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Abstract

We propose a new building detection and description algo-
rithm for lidar data and photogrammetric imagery using
directional histograms, splitting and merging segments, and
line segments matching. Our algorithm consists of three steps.
In the first step, we extract initial building regions from lidar
data. Here, we apply a modified local maxima technique
coupled with directional histograms and the entropies of
these histograms. In the second step, given the color segmen-
tation results from the photogrammetric imagery, we extract
coarse building boundaries based on the lidar results with
region segmentation and merging from aerial imagery. In the
third step, we extract precise building boundaries based on
the coarse building boundaries using line segments matching
and perceptual grouping. Experimental results on multi-
sensor data demonstrate that the proposed algorithm pro-
duces accurate and reliable results.

Introduction

In recent years, the increasing need for accurate three-
dimensional (3D) data of urban areas, and their continuous
update has led to research efforts that aim to develop
automatic or at least semiautomatic tools for the acquisition
of such data. To satisfy the new demands, more automated
methods that produce accurate geo-information are required
to keep costs within reasonable bounds. With its high pulse
frequencies, light detection and ranging (lidar) is a very
valuable data source for the production of geo-information.
For this reason, lidar plays an important role in both the
automation of building detection and the creation of 3D
topographical databases.

Early researchers generally used three kinds of methods
to detect and reconstruct buildings from lidar data and
photogrammetry. The first technique is to use only lidar data,
because the photogrammetry of the region that corresponds to
the region of the lidar data maybe impossible to obtain. There
have been several attempts to detect building regions from
lidar data. The task has been solved by classifying the lidar
points according to whether they belong to bare-earth,
buildings, or other object classes. Morphological opening
filters are used to determine a Digital Terrain Model (DTM)
that can be extracted by subtracting object points from the
Digital Surface Model (DsM). By applying height thresholds to
the normalized DSM, an initial building region is obtained.
This initial classification must be improved to delete vegeta-
tion regions. In Brunn and Weidner (1997), this was accom-
plished by a framework for combining various cues in a
Bayesian network. In Rottensteiner and Briese (2002), an
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algorithm for building detection that relied on DTM generation
by hierarchic robust linear prediction (Briese et al., 2002) was
presented. The DTM and DSM grids in Rottensteiner and Briese
(2002) were used for further classification.

The second type of method is to use 2D or 3D informa-
tion from photogrammetric imagery. Early researchers tried
to extract feature-ground separation, but it is hard to sepa-
rate building boundaries from other distracting lines, such as
road boundaries, by using only perceptual information such
as parallel lines and right-angled corners. Therefore, other
information is used for building extraction. The most notable
is the depth information from stereo by multiple images
(Sun et al., 2005). Kim and Nevatia (2004) proposed a
method that automatically constructs the description of
complex buildings from multiple images. The main diffi-
culty in utilizing stereo information is that although range
data can be generated from stereo analysis, its quality is not
good enough to generate building hypotheses directly, since
the roofs of many buildings lack sufficient texture for stereo
processing. In addition, nearby trees of similar height also
make the use of such range data difficult.

The third type of methods uses both the lidar data and
photogrammetric imagery. Since lidar and photogrammetric
imagery each has unique advantages and disadvantages
for reconstructing building surfaces, advantages of one
method can compensate for disadvantages of the other
method making it natural to combine the two methods.
More specifically, intensity and height information in lidar
data can be used with texture and boundary information in
photogrammetric imagery to improve accuracy. Shenk and
Csatho (2002) proposed feature-based fusion of lidar data
and digital aerial images to obtain a better surface descrip-
tion than could be achieved by using only one of these data
sources. Habib et al. (2005) proposed a method based on the
registration of photogrammetric imagery and lidar data using
linear features. Sohn and Dowman (2003) focus on an
exploitation of synergy of Ikonos imagery combined with a
lidar DEM. Specifically, individual buildings are localized
with rectangle polygon by a hierarchical segmentation of
lidar DEM and Tkonos multi-spectral information. However,
this method has building extraction errors, such as intru-
sion/extrusion of building shape. The Rottensteiner et al.
(2004) method consists of building detection step, roof plane
detection step, and the determination of roof boundaries
step. Building detection is based on the Dempster-Shafer
theory for data fusion. In roof plane detection, the results of
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a segmentation of laser scanner data are improved using the
digital images. The geometric quality of roof plane bound-
aries can be improved at step edges by matching the object
edges of the polyhedral models with image edges. However,
it is possible that true straight roof plane boundaries are
changed as wrongly curved boundaries by matching and
merging outlier edge segments. In this paper, we present a
new approach to detect and describe complex buildings by
using lidar data and aerial images.

