
Abstract
Three machine learning subpixel estimation methods
(Cubist, Random Forests, and support vector regression)
were applied to estimate urban cover. Urban forest canopy
cover and impervious surface cover were estimated from
Landsat-7 ETM� imagery using a higher resolution cover
map resampled to 30 m as training and reference data.
Three different band combinations (reflectance, tasseled cap,
and both reflectance and tasseled cap plus thermal) were
compared for their effectiveness with each of the methods.
Thirty different training site number and size combinations
were also tested. Support vector regression on the tasseled
cap bands was found to be the best estimator for urban
forest canopy cover, while Cubist performed best using the
reflectance plus tasseled cap band combination when
predicting impervious surface cover. More training data
partitioned in many small training sites generally produces
better estimation results.

Introduction
Describing the urban environment using remote sensing
techniques has been an active area of research for many
years. One popular method for characterizing urban land-
cover is the V-I-S (vegetation-impervious surface-soil) model
presented by Ridd (1995). The V-I-S model describes the
complex urban landscape as a tripartite mixture of the
fundamental components of an urban ecosystem: vegetation,
impervious surfaces, and exposed soil (ignoring water
surfaces). Ridd calls for “a standardized way to define these
urban building blocks and to detect and map them in
repetitive and consistent terms.” This study compares three
machine learning regression methods that can be used to
map individual urban land constituents.

Mapping landscape components in urban areas using
traditional hard classification techniques is impeded by the
large proportion of mixed pixels. In moderate resolution
imagery, such as Landsat ETM�, mixed pixels predominate
because of the heterogeneous combination of landscape
features that are smaller than the ground instantaneous field
of view (GIFOV) of the sensor. Estimating subpixel propor-
tions of land-cover components overcomes the difficulty of
assigning a pixel to one thematic class and yields a better
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representation of the spatial distribution of the material of
interest.

One successful method for estimating ground cover
proportions is spectral mixture analysis (SMA) (Settle and
Drake, 1993). SMA calculates the cover of each pixel as a
proportion of several spectral endmembers assuming linear
mixing of the reflectance from surfaces in the GIFOV. Wu
and Murray (2003) estimated impervious surface distribu-
tion using SMA. Urban vegetation abundances have been
estimated using SMA on Landsat imagery by employing a
variation of the V-I-S model that uses bright surfaces, dark
surfaces, and vegetation as the endmembers (Small, 2001;
Small and Lu, 2006). Two limitations of linear mixing
models were mentioned by Huang and Townshend (2003).
First, linear spectral mixing of the land-cover reflectance is
assumed. It has been shown that land-cover reflectance mix
in a nonlinear fashion when multiple scattering effects
from the background and canopy layers are considered
(Borel and Gerstl, 1994). Ray and Murray (1996) also
identified this effect when investigating the spectral
characteristics of desert vegetation against the soil back-
ground, which in many ways is similar to identifying
urban vegetation among the built structures in a highly
developed portion of a city. The second limitation identi-
fied by Huang and Townshend is the endmembers used in
SMA, such as vegetation, high albedo, and low albedo
surfaces, do not correspond to specific physical land-cover
components like tree canopy. An additional limitation is
that land-cover constituents are often constrained so that
they cannot overlap each other. In many circumstances it is
desirable to permit co-occurring land covers, for example,
tree canopies over impervious surfaces, by allowing the
cover proportions to add to more than 100 percent. To
overcome these limitations, empirical, non-parametric,
machine learning techniques, such as decision tree regres-
sion (Huang and Townshend, 2003; Xu et al., 2005) or
artificial neural networks (Liu and Wu, 2005; Carpenter et
al., 1999), have been utilized for the problem of subpixel
classification. This study will compare three machine
learning subpixel estimation methods (Cubist, Random
Forests, and support vector regression) applied to urban
cover estimation.
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Subpixel Urban Cover Mapping
In other recent studies (such as Small and Lu, 2006), no
distinction has been made with regard to what urban
vegetation components are being mapped and also the
impervious surface cover is divided into bright (high albedo)
and dark portions. For the purposes of this study, two cover
types will be specifically identified: urban forest canopy and
urban impervious surfaces. Both cover types will be mapped
at the subpixel level, meaning each resulting pixel will have
a numerical value representing the cover type’s fractional
abundance in that pixel.

