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Abstract

Land surface temperature (LST) is a significant parameter in
urban environmental analysis. Current research mainly
focuses on the impact of land-use and land-cover (LULC) on
LST. Seldom has research examined LST variations based on
the integration of biophysical and demographic variables,
especially for a rapidly developing city such as Beijing, China.
This study combines the techniques of remote sensing and
geographic information system (GIS) to detect the spatial
variation of LST and determine its quantitative relationship
with several biophysical and demographic variables based on
statistical modeling for the central area of Beijing. LST and
LULC data were retrieved from a Landsat Thematic Mapper
(T™M) image. Building heights were delimited from the shadows
identified on a panchromatic SPOT image. The integration of
LULC and census data was further applied to retrieve grid-
based population density. Results indicate that the LST pattern
was non-symmetrical and non-concentric with high tempera-
ture zones clustered towards the south of the central axis and
within the fourth ring road. The percentage of forest, farm-
land, and water per grid cell were found to be most significant
factors, which can explain 71.3 percent of LST variance.
Principal component regression analysis shows that LST was
positively correlated with the percentage of low density built-
up, high density built-up, extremely-high buildings, low
buildings per grid cell, and population density, but was
negatively correlated with the percentage of forest, farmland,
and water bodies per grid cell. The findings of this study can
be applied as the theoretical basis for improving urban
planning for mitigating the effects of urban heat islands.

Introduction

Land surface temperature (LST) is an important parameter
in study of urban thermal environment and behavior.

LST modulates the air temperature of the lower layer of
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urban atmosphere, and is a primary factor in determining
surface radiation and energy exchange, the internal climate
of buildings, and human comfort in the cities (Voogt and
Oke, 1998). The physical properties of various types of
urban surfaces, their color, the sky view factor, street
geometry, traffic loads, and anthropogenic activities are
important factors that determine LsSTs in the urban envi-
ronments (Chudnovsky et al., 2004). The LsT of urban
surfaces correspond closely to the distribution of land-use
and land-cover (LuLc) characteristics (Lo et al., 1997,
Weng, 2001 and 2003; Weng et al., 2004). Each compo-
nent surface in urban landscapes (e.g., lawn, parking lot,
road, building, cemetery, and garden) exhibits unique
radiative, thermal, moisture, and aerodynamic properties
and relates to their surrounding site environment (Oke,
1982). The myriad of these component surfaces and the
spatial complexity when they are mosaicked create a
limitless array of energy balance and microclimate sys-
tems (Oke, 1982). To study urban LsTs, some sophisticated
numerical and physical models have been developed.
These include energy balance models (Oke et al., 1999;
Tong et al., 2005), laboratory models (Cendese and Monti,
2003), three-dimensional simulations (Saitoh et al., 1996),
Gaussian models (Streutker, 2003), and other numerical
simulations (Yang et al., 2003). Among these models and
simulations, energy balance models are by far the main
methods, but statistical analysis may play an important
role in linking LsT to related factors, especially at larger
scales (Bottyan and Unger, 2003). Previous studies have
focused primarily on biophysical and meteorological
factors, such as built-up area and height (Bottydn and
Unger, 2003), urban and street geometry (Eliasson, 1996),
LuLC (Dousset and Gourmelon, 2003), and vegetation
(Weng et al., 2004). A less number of studies, however,
have examined how population distribution influences
urban heat island (UHI) intensity, although it is apparently
an indicator of anthropogenic heat emission (Fan and
Sailor, 2005) and the intensity of human activities
(Elvidge et al., 1997).