System Overview

Lidar and photogrammetric imagery each have particular
advantages and disadvantages in horizontal and vertical
position accuracy. Compared with photogrammetric imagery,
lidar provides accurate height information but inaccurate
boundary lines. Unfortunately, some regions in lidar data have
null values due to self-occlusion of a building. Photogrammet-
ric imagery provides extensive 2D information such as high-
resolution texture and color information. Although 3D height
information can be estimated from one or several images by
several methods such as stereo, shape from shading compared
with lidar, this information is relatively inaccurate.

To extract accurate building region extraction results,
we combine the information from lidar and photogrammetric
imagery by first assuming the building regions extracted
from lidar as the initial regions, and then improving the
inaccurate boundaries by utilizing the photogrammetric
imagery to obtain the precise building boundaries. More
specifically, we first extract the initial building boundaries
from the height information provided by lidar data. Next, we
enhance the initial boundaries using color information
provided by the photogrammetric imagery. Here, we apply
color segmentation based on the assumption that building
roofs are planar, and therefore, the height of the building
and its color depicted in the photogrammetric imagery is
homogeneous. Finally, we apply edge matching and closed
loop construction as a post-process, since most man-made
objects are best described by edges. Figure 1 shows the
block diagram of the system.

Extracting Building Boundaries from Lidar

The extraction of building segments from lidar data is per-
formed through two classification steps. First, the lidar points
are classified into bare-earth points and building candidate

Figure 1. Block diagram of the system.

points. Next, the vegetation points are identified and elimi-
nated from the building candidate points. Both classification
steps are performed on segmented lidar point clouds.

Classification of Bare-earth Points and Building Candidate Points
Classification of Each Point in Local Patch

We first subdivide the scanned regions into local patches
where the patch size is predefined. A suitable patch size is
determined based on these criteria plus a maximum building
size constraint. Classification of candidate building points is
done by local maxima filter that measures the difference of
each point in the patch with the minimum height point of
that patch.

Conversion of Candidate Building Regions into Grid Form
The data points in extracted building regions are converted
to a grid form for easier/faster data processing. Commonly
used interpolation techniques include bilinear interpolation
and nearest-neighbor interpolation. In order to decide which
interpolation technique to apply, we must consider the
common attributes of artificial objects. Generally, bilinear
interpolation does not preserve the discontinuities at the
building boundaries and wrongfully smoothes the height of
these points. On the other hand, nearest neighbor interpola-
tion would cause errors in points where height is smoothly
varying, as in the case of a sloped roof. However, there are
not many un-scanned points in sloped roof regions. Difficul-
ties in scanning the height are mainly caused by abrupt
discontinuities of height concentrated at building bound-
aries. Therefore, nearest neighbor interpolation is more
suitable than bilinear interpolation for this problem.

Deleting Vegetation Regions

Next, candidate building regions extracted in the previous
process are further classified as building or vegetation.
Traditionally, this further classification has been based on
one or more of the following criteria for each region: spectral
signature, area, circularity, and surface roughness or surface
gradients. However, due to their simplicity, each attribute
mentioned above has limitations. First, the use of spectral
signatures is restricted by time and weather. Moreover,
common shape parameters, such as roundness and area, have
proved to be insufficient in this application to distinguish
between vegetation and buildings. Finally, since it is possible
for a building to have different heights in its roof, due to
various installations such as water tank, chimney, antenna,
dome or stair shape structures, simply using the gradient
may cause problems such as removing partial regions of the
roof that have different height. In this paper, we propose a
new algorithm for deleting vegetation as follows. First, as
shown in Figure 2, we integrate all candidate building points
into groups depending on whether they belong to the same
building using a region growing segmentation technique.