Urban Forest Canopy
Urban forest canopy, the area covered by tree and shrub
canopies in an urbanized or developed area, is a fundamental
measure of urban forest structure (Nowak, 1994). Urban forests
include groups of trees in natural stands and individual trees
that may be in a park, in a residential back yard, or along a
street. Urban forest canopy has an important influence on
ecological processes in urban environments (Zipperer et al.,
1997). Urban forest canopy has been quantified using aerial
photo interpretation techniques (Rowntree, 1984; Nowak,
1996), automated classification of high-resolution digital
imagery (Zhang, 2001; Myeong, 2003), and medium resolution
satellite imagery (Wang, 1988; Iverson and Cook, 2000).
Traditionally, the automated techniques have used “whole-
pixel” classifications where each pixel is designated as either
“forested” or “not forested” with some threshold being used to
determine the cut-off between the two classes. Because of the
heterogeneous nature and number of mixed pixels in urban
areas, whole-pixel classifications tend to misrepresent the
amount and spatial distribution of urban forest cover. Zhu
(1994) developed a subpixel forest density map using a
regression procedure from 1.1 km AVHRR multi-spectral
imagery, which was later used to assess urban forest cover by
Dwyer et al. (2000). The nonprofit group American Forests
(URL: http://www.americanforests.org/resources/urbanforests/)
has used the ERDAS Imagine® Subpixel Classifier (Applied
Analysis, Inc.; URL: http://www.discover-aai.com/software/
products/IMAGINE_Subpixel_Classifier.htm) to map and
assess change of urban forest canopy. Recently, with the
subpixel tree canopy layer from the National Land Cover
Database (NLCD) 2001 (Homer et al., 2004 and 2007) becoming
available, urban forest cover assessments are being done
utilizing this 30 m, nation-wide resource (unpublished data,
USDA Forest Service, Syracuse, New York). The NLCD 2001
tree canopy estimate is generated using the Cubist software
(Huang et al., 2001b; Earth Satellite Corporation, 2002;
Herold et al., 2003).

Urban Impervious Surface Cover
The amount of impervious surfaces, such as building roofs,
roads, parking lots, driveways, sidewalks, and paved patios,
has become a primary indicator of urban watershed health
(Schueler, 1994; Arnold and Gibbons, 1996; Barabec et al.,
2002). Mapped impervious surfaces are also a vital input for
water quality modeling. Several techniques have been used to
map urban impervious surfaces at the subpixel level. Artifi-
cial neural networks were used to estimate the subpixel
proportion of impervious surfaces from Landsat TM imagery
(Civco and Hurd, 1997; Flanagan and Civco, 2001). Impervi-
ous surfaces have also been classified from TM data by the
ERDAS Imagine® Subpixel Classifier (Ji and Jensen, 1999;
Flannigan and Civco, 2001). Wu and Murray (2003) estimated
impervious surface distribution using spectral mixture
analysis. More recently, the U.S. Geological Survey (USGS) has
included a subpixel impervious surfaces layer in its NLCD 2001
product (Homer et al., 2004 and 2007) that is generated using
the Cubist software (Herold et al., 2003; Yang et al., 2003).

Subpixel Estimation Methods
Generally, the term “classification” refers to assigning a
pixel to a type or thematic category. Alternatively,
“regression” is the problem of finding a function that
approximates the mapping from an input space into a real
number based on a set of training values. For subpixel land-
cover, we are interested in estimating the percent impervi-
ous or tree canopy cover as a real number between 0 and
100; therefore, regression techniques are the methods of
focus. Three machine learning regression techniques (Cubist,
Random Forests, and support vector regression) were
compared for their effectiveness in estimating subpixel
impervious surface and urban forest canopy cover.