Little research effort has been made to study the intra-
urban variations of LsT and their related biophysical and
socioeconomic variables within a city. The combination
of biophysical and socioeconomic data for urban studies
has been hampered by the spatial unit problem, because
the relevant spatial units for biophysical processes are
different from the spatial units for population and other
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socioeconomic data (Yuan et al., 1997). Recent significant
advances in the data and technological integration between
remote sensing and GIs suggest that the integration is a
powerful and effective tool in urban studies. Remote
sensing from airborne or satellite platforms cannot only
provide thermal infrared data, but also LuLc, building
height, and other urban biophysical variables. Gis technol-
ogy provides powerful capability for entering, analyzing,
and displaying digital data from various sources and
formats. In order to gain a deeper insight into urban
thermal behavior and climate, more research is needed to
explore LsT’s relationship with various biophysical and
socioeconomic variables using an integrated remote
sensing and GIs approach. Moreover, this integration may
help serve to bridge the gap between scientific studies of
urban climate and their applications in planning and
environmental management.

Beijing, the capital of China, has experienced a rapid
urban expansion over the past two decades. Accelerated
urban development and lack of appropriate planning
measures have created serious impacts on its thermal
environment. It is found that air temperature uHI effect
in Beijing became more evident, where average daily air
temperature in the urban area was 4.6°C higher than that
in the suburban area (Song and Zhang, 2003). Existing
UHI studies in Beijing have been focused primarily on the
temporal dynamics of air temperatures. Further analysis
of the spatial patterns of its LST and the contributing
factors is urgently needed. In this study, we combine
remote sensing and GIs to analyze the spatial pattern of
LST and explore the factors that have contributed to the
LST variations. Considering the study area’s unique geo-
graphical setting and data availability, this study identifies
potential explanatory variables from LuLc, building heights
distribution, and population density. The information

on LULC, LST, and building heights will be extracted from
remote sensing data. Grid based population density will
then be computed by integrating LuLC and census popula-
tion. Statistical analyses will explore how the LST variation
to be a function of the biophysical and demographic
variables. This analysis would provide useful information
for designing measures to effectively mitigate the uHI
effects and thus improve the thermal environment of
Beijing.

Study Area

Beijing, one of the largest cities in the world, covers app-
roximately 16,800 km? with a population of 13 million
people. It is the political, cultural, and communication
center of China, and has a history of more than 3,000
years as a city and more than 800 years as a capital city.
It has been selected as the site of 2008 Summer Olympic
Games. Over the past two decades, Beijing has undergone
significant LuLc changes characterized by accelerated
urbanization. The development pattern is typically a
concentric expansion, which forms an obvious ring-shaped
pattern from the inner center to the outskirts. Our study
area focuses within the fifth-ring road, where the majority
of built-up takes place. This area occupies 666.7 km?
comprised by nine counties and 120 townships. Beijing
resides on a plain, with the elevation at approximately
100 m above mean sea level. It is located in the temperate
climatic zone, and has a mean annual temperature of
12°C, and an average annual precipitation of 640 mm.
The study area was divided into 1000 m X 1000 m grids
(Figure 1) in order to compute grid-based population
density and to conduct data integration for statistical
analysis.

Figure 1. Location of the study area.
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Data and Methods

Data Used

Five primary data sources were employed in this study:

(a) Beijing 2000 census data by township, (b) a Landsat-5 T™
scene acquired on 31 August 2001, which was close to the
completion date of 2000 China census and was used to extract
LST and LuLc information, (c) a Panchromatic SPOT image
acquired on 13 November 2000, which was used to extract
building heights, (d) meteorological data from weather stations
on 31 August 2001 used as the input parameters to retrieve
LST, and (e) 1:10 000 topography and road maps obtained
from Beijing Institute of Surveying and Mapping. All data
were geometrically referenced to the 1:10 000 topographic
maps to facilitate the analysis.

LuLc Information Extraction

A supervised classification with the maximum likelihood
algorithm was conducted to classify the Landsat T™M image
(using all reflected bands, 1 through 5, and 7). Six LuLC
categories were identified, including high-density built-up,
low-density built-up, forest, farmland, water, and exposed
land. High-density built-up consists of approximately 80 to
100 percent construction materials, which are typically old
commercial, residential, and industrial buildings as well as
large transportation facilities. Low-density built-up consists
of 50 to 80 percent construction materials, which have
mostly been reconstructed in recent years, and frequently
contains some small open space. Then, a road map, created
by Beijing Institute of Surveying and Mapping, was com-
bined with the LuLC results in order to obtain the seventh
LULC type: road. Accuracy of the classification map was
verified by field checking or by comparing with existing
LULC maps that have been field checked. The overall accu-
racy of the LuLc map was determined to be 83.86 percent
and Kappa index of 85.52 (Table 1).