Figure 2. Constructed support pixel groups of building
candidates after the region growing process.
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Through this process, we are able to estimate the boundary of
each building candidate region, and thereby, we are able to
extract the characteristics of each region. From the extracted
boundaries, we distinguish vegetation from buildings using
second-order gradients and its directional histograms for
each pixel. The following paragraphs provide details on each
process.

After extracting building candidate points, binary values
0 and 255 are assigned to building candidate points and bare-
earth points, respectively. This can be viewed as constructing
a binary image from the preliminary classification results
obtained from the previous process. Region growing is
applied to this binary image to cluster building candidate
points that are likely to belong to the same building. Specifi-
cally, region growing is applied to building candidate points,
i.e., pixels with 0 values only, where the seed pixels for the
process are randomly selected from 0 value pixels which
have not been processed. Region growing is performed until
all 0 value pixels have been processed, and all independent
regions after processing are assumed to be separate buildings
with each building region having a corresponding support
pixel group.

Next, we distinguish regions of vegetation by using the
second-order gradient and its directional histogram for each
pixel. Building roofs that have non-zero gradient values,
such as stair shaped roofs, slanted roofs, or roofs with
chimneys have relatively few height values and correspond-
ingly, few gradient orientations. However, vegetation regions
have many different height values, ranging from very small
to very large, and orientations of the gradients are generally
unbiased and have many directions. Based on this observa-
tion, the first-order gradient can be used to discriminate
between building regions and vegetation regions. Here, we
use the second-order gradient due to dome structured
buildings, since the second-order gradient values are fixed
for domes. The second-order gradient magnitudes and
orientations are calculated as follows:

M = \x"% + y2 (1)
IR
0(x, y) = tan™?! Py (2)

where M is magnitude, 6 is orientation, x” is the second-order
derivative of the x value and y” is the second-order derivative
of the y value.

The directional characteristic of a group is formed from
the second-order gradient orientations at all pixels within
the group, as shown in Figure 3b. These pixels are then
accumulated into directional histograms summarizing the
contents over the grouped region, as shown in Figure 3.
Here, the directional characteristic is represented by a
directional histogram representing the cumulative orienta-
tion of all pixels in the current group, where the length
of each arrow in the histogram denotes the sum of the
magnitude of all pixels with orientation corresponding
to the direction of that particular bin. The directional
histogram has 36 bins covering the 360-degree range of
rotations, and peaks in the directional histogram corre-
spond to dominant orientations of a group. In a building
region the distributed orientations of second-order gradi-
ents have low complexity, while in a vegetation region,
the complexity is high. Since it denotes the complexity of
each group, the concept of entropy can be applied as the
characteristic of complexity:

i=36

entropy(x) = — 2 plx;) log p(x;). (3)
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Figure 3. (a) The second order gradient magnitude
and orientation at each pixel in the building region,
and (b) a typical histogram of a vegetation region in
the top, and a typical histogram for a building region
in the bottom.

Using Equation 3, the entropy value is estimated for
each group. In this equation, x; denotes the value of each
bin covering a 10-degree range in the histogram. P(x,) is a
probability of bin i: the ratio of the value of the i bin to the
total sum of all bins of the histogram.

To reiterate the important observations made, there
are only a small number of orientations in a building roof
regardless of whether the roof is flat or sloping as shown
in the bottom-right histogram in Figure 3b; thereby, the
histogram of building regions are restricted to have non-zero
values for only a few bins. In this case, the estimated entropy
will be low (in this case, the entropy is about 1). However,
as shown in the top-right histogram of Figure 3, many
directions are shown in a vegetation region, because the
orientation distribution in vegetation is irregular and com-
plex (in this case, the entropy is about 3). Therefore, a high
entropy will be estimated, and consequently enable us to
utilize this measure to distinguish vegetation regions from
building regions. Note that if the building roof shape is a
perfect planar surface, all of the second-order gradients are 0,
and therefore Equation 2 is not defined. For this case, we
simply set the entropy as 0, since the complexity of this case
is the lowest. However, we didn’t encounter exactly planar
surface cases in our experiments, since we consider a whole
building region to estimate the entropy, and generally,
building roofs have some height variation.