Cubist
Cubist (Rulequest, 2006) is a rule-based regression technique
developed by Quinlan (1997). Of the three regression
techniques compared in this study, Cubist has the least
algorithmic documentation because it is a commercial
product and proprietary. However, a survey of Quinlan’s
earlier work and its deliberate progression (Murthy, 1998)
can give insight into the probable techniques employed in
Cubist. Decision tree classifiers such as ID3 (Quinlan, 1986),
which chooses the branching attribute to maximize informa-
tion gain in its divide-and-conquer tree generation strategy,
and later C4.5 (Quinlan, 1993a), with (among other enhance-
ments) its ability to handle continuous-valued attributes
(Quinlan, 1996), are the foundations that Cubist is built
upon. A method to reformulate decision trees into a set of
production rules was devised by Quinlan (1987a and 1987b)
and is in Cubist. With the M5 model (Quinlan, 1992),
categorical decision trees were expanded to handle continu-
ous classes by placing a multivariate linear model at each
leaf. These model trees predict real values and are similar to
regression trees, but a regression tree only contains a single
value at each leaf (Witten and Frank, 2005). Model trees
have been shown to be more accurate than ordinary regres-
sion (Quinlan, 1993b). An additional technique to improve
prediction is to use similar training cases, or instances,
to determine the value at the new location. Quinlan (1993c)
proposed a method to combine instance- and model-
based techniques to obtain a regression solution. Com-
posite models combining instances and model trees have
been shown to be more accurate than model trees alone
(Quinlan, 1993b). It is assumed that Cubist is a composite
model that combines a model tree, reformulated as rules,
with the instance-based method (Rulequest, 2006). The
resulting rules have linear multivariate models in their
“then” statements. An option in Cubist allows the user to
include instances if desired.

The USGS EROS Data Center and their cooperators have
chosen to use Cubist to estimate the subpixel proportion of
impervious surfaces and tree canopy for the NLCD 2001. The
methodology and performance of using Cubist to estimate
tree canopy cover from Landsat ETM� imagery has been
presented by Huang et al. (2001b), Earth Satellite Corpora-
tion (2002), and Herold et al. (2003). Similarly, Yang et al.
(2003) and Herold et al. (2003) presented the procedure that
is used by the NLCD to map impervious surfaces. The same
method has been applied to map impervious surfaces in
Norway using Landsat ETM� imagery (Schuler and
Kastdalen, 2005). MODIS imagery, in conjunction with
training data developed from QuickBird images, was used
to estimate the percent tree cover over the entire continent
of Africa (Rokhmatuloh et al., 2005). Currently, the
Landscape Fire and Resource Management Planning Tools
Project run by a consortium of U.S. Government land
management agencies and other cooperators is using Cubist
to estimate forest structure parameters for input into a fire
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simulator (LANDFIRE, 2006). Cubist has also been used in
estimating house values with the aid of Landsat ETM�
derived environmental characteristics (Yu and Wu, 2006).

Random Forests
Random Forests (RF) is a classification and regression
technique introduced by Breiman (2001) that uses many
classification or regression trees in an ensemble. Ensemble
learning methods aggregate the results from individual trees
and generally produce better results (Breiman, 1996). RF, an
extension of bagging (or bootstrap aggregation), uses random
samples (with replacement) of the training data to generate
many regression trees, which are grown without pruning,
and the results of all averaged (Liaw and Wiener, 2002). In
bagging, trees are grown by selecting the best split at each
node using all the predictor variables. RF modifies the
splitting by choosing the best split from a randomly selected
subset of the predictors (Breiman, 2003; Liaw and Wiener,
2002). Selecting the predictors randomly creates more
diversity among the trees and reduces their correlation
(Prasad et al., 2006). But because of its use of random
choices, RF yields slightly different results each time it is
run. The aggregation of output from many trees tends to
smooth the variance between trees and gives the overall
model more generalization capacity. In fact, as more trees
are added, RF does not overfit, always converges, and has
bounded generalization error (Breiman, 2001).

Three useful properties of RF are internal error esti-
mates, the ability to estimate variable importance, and the
capacity to handle weak explanatory variables. One of the
attractive features of RF is that it can estimate error without
having a set-aside testing dataset by using out-of-bag error
estimates (Furlanello et al., 2003; Lawrence et al., 2006).
The out-of-bag error estimates are created from the data that
are not in the bootstrap sample used for each tree’s develop-
ment (Breiman, 2001). Because it is impossible with a
random forest of hundreds of trees to understand the role of
individual variables, the importance of a variable can be
estimated by tracking how the prediction error changes as
randomly permuted out-of-bag examples are applied after
each tree is constructed (Breiman, 2001). Variable impor-
tance can be used to gain an understanding of the relative
value of predictor variables to the solution and to poten-
tially reduce the number of input variables. Often there is
no one input or small group of inputs that strongly differen-
tiates between classes or indicates its functional trend; this
is commonly the case for remote sensing image analysis
problems. RF has been shown to work well with such weak
classifiers (Breiman, 2001; Lawrence et al., 2006).

Random Forests software is available from the Breiman
and Cutler web site as FORTRAN source (Breiman and 
Cutler, 2004), as an R package (Liaw and Wiener, 2002), 
or as a commercial product from Salford Systems
(http://www.salford-systems.com).