Calculation of NDVI
Normalized Vegetation Index (NDVI) was calculated from the
TM image using the following formula:

p(band 4) — p(band 3)

NDVI= p(band 4) + p(band 3)

@)

where p is band reflectivity. NDVI;oa and NDVig,s Were
obtained by using values from at-sensor and at-surface
reflectivity, respectively. The latter is more accurate due to
atmospheric correction, and thus was used in this study.

The at-surface reflectivity was calculated with the following
equation (Chavez, 1996):
2

_ W(Lsat — Lg)d 2
Psurf E, cos, T, (2
where L, is the at-sensor radiance, T, is the atmospheric
transmissivity between the sun and the surface, 0, is the
zenithal solar angle, E; is the spectral solar irradiance on
the top of the atmosphere, d is the Earth-Sun distance, and
L, is the radiance with the atmospheric components (mole-
cules and aerosols) that can be obtained according to the
following equation:

Lp = Liin — Lo (3)
where L., is the radiance that corresponds to a digital
count value for which the sum of all the pixels with digital
counts lower or equal to this value is equal to 0.01 percent
if all the pixels from the image is considered. The term Lo,
is given by:

0.01cos0,T,E,

T (4)

Lo, =

with values for T, equal to 0.85 and 0.91 for bands TM3 and
TM4, respectively (Chavez, 1996).

Derivation of LsT

Landsat T™ thermal infrared data (band 6) with the wave-
length range of 11.45 to 12.50 pm and a nominal ground
resolution of 120 m X 120 m has been proved effective to
obtain LsT information. To retrieve LST from one thermal band,
some atmospheric parameters are needed to be considered,
usually by a complicated procedure of radio-sounding. Many
previous studies with Landsat TM thermal data concentrated
on computing and applying brightness temperatures only. In
this study, a mono-window algorithm was applied to obtain
LsTs to avoid the radio-sounding procedure (Qin et al., 2001):

TS=%[a(17C7D)+(b(1foD)

+C+ D) Tsensor - DTa] (5)

withC=er,D=(1—-7[1 + (1 — &)7], « = —67.355351, and
b = 0.458606, where ¢ is land surface emissivity (LSE), 7 is
the total atmospheric transmissivity, Ty, IS the at-sensor

TaBLe 1. ERROR MATRIX AND ACCURACY ASSESSMENT RESULT OF THE LULC MAP
Reference Data
Low-density  High-density

Classified Data Road  Exposed Land Forest Water Built-up Built-up Farmland
Road 56 0 0 0 0 0 0
Exposed land 0 16 0 0 0 1 5
Forest 0 0 37 0 0 0 1
Water 0 1 0 10 0 2 0
Low-density built-up 0 1 4 1 125 9 3
High-density built-up 0 4 0 1 5 80 0
Farmland 0 0 2 0 1 1 11
Total 56 22 43 12 131 93 20
Producers Accuracy % 100 72.73 86.05 83.33 95.42 86.02 55.00
Users Accuracy % 100 72.73 97.37 76.92 87.41 88.89 73.33
Kappa 1 0.7104 0.9703 0.7616 0.8071 0.8525 0.7184

Overall Classification Accuracy = 88.86; Overall Kappa Statistics = 0.8552.
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brightness temperature, and T, represents the mean atmos-
pheric temperature given by:

T, = 16.0110 + 0.92621T, (6)

with T, being the near-surface air temperature. Qin et al.
(2001) also estimated the atmospheric transmissivity from w,
the atmospheric water vapor content, for the range 0.4 to
1.6 g/cm?, according to the following equations:

7 = 0.974290 — 0.08007w (high Tp), and @)
7= 0.982007 — 0.09611w (low Tp). (8)

Both T, and w were obtained from local meteorological
stations. LSE is obtained by using the NDviI thresholds method
(Sobrino et al. 2004):

& = g4, When NDvi < 0.2, 9)

& = &,, When NDvI > 0.5, and (20)

& = gyg Py + £55(1 — P,) + de, when 0.2 = novi = 0.5, (11)

where ¢, is the soil emissivity, &, is the vegetation emissiv-
ity, and de includes the effects of the geometry of natural
surfaces and the internal reflections. Because most of the study
area is a plain surface, this term is negligible. P, is the propor-
tion of vegetation that can be computed by the following
formula (Carlson and Ripley, 1997):

b [ NDVI — NDVL;, ]2
* = | NDVIL,, — NDVIi,

(12)

where NDVI,, = 0.5, and NDVI,;, = 0.2. Soil and vegetation
emissivities were estimated to be 0.97 and 0.99, respectively
(Sobrino et al., 2004).

Computation of Building Heights
Building heights were calculated from shadows that were
identified on a panchromatic spoT image (Cheng and Thiel,
1995). The height h is calculated as follows:
h=tanB XS (13)
where B is sun elevation, S is the shadow length in the con-
verse direction of sun azimuth o in the geometric corrected
image, and B, o can be retrieved from the spoT header file.
The shadow length Sy in the north direction was calcu-
lated as per pixel values. The shadow length S in the converse
direction of sun azimuth » can be calculated with the follow-
ing formula:

S = 10S\/sin(w — 90°) (14)
where Sy is the pixel number in the north direction, which
can be obtained from the sPOT image, and w is sun azimuth.
In this study, we obtained B = 32.3959°, and w = 173.593°,
then h = 6.4 * Sy. All buildings were categorized into three
levels according to Sy values, i.e., extremely-high buildings
(>38.4 m), medium-high buildings (25.6 to 38.4 m), and low
buildings (12.8 to 25.6 m). Buildings lower than 12.8 m
were not detectable from the satellite image.

Calculation of Grid-based Population Density

Previous research have primarily adopted a census polygon
overlay method to analyze the relationship between popula-
tion and LsT (Elvidge et al., 1997). However, the value in

a particular enumeration district (ED) implies the aggregate
value of the entire district without any internal variation.
Besides implying the notion of evenly distributed populations,
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census boundaries may or may not coincide with actual
ecological landscape patterns (Moon and Farmer, 2001). In
this study, LuLc classification derived from the TM image was
applied to compute per-pixel based population (Yuan et al.,
1997). This method assumes that population distribution is
related to LuLC (Flowerdew and Green, 1989). The regression
models for population estimation are additive linear models
of the following form:

k

P = 21(7);1”1‘; +e) (15)

i=
where P; is the total population count for i™ ED, 7; is the
average population density for the j! LuLC type, and inde-
pendent variables r;; are the total areas for the j'" LuLe type
within the i ep.

Because population density distribution is not explained
solely by LuLC, it is necessary to refine n; as follows:

i

Vi

Ny = X ; (16)

where 7 is the refined population density for the j™ LuLe
within the i Ep, and y; is predicted total population of
the i en. The i grid population density is computed as
follows:

k
Q= E (mj Ajj) (17)
j=1
where Q; is the total population count for i*" grid, and Ajj
are the total areas for the j" LuLc type within the i™" grid.

Statistical Analysis of the Relationship Between LsT and Related Factors
In order to analyze the relationship between LsT and related
factors, we identified the following explanatory variables,
including: population density (PD), the percentages of high-
density built-up (HD), low-density built-up (LD), forest (FO),
farmland (FA), water (wA), expose land (EL), extremely-high
buildings (EH), medium-high buildings (MH), and low build-
ings (LH), and computed their values per grid. At first, mul-
tiple stepwise regressions (MSR) were applied to obtain s
independent variables with statistical significances (P < 0.001),
and to examine whether the s independent variables had
multicollinearity. If there was a multicollineatity, principal
component regressions (PCR) would then be applied conse-
quently, which is the method of combining linear regression
with principal component analysis (PCA). PCA can transform a
set of correlated variables into a set of uncorrelated principal
components (Montgomery and Peck, 1992). MSR and PCR were
carried out with spss 11.0 (Liu et al., 2003).