Extracting Coarse Building Boundaries

Any automatic or manual point-matching method outputs
some error in the process of registering data captured by
photogrammetric and lidar systems to a common reference
frame. Moreover, hills and trees around buildings or height
variations in some buildings can disturb accurate extraction
of building boundaries from lidar data. Therefore, before
extracting precise building region, coarse building regions
are extracted from the photogrammetric imagery using an
over-segmentation and segment merging technique together
with the results obtained based on the lidar data from the
previous process.

Registration

In this paper, we use high-resolution aerial images as pho-
togrammetric imagery and assume that there are no internal/
external orientation parameters available for the aerial image
and lidar data. Therefore, we estimate homography for the
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registration of lidar and aerial image (Hartely and Zisserman,
2003). We begin with a simple linear algorithm for determin-
ing H (homography) with a manually given a set of 2D aerial
image to 2D lidar image point correspondences, x; <> x;. The
transformation is given by the equation x;/ = Hx;. By denoting
x; = (x';, 5, w'))", the homography equation involving
homogeneous vectors may be written in the form:

or -wix{  yix] h, h, by
wix] o7 —x/xI'||h, hy hg|=o0. (4)
—yix! x;x] or h, hg hg

These equations may be rewritten as A;h = 0, where A;
is a 3 X 9 matrix, and h is a nine-dimensional vector made
up of the entries of the matrix H. To solve the homography
H, we provide a set of point correspondences manually.
Figure 4a shows an image warped using a homography.

Figure 4. Preprocessing for coarse
building boundaries: (a) warped
image by homography, and (b)
segmentation result by the mean-
shift method. A color version of
this figure is available at the
ASPRS website: www.asprs.org.
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Color Segmentation

Most conventional color segmentation algorithms are based
on the information in the color space. However, clustering
in color space only usually does not provide satisfactory
performance, since it lacks information about the spatial
configuration. To resolve this limitation, in addition to
color, the spatial coordinates of pixels are often incorporated
into their feature space representation. Here, we apply the
mean-shift color segmentation method (Comaniciu and Meer,
2002) to obtain over-split segmentation results. As a result of
this segmentation, one building region is divided into one or
more segments. Figure 4b shows an example of the over-
segmentation results.

Extracting a Coarse Building Region

A merging algorithm to merge separate segments of a single
building is required to extract building regions based on the
over-segmented results of the aerial images. Our merging
method is based on the preliminary building regions and
their heights obtained from the lidar data in previous stages.
We define the support ratio as the ratio between the area of
a particular segment that is supported by the lidar data to its
total area as follows:

L,NS,
—

a

ratio =

(5)

where L, is the area of the building region extracted from
lidar data, and S, is the area of a segment in aerial image.
The support ratio naturally incorporates information
extracted from the lidar data to represent the probability that
a particular segment is a building region. If the ratio of a
segment is more than a predefined threshold, then the
segment becomes a building region. Finally, segments that
are classified as building regions by common building
regions in lidar data are merged into a group. In addition to
the split and merge routine, color data from aerial images
are used to remove tree segments directly connected to
building regions, since they distract accurate building
boundary extraction. More specifically, relatively small
segments (in the image) in a building region (which is
determined in the lidar data) that have high green value are
removed. As shown in Figure 5, the partitioned building
regions in the middle of Figure 5a are connected in Figure 5b
by this split and merge method. Moreover, the majority of
the tortuous building boundaries in Figure 5a are trimmed in
Figure 5b, and tree segments directed connected to building
regions are removed.

Extracting Precise Building Boundaries

Although it is possible to correct building regions from lidar
data by the coarse building boundary process, the precise
building boundaries cannot be obtained, since just trimming
the tortuous coarse building boundaries may not guarantee
the accuracy of extracting building boundaries process. The
precise building boundaries are obtained in a closed-loop
form by extracting edges from an aerial image, selecting the
edge corresponding to the coarse building boundary, and
conducting postprocessing by perceptual grouping such as
edge linking and closed loop constructing.