RF has been used for several spatial mapping applications.
Furlanello et al. (2003) used environmental variables to
estimate the probability of tick presence. Similarly, Prasad et
al. (2006), comparing RF with other regression techniques,
predicted and mapped tree species range based on biophysical
parameters. Bunn et al. (2005) geographically predicted plant
growth (gross photosynthetic activity) from AVHRR derived data
and surface weather observations. The RF classifier has also
been employed in remote sensing applications; for example,
Pal (2005) classified agricultural crops using Landsat ETM�
imagery. The ability of RF to handle high dimensional and
weak input data has made it attractive for hyperspectral
remote sensing classification. Lawrence et al. (2006) mapped
invasive species and Ham et al. (2005) mapped vegetation and
land-cover from hyperspectral imagery.

Support Vector Regression
Support vector machines (SVMs) are a family of classification
and regression techniques based on statistical learning
theory (Vapnik, 2000; Cristianini and Shawe-Taylor, 2000;
Burges, 1998). Rather than dealing with the statistical
properties of classes like traditional classifiers (such as mean
and variance), SVMs focus classification decisions on the
boundary between classes. Using a kernel function, SVMs
map the input space (independent variables) to a higher
dimensional space where complex nonlinear decision
boundaries between classes become linear. In this mapped,
high-dimensional space an optimal linear separator is found
that maximizes the margin between classes (Russell and
Norvig, 2003). By maximizing the margin, the solution is
generalized and overfitting is reduced. There are three
important properties of SVMs (Vapnik, 2000; Cristianini and
Shawe-Taylor, 2000; Burges, 1998; Russell and Norvig,
2003): (a) Because the function of the margin is a convex
quadratic form, a single, margin-maximizing solution can
always be found; (b) Since the data appear in the margin
function as dot products, any number of dot product kernels
that better reproduce the complex (possibly nonlinear)
decision boundary can be substituted. Popular kernel
functions include linear, polynomial, radial basis, and
sigmoid; and (c) Only data points closest to the separator
play into the classification decision. These are the support
vectors and may only be a small fraction of the training data
limited to the critical area where two classes meet or
overlap; this is the idea of sparseness. Due to these inherent
properties, overfitting is reduced and a manageable level of
complexity is maintained as the dimensionality of the data
space increases (Burges, 1998). Very large input data spaces
and large training datasets (100s of thousands of training
points) can be handled (Burges, 1998).

For the problem of subpixel estimation, support vector regre-
ssion (SVR) is used to define a real-valued output function
given the independent input variables. In addition to the
properties mentioned above for SVM classification, SVR applies
the concept of an �-insensitive loss function that ignores
point errors within a distance of � from the true value by
weighting them with zero. The �-insensitive loss function is
convex quadratic and always has a minimum (Cristianini and
Shawe-Taylor, 2000; Smola and Schölkopf, 2004). The
resulting regression is “smooth and has a sparse representa-
tion” (Vapnik, 2000). Sparseness, the idea of representing the
solution through a small subset of training points, indicates
that the support vectors contain all the required information
to define the function and results in “extremely efficient
algorithms” (Cristianini and Shawe-Taylor, 2000). In an
example comparison with other advanced regression tech-
niques, Vapnik (2000) demonstrated a superior performance
of a polynomial support vector regression machine over
bagging and boosting regression trees. For certain choices of
control parameters and kernel functions, SVR reduces to other
known types of regression such as standard least squares or
kernel ridge regression (Cristianini and Shawe-Taylor, 2000).
In addition, SVR has been shown to be closely related to lin-
ear spectral mixture models, and when a linear kernel is
used, both produce equivalent models (Brown et al., 1999).

In remote sensing, SVMs have been applied to both
thematic classification (Huang et al., 2002a; Foody and
Mathur, 2004; Pal, 2005) and estimation of continuous,
real-valued properties (Brown et al., 1999; Srivastava et al.,
2005; Camps-Valls et al., 2006).