Results

Spatial Characteristics of LsT and Land-cover Parameters

Across the entire study area, LST values increased from the
outskirts towards the inner urban areas, which ranged from
16.4° to 40.5°C, with a mean of 26.6°C and a standard
deviation of 2.7°. LsST patterns were found to be non-
symmetrical and non-concentric, with high temperature
zones clustered towards the south of the central axis and
within the fourth ring road (Figure 2). In contrast, the value
of NDVI varied from —0.655 to 0.638, with a mean value of
0.002 and a standard deviation of 0.164. Figure 3 shows that
low NDvI values were detected at the center of the study
area, corresponding to the built-up areas (such as buildings,
roads, etc.). High NnDvi values were discovered largely in the
surrounding areas, corresponding to green vegetation. The
spatial pattern of NDvI appeared to be concentric. High NDvI

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



Figure 2. Spatial distribution of land surface temperature.

values formed a belt between the fourth and fifth ring roads,
and was scattered within the third ring road, consistent with
the distribution of parks and recreation sites.

Plate 1 displays LuLc distribution in Beijing. Low-density
and high-density built-up were the dominant types, which
occupied about 64.85 percent of the total area (432.36 km?).
The radial roads, ring roads, and smaller artery roads con-
verged to become the transportation network, which accounted
for a total area of 97.92 km?. Forest shared 11.01 percent in
area (73.44 km?), mainly seen between the fourth and the fifth
ring roads, as well as in some large parks. Exposed land were
those lands either set aside for future urban development, or
was extremely difficult for current use. These lands were
mainly located beyond the fourth ring road. Farmland and
water were relatively small, together comprising only 3.49
percent of the area (Table 2).

LST and NDVI values by LULC type were computed to
understand further how LsT interacted with land cover para-
meters. The highest LsT was found in high-density built-up
areas (28.61°C), followed by exposed land (26.94°C), roads
(26.75°C), low-density built-up (26.60°C). Lowest temperatures
were detected with water bodies (19.97°C), farmland (21.96°C),
and forest (22.94°C). The highest NDVI was found in farmland
(0.36), followed by forest (0.26), low-density built-up (—0.01),
road (—0.03), high-density built-up (—0.11), and water (—0.12)
(Table 2). This implies that urban development has brought
up LST by replacing natural vegetation with non-evaporating
and non-transpiring surfaces such as stone, metal, and con-
crete (Lo et al., 1997; Weng, 2001).

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

Characteristics of Building and Population Density Distributions

The distribution of building heights within the city was
delineated based on the shadows on a panchromatic sPOT
image. Results show that there were 69,624 low buildings,
occupying a total area of 51.31 km?. These buildings were
scattered throughout the study area. A total of 15,778
medium to high buildings were discovered (12.47 km? in
area), while 4,068 extremely-high buildings were measured
to account for only 5.71 km?2. Both medium and extremely
high buildings were primarily located close to the main
roads, some residential districts, and within business
districts (Plate 2).

Census population density value of Eps ranged from
196 to 39,874 persons/km?, with a mean value of 7,448
persons/km? (Figure 4). Strong correlation was found
between census population density and LuLc (R? = 0.773).
Using LuLc for population estimation, the rasterized pop-
ulation density ranged from 286 to 34,408 persons/km?,
with a mean value of 10,532 persons/km? (Figure 5). Com-
paring the map of the census population distribution and
LULC-based population density map, it is clear that the
latter can reveal more spatial variations with regard to LST
distribution.