Building Boundary Trimming

When applying edge information from the aerial image, it is
difficult to use the coarse building boundary as the initial
input. As shown in Figure 5b, extracted buildings have still
irregular and tortuous boundaries. To extract precise build-
ing boundaries, a boundary trimming process that straight-
ens the tortuous boundaries must be performed first. A
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Figure 5. Extracted building region: (a) lidar result, (b) coarse building boundaries by split
and merge, and (c) linearized building boundaries.
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straight line boundary can be matched easily with an edge
in the aerial image and consequently exert the characteris-
tics of a man-made object composed of line features. In this
paper, to find the corner points of a building boundary,

the Douglas-Peuker method is applied. This method is a
recursive split method to find the trimmed coarse building
boundaries. Figure 5c shows the linearized building bound-
ary of Figure 5b.

Extracting Building Boundary Candidates

As a feature in aerial image, the edge that is the best
descriptor of the building is used. To extract the edge, the
Nevatia-Babu edge detector is used. From detected edges,
not all the edges are used. Only edges near a building
boundary are necessary for the precise building boundary.
Therefore, we can reduce the number of edges (building
boundary candidates) by using information from the coarse
building boundary and heights. Restricting the number of
building boundary candidates reduces the computing cost
and allows us to extract reliable building boundary candi-
dates. Moreover, in this process, similar extracted edges can
be grouped and modified according to the characteristics of
man-made objects.

Searching for Edges Around a Building

An easy and simple method of restricting the number of
boundary candidates is to find the edges near the building
boundary. We accept edges within 20 pixels of a boundary
as boundary candidates, considering registration error.

Height Compatibility

Height data from lidar measurements are used to eliminate
some of the non-boundary edges around a building. If the
registration of lidar data and photogrammetric imagery is
correct, as shown in Figure 6, an edge in photogrammetric
imagery is verified as a boundary candidate when its height
is compatible with the average heights of the sampling
window placed at either side of that edge. Note that the
building inside region of a flat or sloping roof is higher than
the building outside region of the roof boundary. Therefore,
if an edge is part of a building boundary, then there is
greater height difference between average heights of the two
side sampling windows than the difference from bare-earth
edge. In this paper, after extracting building candidate edges,
binary values 0 and 255 have been assigned to building
regions and bare-earth regions, respectively. If an edge is
building boundary, then the difference of average value
between left and right sampling window should be about
255. In other words, as shown in Figure 6, if an edge is a
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Figure 6. Building boundary candidate
verification with height information.

building boundary edge and if the average value of the

left sampling window is 255 (bare earth region), then the
average value of right sampling window should be 0 (build-
ing region), and vice versa. Using this attribute, we can
select building boundary candidates from edges around a
building.

Edge Linking

As a factor in man-made object features, a building boundary
has generally straight line form. Although intuitively an edge
is one long line segment, it can be shown that this edge is
divided into short edges in the result of detected edges.
Therefore, it is necessary to link short collinear edges that
are within an allowed distance and have similar orientations.
More specifically, two edges are linked if the closest distance
between two edges is smaller than predefined threshold, and
the angle between two edges is smaller than predefined
threshold. Moreover, intuitively, the sum of two edge lengths
should be smaller than the length of linked edge.

Constructing Precise Building Boundaries

Line Segments Matching

Using the extracted building boundary candidates described
above, a boundary in the coarse building boundary result can
be paired to several edges in the building boundary candi-
dates. Several attributes exist for resolving matching ambigui-
ties. The idea is to restrict the candidate matches to match
one-to-one by some constraints, such as length ratio, angle, or
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Figure 7. Selection of reliable corresponding edge.

distance between coarse building boundary and building
boundary candidates. Because if we allow a 1:n relationship,
shadow or street edges can disturb the performance of
matching. Figure 7 shows an example of a building layer in
coarse building boundaries and edges in building boundary
candidates. Let E and E’ be two edges in the building bound-
ary candidates. Then, Ep and Ep’ are the distances between a
coarse building boundary and the building boundary candi-
dates, and Ej, and E;’ are the lengths of the building boundary
candidates. In this specific figure, the angle 6 of E and a
matched coarse building boundary is 0 degrees.