Methods
The general procedure used here for applying one of these
estimation methods is: (a) A subset of the input imagery and
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TABLE 1. THE SIZE OF TRAINING SITES BASED ON THE PERCENT SAMPLE OF THE 123,454 PIXELS. SIZE IS

THE LENGTH OF ONE SIDE OF A SQUARE TRAINING SITE. THE TOTAL NUMBER OF PIXELS IN THE TRAINING SET

(SHOWN IN PARENTHESIS) VARIES SLIGHTLY WITHIN A COLUMN DUE TO THE RANDOM LOCATION OF THE

TRAINING SITES WITH RESPECT TO THE FIXED 30 M PIXEL SPACING

Number of Percent Sample of Total Image
Training Sites 1% 2% 4% 8% 16%

5 472 m (1202) 667 m (2532) 943 m (4899) 1334 m (9991) 1886 m (19719)
10 334 m (1232) 472 m (2403) 667 m (5042) 943 m (9766) 1334 m (19904)
20 236 m (1266) 334 m (2477) 472 m (4933) 667 m (9866) 943 m (19581)
40 167 m (1226) 236 m (2502) 334 m (4969) 472 m (9857) 667 m (19671)
80 118 m (1246) 167 m (2503) 236 m (4978) 334 m (9992) 472 m (19848)

160 84 m (1259) 118 m (2482) 167 m (4990) 236 m (9916) 334 m (19937)

reference data are used to train the estimator and develop a
prediction model; (b) The model is then applied to the
remaining input data to predict the target value across the
whole image; and (c) Several accuracy metrics are used to
assess the quality of the resulting image.

Datasets
The city of Syracuse, New York, is the study area for this
urban land-cover analysis. With regard to urban forest cover,
Syracuse is a fairly typical eastern U.S. city consisting of
mostly deciduous trees and has approximately 26 percent
forest cover. Impervious surface distribution is also typical
with highly developed central business district and commer-
cial corridors surrounded by less densely impervious
residential areas. Input predictive data in the form of
Landsat imagery and a complete coverage of reference data
were available for the study area.

Input imagery data were obtained from the MRLC 2001
imagery archive. MRLC (Multi-Resolution Land Characteris-
tics Consortium, URL: http://www.mrlc.gov) is a group
of U.S. Federal agencies that joined together to purchase
Landsat imagery of the entire United States and coord-
inate development of nation-wide land-cover products
like the NLCD. Three dates of imagery are generally available
for each Landsat scene corresponding to early growing
season, peak growing season, and late growing season. Yang
et al. (2001) describes the scene selection process, and
Huang et al. (2001a) details the at-satellite reflectance
corrections applied to the MRLC 2001 imagery. The dates
of Landsat-7 ETM� scenes used for this analysis were: early
growing season on 28 April 2001 (path: 15, row: 30), peak
growing season on 03 July 1999 (path: 16, row: 30), and late
growing season on 07 September 2000 (path: 16, row: 30).
For each scene, ten bands were available: six reflectance
(Landsat bands 1 through 5, and 7), one high-gain thermal
(Landsat band 9; resampled to 30 m), and three tasseled cap
(brightness, greenness, wetness (Huang et al., 2002b)). Input
data were limited to imagery bands readily available from
MRLC. The spatial resolution of the Landsat images was
30 m. The total dataset consisted of 123,454 pixels covering
approximately 111 km2.

The reference data were in the form of a raster land-
cover map of the entire study area developed from 0.61 m
(2-foot) resolution, color infrared, aerial digital images
acquired on 13 July 1999 (Myeong et al., 2003). The
overall accuracy of the reference data is 82 percent
(Myeong et al., 2003). This high-resolution cover map
consisting of five classes (tree, grass, impervious surface,
bare soil, and water) was summarized based on the
Landsat pixels to generate two 30 m resolution reference
layers (impervious surface and urban forest canopy) by
assigning to each 30 m pixel the percent of the desired
reference class in that pixel.

Two Experiments
Landsat input data and reference data were partitioned into
training datasets that were used to develop the regression
models. A training site random sampling scheme was
designed to represent options that would be available for a
typical land-cover estimation project. A range of training
site sizes and number of training sites were created to test
each estimator’s robustness to training set size. Fewer and
smaller training sites would be advantageous since less
effort would be required to create the reference classifica-
tion. Training site size, number of sites, and total number of
training pixels for each classification run are summarized in
Table 1. Data values for each training site size/number
combination were selected by placing the non-overlapping
sites randomly within the study area. Three different
scenarios of input bands were evaluated: “all” (3 scenes
with 10 bands each), “refl” (3 scenes with 6 reflectance
bands each), and “tc” (3 scenes with 3 tasseled cap bands
each). The same training subsets were used for each
estimator and band scenario.