Results of Statistical Analysis

Table 3 shows the result of stepwise correlation analysis.
LST was found significantly correlated with eight variables,
including FO, FA, WA, LD, HD, EH, PO, and LH (R? = 0.811).
Forest, farmland, and water were the three strongest factors
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Figure 3. Spatial distribution of the NDvI.

with R? of 0.713, which means these three variables were
able to explain 71.3 percent of the relationship. The ratios
of exposed land, roads, and medium-height buildings by
grid did not enter the regression model. Based on the fact
that ninth eigenvalue is close to 0 (0.007) and the condi-
tion index is more than 15 (27.425) (Table 4), there was a
significant amount of multicollinearity among the eight
variables. The presence of such strong multicollinearity
makes MsR models less useful and inappropriate.

Principal component analysis shows the first four princi-
pal components (pPcs) can explain 85.276 percent of the total
variation in LsT (Table 5). From the factor loading matrix, a
mathematical expression between pcs and the primal eight
variables can be established:

PC = Ax, (18)
where pC is the first four principal components matrix, A is
first four principal components loading matrix, and x is
the matrix consisted of FO, FA, WA, LD, HD, EH, PO, and LH
(Table 5).

The standardized principal component regression
equation was performed to evaluate the relationship bet-
ween LST and the first four pcs, and obtained the following
result:

LsT = 0.329PC, — 0.776PC, + 0.216PC, + 0.086PC,
(R? = 0.764; significance = 0.001)

(19)
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Applying Equation 18 to Equation 19, the final model of LsT
can be presented as follows:

LsT = 25.525 — 4.283F0 — 5.847FA — 8.272wA + 6.019LD

+ 0.615HD + 2.908HB + 17.315P0 + 3.440LH, (20)
where FO, FA, WA, LD, HD, EH, LH, and PO are the ratios of
forest, farmland, water, low-density built-up, high-density
built-up, extremely-high buildings, low buildings by grid,
population density, respectively. It is concluded that LST
was positively correlated to the ratios of low-density built-
up, high-density built-up, extremely-high buildings, low
buildings by grid, and population density, but was nega-
tively correlated with the ratios of forest, farmland, and
water bodies by grid.

Discussion and Conclusions

This study has investigated the spatial distribution of LST
and its quantitative relationships with biophysical and
demographic parameters in Beijing. The results indicate that
the spatial pattern of LST was non-symmetrical and non-
concentric with high temperature zones clustered towards
the south of the central axis and within the fourth ring road.
The ratios of forest, farmland, and water were found to be
most significant factors in explaining the LST variation.
Principal component regression analysis further shows that
LST was positively correlated with the ratios of low-density
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Plate 1. Land-use and land-cover map.

built-up, high-density built-up, extremely-high buildings,
low buildings, and population density, while negatively
correlated with the ratios of forest, farmland, and water

bodies.

Landsat T™ thermal infrared data is suitable to derive
meso-scale temperatures in urban areas, but many studies
mainly apply brightness temperatures or original bN values
(Aniello et al., 1995). In this study, we applied a mono-
window algorithm to retrieve LST, which was developed by
Qin et al. (2001) and tested by other researchers (Sobrino
et al., 2004). This approach can provide more accurate LST
measurements and is suitable for a better urban analysis.

It is worthy to note that LST is different from air temperature,

although several studies have found good correlations
between them (Ben-Dor and Saaroni, 1997). It should be
pointed out that this study was limited by Landsat-5 T™ data
with low temporal resolution, which passed over in Beijing
at about 10:40 local time. Future research of LST will benefit
from higher spectral, temporal, and spatial resolution of
new remote sensing instruments such as ASTER. Further
data integration is required to study daily and seasonal fluc-
tuations in LST, where remotely sensed imagery can be com-
bined with temperature measurements of local meteorological
stations and in situ measurements.