For a given pair of line segments to be considered as
a candidate match, constraints on the three attributes are
applied to select the most consistent matches. First, the length
ratio of a match can eliminate very short line segments that
are false matches. Second, the distance measure can eliminate
far-away edges. In this paper, we define the distance of two
edges as the average distance between a point on one edge
and a point on the other edge line. As shown in Figure 8, the
distance between I, and I, can have two cases. Considering
this, the distance is defined as follows:

By = (Sd/n + (Sd,)/m)/2, (6)
i j

where d,; shown in right top case in Figure 8 is the distance
between I; edge and a point on I, edge, while d,; shown in
the right bottom case is the distance between a point in I,
edge and I;. Due to distance error in the registration process
mainly caused by point matching error, we allowed a
maximum of 20 pixels distance between the coarse building
boundary edge and building boundary candidate edges.
Third, the similarity angle of two line segments, which

is the most important attribute for defining similarity in

relative position, is measured and pairs with angles over
a threshold are discarded. We allowed a maximum of

15 degrees between two line segments. This process is
applied to each building group. The combination of these
constraints can be represented as follows:

Score =
20 — E,

15 — 6
+w , If6<15and E, <20
15 s 50 if D (7)

0 otherwise

w,Lg + w,

where 6 denotes the angle between the two line segments,
Ep denotes the distance between the two line segments, and
w,, w,, wy denote weights of each attribute.

Ly is the ratio of the two lengths given by:

C
—L IfEL > CL
1
Lg = E ’ (8)
L .
CL IfCL > EL

where Cj, is the length of the coarse building boundary, and
E} is the length of the building boundary candidate. In our

implementation, the weights w; = 1, w, = 2, wy = 3, and a
threshold score of 3.0 is used.

It should be noted that no corresponding match exists
when the score value is lower than the threshold. There are
two strategies for this case. The first is to substitute an
unmatched building boundary candidate with the corre-
sponding coarse building boundary. This has the disadvan-
tage of using inaccurate line segments but guarantees
minimum accuracy. The second is to skip the unmatched
building boundary. In other words, in this strategy, only
matched edges are used to construct building boundaries.
The advantage of this is that an edge in the building
boundary candidates can compensate for a collapsed or
false initial building boundary, but the accuracy of this
strategy can be poor if all building boundary edges are not
extracted from the aerial image. If the above constraint is
fulfilled, we say that the pair of line segments considered is
self-consistent and can form a precise building boundary.
For each line segment in the coarse building boundary, we
thus have a line segment match from building boundary
candidates. Figure 9a shows the results of line segments
matching.

Figure 8. Distance between two edges.
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Figure 9. The result of precise building boundaries: (a) extracting corresponding edges,
(b) substituting coarse building boundaries, and (c) using only edges in the aerial image.
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Constructing a Closed Loop

The result shown in Figure 9a is not the complete building
boundary. Since a building is a polyhedral structure of
closed-loop form, the building boundaries in this figure
should be closed polygons. To satisfy this condition, we
must consider the missing features in the building sides and
corners. Grouping only neighboring line segments is suffi-
cient to compensate for the missing features. The reason is
that the coarse building boundaries have the closed-loop
form, and each matched line segment in the building
boundary candidates has its one-to-one corresponding coarse
building boundary.

Synthetically, we suggest two simple forms of closures.
One is applied when the junction angle is more than
45 degrees, and the other is applied when the angle is less
than 45 degrees. When the angle is more than 45 degrees,
we can consider the intersection point of the extended lines
of two edges as the junction point and the lines are extended
to that point, respectively. However, when the angle is less
than 45 degrees, the intersection point can be placed in
wrong locations. Therefore, in this case, we just link the
two edges. Moreover, we defined that the range of the
junction angle is 0 to 90 degrees. Therefore, if the angle is
150 degrees, then it is considered as 30(180 to 150) degrees.
Figure 10 shows examples of the two cases.