A second experiment was designed to directly compare
the estimators using a single training site size of 334 m and
10 training sites arranged in 10 replications of non-overlap-
ping, random selections of training pixels. The two-factor,
3 � 3 design consisted of all combinations of method
(Cubist, Random Forests, and support vector regression) and
input bands (all, refl, and tc). Training sets between each
combination of factors were different, but could contain
overlapping groups of pixels. The experiment was repeated
for estimations of both urban forest cover and impervious
surface cover. The results of this experiment were analyzed
graphically to illustrate differences between the estimation
methods and band combinations.

Software
Each of the three machine-learning regression estimators had
various input parameters necessary for operation.

Cubist version 1.12 was used in this study. Cubist has
the ability to generate composite models (including nearest
neighbor instances) and committee models (groups of
models that attempt to correct errors in previous committee
member models). The default operation is for Cubist to
create only rule-based models, and because preliminary
results indicated that composite models did not improve
accuracy, rule-only models were used for this study. Options
also exist to limit the maximum number of rules (default:
unlimited), the minimum number of cases a rule should
handle (default: 1 percent), and an extrapolation percentage
indicating the extent of prediction outside the range of the
input data (default: 10 percent). Based on previous experi-
ence with the software, all user-specified options were left
at their default values except the extrapolation percentage
was set to zero for all Cubist runs.
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Figure 1. Isoline plot of MAE of urban forest canopy 
for each method (svr � support vector regression, 
rF � randomForests, and cubist � Cubist) and band
combination (all � reflectance, thermal and tasseled
cap; refl � reflectance only; and tc � tasseled cap
only) by the number of training sites and percent of
image used for training. The scales on each panel are
log(base 2) so percent sample ranges from 1 percent 
to 16 percent and number of training sites ranges from
5 to 160. A color version of this figure is available at
the ASPRS website: www.asprs.org.

The Random Forests implementation used in this study
is the “randomForest” library (Liaw and Wiener, 2002) in
the free software environment for statistical computing,
R (R Development Core Team, 2006). It is based on the
original FORTRAN code developed by Breiman and Cutler
(2004). Only two user supplied parameters are required to
operate RF: the number of trees in the forest, ntree, and the
number of variables randomly sampled at each split, mtry.
Regression performance has been said to be insensitive to
the choice of ntree and mtry (Breiman, 2001; Lawrence
et al., 2006) and attempts at tuning RF indicated the same.
Values of ntree � 500 and mtry � 7 were used.

The SVR implementation used in this study is included
in the e1071 library (Dimitriadou et al., 2006) of the R
statistical computing environment and is based on LIBSVM
(Chang and Lin, 2006). For this study, the radial basis
function was used for the kernel. Two general SVM parame-
ters � and cost, along with the radial basis function parame-
ter gamma, must be specified; � specifies the size of the
insensitive region inside of which errors are ignored, and
cost is the penalty multiplier applied for constraint viola-
tions. The R library e1071 provides a useful wrapper
function for tuning the SVM model parameters. After running
the tuning function several times with a representative input
dataset, these values were selected: � � 0.01, cost � 10, and
gamma � 0.01.

Comparison Metrics
Each regression method generates its own accuracy measures,
but for consistency in comparison of the techniques, two
standard accuracy metrics were calculated. Error was
calculated by subtracting the pixel’s reference value from the
estimated value. Thus, a negative error indicates that the
model underestimated the value. From this error, a pair of
difference measures were computed: mean absolute error
(MAE) and root mean square error (RMSE). MAE is the average
absolute difference of the estimated value from the reference.
RMSE is the square root of the mean squared error. MAE and
RMSE are highly, positively correlated and roughly report the
same quality of the model. However, large errors will tend to
have a larger effect in RMSE because the error term is
squared. Therefore, considering both metrics together may
yield some insight into the relative distribution of the errors.

Execution time was also recorded for each estimator to
judge the relative time required for different training set
sizes and to compare estimators. For this purpose, all
techniques were run on a dual processor, 3.1 GHZ Intel
Pentium IV computer with Microsoft Windows® 2000 and
execution times were recorded in seconds. Because of
memory limitations of R under Windows® that limited the
size of training sets for RF, the largest training sets could not
be run for RF on this computer and were omitted.