This study indicates, as expected, that high- and low-
density built-up and road areas possessed higher LsST, while

TABLE 2. ToTAL AREA, LAND SURFACE TEMPERATURE, AND NDVI BY LAND-USE/COVER TYPE

Land Surface

Area NDVI Temperature
LuLc Tvpe km? % Mean Std. Dev. Mean Std. Dev.
High-density built-up 138.5 20.77 -0.11 0.15 28.61 1.76
Low-density built-up 293.85 44.07 -0.01 0.12 26.6 2.00
Road 97.92 14.69 —0.03 0.14 26.75 2.13
Forest 73.44 11.01 0.26 0.13 22.94 1.71
Farmland 13.02 1.95 0.36 0.11 21.96 1.53
Water 10.28 1.54 -0.12 0.21 19.97 2.01
Expose land 39.7 5.95 0.02 0.15 26.94 2.35
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Plate 2. Building height distribution.

forest, farmland, and water bodies yielded much lower

LST. This finding suggests that urban/built-up uses play an
important role in LST variations, which confirms the conclu-
sions made by previous studies (Dousset and Gourmelon,
2003; Weng and Yang, 2004). Roads in this study did not
exhibit the highest temperature, which is inconsistent with
some other studies, where high thermal signatures on roads
were usually detected as a result of construction materials,

heat emissions from combustion engines, and polluted air
(Chudnovsky et al., 2004). This may be due to the fact that
there are many plants and green spaces on the sides of most
roads in Beijing. It may also have something to do with the
differences in the thermal properties between roads and
roofs. Temperatures of roofs were likely to be warmer than
roads, especially in the morning, since roofs would heat up
more quickly due to its low thermal admittance. In addition,

Figure 4. Spatial distribution of population density of census districts.
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Figure 5. Spatial distribution of grid-based population density.

forest temperature was detected to be higher than farmland,
a finding that is different from a similar study in Guangzhou,
China (Weng and Yang, 2004). The main reason is possibly
that forest in Beijing is distributed around dense urban uses
and is strongly influenced by the surrounding areas, while
farmland is located mainly in the suburbs where building
density is substantially lower.

The stepwise regression model entered eight variables,
but the ratios of forest, farmland, and water were the three
most influential variables. Apparently, these natural covers
were important factors in controlling LST variation. Vegeta-
tion types have distinct thermal properties of radiating
surfaces from urban/built-up uses, and consume much

TABLE 3. STEPWISE CORRELATION COEFFICIENTS
AND THEIR SIGNIFICANCE LEVELS

Significance
Parameters Entered R R? Level
FO 0.575 0.331 0.001
FO, FA 0.756  0.572 0.001
FO, FA, WA 0.845 0.713 0.001
FO, FA, WA, LD 0.883  0.780 0.001
FO, FA, WA, LD, HD 0.887 0.787 0.001
FO, FA, WA, LD, HD, EH 0.891 0.794 0.001
FO, FA, WA, LD, HD, EH, PO 0.897 0.804 0.001
FO, FA, WA, LD, HD, EH, PO, LH 0.901 0.811 0.001

Note: FO, FA, WA, LD, HD, EH, LH, and po refers to the ratios of forest,
farmland, water, low-density built-up, high-density built-up,
extremely-high buildings, low buildings by grid, and population
density, respectively.
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energy by evapotranspiration (Weng et al., 2004). The
cooling function of water was similar to vegetation. In
addition, the ratios of extremely high buildings and low
buildings were found to have a significant impact on the
LST. High buildings can change urban canyon geometry and
thermal characteristics vertically, leading to the increase

in absorption of shortwave radiation and the decrease in
outgoing longwave radiation, and hindering the loss of
sensible heat (Bottyan and Unger, 2003; Voogt and Oke,
1998). An interesting finding in this study is that the ratios
of roads, exposed land, and medium-high buildings did not
enter the regression model. This is likely due to their close
correlations with above-mentioned eight variables.

This study further demonstrates that resident population
density was a significant variable affecting the spatial varia-
tion of LsT. This finding is in agreement with the results of
several previous studies of the relationship between uHI and
population density (Elvidge et al., 1997; Oke, 1973). Since
this study applied residential population density for the
analysis, instead of actual population distribution, further
studies of the LsT/population distribution relationship are
required.

