for a modified joint replenishment and location-inventory
(JR-LIP) model. The objective of the JR-LIP is to determine
the number and locations of DCs, the assignment decision,
and replenishment policy to minimize the total system cost.
To handle this NP-hard problem effectively, an intelligent
algorithm named HSDE is designed to solve the proposed
model. To verify the effectiveness of HSDE, GA and HDE
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were chosen to be compared with it by benchmark functions
tests and numerical examples. We can easily come to useful
conclusions and managerial insight as follows.

(1) Results of benchmark functions tests show the good
ability of HSDE in handling the large-scale problems.
When the dimension of test function is 10, HSDE and
HDE have the same precision, while the dimension is
30, HSDE has the higher precision and faster speed
than HDE.

(2) The similar conclusion can be obtained from example
2. The rate of convergence obtained by HSDE and
HDE is both 100%when𝑚 = 30 and𝑚 = 50, whereas
when 𝑚 = 100, the rate of HDE is 0% and HSDE is
45%.

(3) Example 3 illustrates the impacts of cost parameters
on the optimal decision and reveals that when the
major ordering cost is bigger, DCs have more incen-
tive to replenish jointly for sharing related costs.

All numerical examples verify that the HSDE is an easy
and effective algorithm to handle the JR-LIP. To our best
knowledge, this is the first time to use the improvedDE-based
algorithm to solve this NP-hard problem.

In our model, the demand is constant which generated
from a uniform distribution, and there is no capacity limita-
tion.These assumptions are not required.The future direction
about this problem includes relaxing the assumption to
match real-world scenario and looking for more quickly and
efficiently solving method.
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