Results
MAE and RMSE for both urban forest canopy and impervious
surface cover estimations show a decrease in error (or
increase in accuracy) as the number of training sites
increases and the percent of the image sampled for training
increases for all methods and band combinations (at the
upper right in each panel of Figure 1 and Figure 2). As
expected, MAE and RMSE values are highly correlated and do
not show any obvious anomalies; therefore, only the MAE

figures are presented. The total execution time to build the
estimation model and apply it to the entire study area
increases exponentially for both SVR and RF methods as the
amount of training data increases (Figure 3); however, the
increase in run time for Cubist was very small and appears
to only increase in an arithmetic progression for the range of

training input sizes used. Cubist run times were those
reported by the software and were much faster than the
other methods. In general, the RF execution times were the
slowest especially for the larger training set sizes. Execution
times for urban forest cover estimation were slightly less
than those for impervious surface cover estimation, but
followed the same pattern (not shown).

In the second experiment, the interaction plots (Figure 4
and Figure 5) show which method or band combination is
different than another by plotting the means of the ten
replications for each factor combination. Estimation method
generally has more effect for urban forest canopy estimation,
and the band combination used in the model is more
effective for impervious surface cover estimation.

Discussion
Although the accuracy for each of the three methods are
roughly the same and accuracy for all methods increases as
more of the image is used for training, there are some
subtleties that indicate differences between the methods.
Examining the isolines for urban forest canopy MAE

(Figure 1) show nearly vertical lines for RF and Cubist, and
more angled lines (from upper left to lower right) for SVR.
The nearly vertical isolines for RF and Cubist indicate that
the spatial allocation of the training blocks (i.e., fewer large
versus many small) is not important to decrease error, but
rather just increasing the percent sample will tend to
decrease MAE. For example, a 16 percent sample arranged as
5, 1886 m sites yields results roughly equivalent to 160, 334
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Figure 2. Isoline plot of MAE of impervious surface cover
for each method (svr � support vector regression, 
rF � randomForests, and cubist � Cubist) and band
combination (all � reflectance, thermal and tasseled
cap; refl � reflectance only; and tc � tasseled cap
only) by the number of training sites and percent of
image used for training. The scales on each panel are
log(base 2) so percent sample ranges from 1 percent 
to 16 percent and number of training sites ranges from
5 to 160. A color version of this figure is available at
the ASPRS website: www.asprs.org.

Figure 3. Total execution time to build the estimation
model and apply it to the entire study area. Execution
time was smoothed using a 2nd order polynomial fit. The
longest RF runs were omitted due to processing limita-
tions. A color version of this figure is available at the
ASPRS website: www.asprs.org.

m training sites. Conversely, for SVR and all of the impervi-
ous surface estimations (Figure 2), having the data arranged
in more sites yields better results. Because adjacent pixels
tend to be correlated, a more representative sample may be
created as more sites are used for the same percent sample.
One explanation for the difference between urban forest
canopy and impervious surface estimation may be due to
how evenly distributed the cover type is throughout the
study area. In this study, trees tend to be clustered in
several large tracts and heavily canopied neighborhoods
while impervious surfaces are more evenly distributed.

There were very substantial differences in execution
time for the three models (Figure 3). Execution times for SVR

and RF increased rapidly as more training data was added.
The execution time for Cubist increased more slowly; the
size of the datasets used in this experiment were easily
handled by Cubist. One factor that may account for some of
the noted differences is the model’s implementation. Cubist
is an optimized, stand alone program; whereas, the other
methods are implemented inside the R environment where
there may be some overhead penalty. Execution time is
important when considering if the addition of more training
data is worth the time investment to generate and process
that data. Based on the asymptotic curve (Figure 6), the time
required to reduce error by 1 percent increases dramatically
as more training data are used. Additionally, error will only
decrease to some limiting value. For projects with very large
data sets, Cubist, by far, offers the best performance.

For urban forest cover estimation, the tasseled cap band
combination (tc) is better than the reflectance bands alone

(refl) and all bands (all) (Figure 4) for all three estimators.
The SVR method yields better results than Cubist, which in
turn is better than RF for all band comparisons (Figure 4a).
And in general, SVR is more accurate (based on both metrics)
than the other two methods for every band combination. For
urban forest canopy, the three tasseled cap bands (bright-
ness, greenness, and wetness) contain all the necessary
information to produce accurate maps and, in fact, including
other bands will result in poorer accuracy.