The methodology has been developed specifically for
Beijing, which has large census tracts. This methodology,
however, provides an effective way to examine the relation-
ship between LsT and biophysical and demographic variables
based on grid statistics. This procedure can overcome a major
problem of the spatial aggregation approach, which uses
census tracts or other census polygons as the statistical obser-
vation units. Thus, this methodology provides an alternative
for urban studies, and may be applied to other cities in the
world. Moreover, the findings of this study can be employed

April 2008 459



TABLE 4. CO-LINEARITY DIAGNOSIS OF THE LINEAR REGRESSION EQUATION

Variance Proportions

Dimension Eigenvalue Condition Index Constant FA WA LD HD EH PO LH
1 4.934 1.000 0.000 0.002 0.000 0.002 0.002 0.001 0.008 0.004 0.003
2 1.214 2.016 0.000 0.031 0.070 0.104 0.003 0.000 0.054 0.006 0.004
3 0.988 2.234 0.000 0.011 0.226 0.244 0.001 0.000 0.000 0.000 0.000
4 0.870 2.381 0.000 0.023 0.092 0.267 0.023 0.000 0.037 0.003 0.000
5 0.536 3.035 0.000 0.140 0.009 0.108 0.063 0.000 0.051 0.000 0.000
6 0.293 4.100 0.000 0.002 0.002 0.006 0.048 0.006 0.716 0.016 0.056
7 0.094 7.253 0.007 0.025 0.045 0.001 0.025 0.053 0.088 0.787 0.009
8 0.064 8.748 0.009 0.022 0.059 0.008 0.031 0.066 0.025 0.176 0.914
9 0.007 27.425 0.983 0.744 0.497 0.260 0.804 0.873 0.021 0.008 0.013

Note: FO, FA, WA, LD, HD, EH, LH, and PO refers to the ratios of forest, farmland, water, low-density built-up, high-density
built-up, extremely-high buildings, low buildings, and population density by grid, respectively.

TABLE 5. RESULT OF PRINCIPAL COMPONENT ANALYSIS

Variables

Component Eigenvalue % of Variance Cumulative %  FoO FA WA LD HD EH PO LH

Factor 1 3.452 43.155 43.155 —0.142 —-0.084 —-0.036 —0.119 0.261 0.214 0.257 0.258
Factor 2 1.352 16.903 60.058 0.419 0.073 0.470 —0.577 —0.016 0.062 0.028 —0.011
Factor 3 1.155 14.438 74.497 0.370 —0.796 0.099 0.254 -0.095 0.013 0.077 0.083
Factor 4 0.862 10.780 85.276 —0.532 -0.020 0.871 0.324 -0.075 —0.027 0.074 —0.004
Factor 5 0.582 7.278 92.555 0.145 0.209 —-0.028 0.256 —0.508 1.093 0.184 —0.315
Factor 6 0.325 4.066 96.620 0.481 0.603 —0.002 0.418 —0.661 —0.530 0.995 0.773
Factor 7 0.199 2.486 99.106 0.113 0.194 0.127 0.170 —-0.316 0.466 —1.442 1592
Factor 8 0.072 0.894 100.000 1.677 1.093 0.615 1.815 2469 0.262 —0.230 —0.289

Note: FO, FA, WA, LD, HD, EH, LH, and po refers to the ratios of forest, farmland, water, low-density built-up, high-density
built-up, extremely-high buildings, low buildings by grid, and population density, respectively.

to develop a theoretical basis for better urban planning
policies to mitigate the uHI effects. For example, our results
indicate that vegetation and water played a significant role

in reducing the amount of thermal radiation. Therefore,

it should be encouraged to enhance urban forest programs,
and to consider outskirt farmlands and water bodies in the
planning process. In contrast, high- and low-density built-up
increased LST. To avoid serious UHI effects, local governments
should take measures to damp heat islands by creating more
greenbelts and canals. These planning implications are highly
relevant if we consider that the 2008 Summer Olympic
Games will be held in the city on August, the same month

as the acquisition of our satellite images.
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