In contrast, for impervious surface cover estimation
(Figure 5), the tc bands produce the worst results with refl
and all band combinations generating about equal accuracy.
The tasseled cap bands appear to lack enough information
for the three methods to estimate impervious surface cover
better than when using the reflectance bands alone. When
comparing methods using all input bands, Cubist consis-
tently produced better results and SVR the worst (by compar-
ing MAE and RMSE). RF produced mixed results between the
two accuracy metrics, perhaps indicating that distribution of
the errors in the RF output contains fewer large errors than
the results from SVR. Using only the reflectance bands, all
three methods produce about the same quality of results.

The RF estimator has been touted as having the capacity
to handle weak explanatory input data (Breiman, 2001; Ham
et al., 2005; Lawrence et al., 2006). For this study, when
estimating urban forest cover, RF results were the best when
using the minimalist tc band set and actually were degraded
when additional, weakly descriptive variables were added
like the entire reflectance band set (Figure 4). A concurrence
of this can also be noted in the impervious surface estima-
tions where slightly poorer results are shown when adding
bands to the reflectance set to yield the all combination
(Figure 5). In this comparison, RF did not seem to handle
these situations any better than the other estimators.

It should be noted that the differences represent small
errors, usually less than 1 percent cover for the three methods
at a given band combination (Figure 4 and Figure 5). The error
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Figure 4. Urban forest cover accuracy interactions
between estimation method and band combinations.
Mean values of (a) MAE and (b) RMSE in percent
cover for the 10 replications are plotted for each
method/band combination. A color version of this
figure is available at the ASPRS website:
www.asprs.org.

Figure 5. Impervious surface cover accuracy
interactions between estimation method and band
combinations. Mean values of (a) MAE and (b) RMSE

in percent cover for the 10 replications are plotted
for each method/band combination. A color version
of this figure is available at the ASPRS website:
www.asprs.org.

range between band combinations for a particular estimation
method is also usually less than 1 percent for urban forest
cover (Figure 4), but for impervious surface estimation, the
range increases to approximately 1.5 percent for MAE and up to
about 3 percent for RMSE. From a practical standpoint for
predicting impervious surface and urban forest cover, results
with differences of 1 percent or less are essentially the same.
For larger errors, the results should be examined spatially in
map form because certain types of input pixels may not be
represented in the training set and yield errors that are obvious
on a map. Practical importance levels will vary depending on
the parameter being estimated.

All three models were fairly easy to use with Cubist the
easiest; however, there is a relatively steep learning curve

for R, which is not relevant for the specific estimators only
their R implementation. Other features like the tuning
functions and data manipulation/analysis capabilities in
R make SVR and RF attractive. Additionally, SVR and RF are
open source and have well-documented algorithms, which is
important for those who want to know what is happening in
the “black box.” An added benefit of R is that it is available
at no cost, although a routine similar to Cubist called
M5Rules (Holmes et al., 1999) is freely available through the
Weka project (http://www.cs.waikato.ac.nz/�ml/; Witten and
Frank, 2005).

The results of this study should be applicable to
estimating urban forest and impervious surface cover for
cities in many regions of the U.S., particularly the Northeast
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Figure 6. MAE decreases asymptotically as training data
size (and therefore run time) increases. The lines are
power functions fit through the raw data points. A color
version of this figure is available at the ASPRS website:
www.asprs.org.

with ecological and development characteristics similar to
Syracuse. This method may have difficulty where urban
vegetation is a very small fraction of the cover and domi-
nated by impervious surfaces, where taller buildings cast
large shadows over the landscape, and where impervious
surfaces mix with high albedo bare soil or gravel-like
surfaces, such as in the Southwestern U.S.

In this study, only readily available MRLC imagery was
used as the input data. Inclusion of ancillary data in the
prediction model, such as distance-to-roads, road density,
and boundaries of known natural preserves, may greatly
improve estimation accuracies.

Conclusions
Cubist, Random Forests, and support vector regression all
seem to handle relatively well the nonlinear mixing of urban
land covers and the prediction of materials of low abun-
dance (such as vegetation in intensely developed downtown
areas). These machine learning estimation techniques were
used to map individual, real-world, urban land-cover
constituents without the limitations of other methods. SVR

using three dates of tasseled cap bands predicts urban forest
canopy cover the best. Cubist using all bands (reflectance,
thermal, and tasseled cap) would be the best choice for
predicting urban impervious surface cover. In terms of
execution time, Cubist was far superior to the other meth-
ods. Optimized implementations of RF and SVR may improve
performance significantly.
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