When the matching score of a coarse building boundary
and a building boundary candidate is less than the threshold,
there is no matching edge corresponding to the particular
coarse building boundary. To handle this case, Figure 9b
shows the result of substituting the coarse building boundary

when there is no line segment matching pair, Figure 9c
shows the result of consisting only matched edge. Generally,
the result of 9b is better described than 9c, because all of the
building boundary edges are not extracted due to similar
textures at the building boundary. As shown in Figure 9b,
three building boundaries that are at the top of the figure are
described more specifically than Figure 9c. The matched
edge and substituted coarse building boundary is linked as
shown in Figure 10.

Experimental Results

Experiments designed to demonstrate the performance of our
algorithm were carried out on two data sets. We show results
for several examples in this section.

The Format of the Input Data

The lidar data and aerial images used in this paper, obtained
airborne, represent a large 2 km X 2 km area of Daejeon

in the Republic of Korea. The laser point density is about
3.2 pt/m?. The resolution of the aerial images is about

5.2 pixels/m. Here, in the registration process, we scaled

the lidar data result up to fit the high-resolution aerial
images which utilizes all available image data resources.

Extracting Buildings from Lidar

Figure 11a shows building extraction results obtained from the
proposed building candidate detection as previously described.
This result consists of noise, small objects such as roadside
trees, vegetation, and building regions. Note that we are able to

(a)

/__’/
-

—_—

{b)

Figure 10. Closed loop forms: (a) when the angle of branches is more than
45-degrees, and (b) when the angle of branches is less than 45-degrees.
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and (b) after vegetation deletion.

Figure 11. Extracted building region from lidar: (a) building candidates,

intuitively identify each region by inspecting their boundary.
Mainly quadrilateral-shaped regions can be classified as
buildings, a few points or small regions can be classified as
noise or small object regions, and irregularly shaped and
relatively large regions are considered to be vegetation. As
shown in Figure 11b and Figure 12, about 400 building
candidates excluding noise or small regions are detected by
the proposed method. The computed entropy value is the
criterion to classify buildings and vegetation, where each
region is classified as vegetation if the entropy is larger than
threshold 2.5. As a result, 17 large groups were correctly
classified as vegetation region from 400 building candidates.
Figure 11b shows the result of deleting vegetation regions
using both the proposed entropy based method and conven-
tional area based method. In this figure, we can see that 17 of
the large vegetation regions that have irregular boundaries and
small regions including noise are removed correctly.

To quantitatively evaluate the classification results by
the proposed method, we examine the ratio of the classified
building, bare-earth, and vegetation regions that overlap with
digital map data which is viewed as the ground truth (digital
map). As shown in Table 1, the accuracy of the proposed
method is 89.9 percent for building regions and 96.4 percent
for bare-earth and vegetation regions. In this table, the

Figure 12. The number of group given entropy.

number of each cell indicates the number of pixels in
classified regions. The overall classification accuracy over the
two classes, building and bare-earth including vegetation is
96.0 percent. In this analysis, the completeness for building
is about 68 .1 percent for buildings. However, unfortunately,
the lidar data was obtained about two years later than the
digital map. During this period, new buildings have been
constructed, and thus more buildings are appeared in lidar
data than in the aerial image. As a result, the completeness is
meaningless in our data.

As another performance evaluation method, the number
of detected buildings is compared to that of the digital map.
More specifically, the ratio between the number of build-
ings, shown in both the digital map and the results of the
proposed method, and the number of buildings in the digital
map is computed. A total of 400 buildings are detected in
the lidar data for the whole area, but only 54 buildings can
be verified by the digital map which covers a smaller region,
where the digital map shows 55 buildings. As a result,

98.2 percent of the buildings are detected correctly as
described in Equation 9.

NBLidarﬂ digitalmap __ 54

= 98.2%, (9)
NBdigitaImap 55

Bps =
where Bp, denotes the building detection accuracy,
NBlidarndigitaimap denotes the number of buildings in
both the lidar result and the digital map, and NBgigitaimap
denotes the number of buildings in the digital map.

Extraction of Building Boundary

Table 2 shows a list of threshold values used in our experi-
ments. All the threshold values were determined heuristi-
cally. In Figure 11b, the region size to remove small areas

TaBLE 1. EVALUATION BY OVERLAPPED PIXEL NUMBER

Ground truth Classified as

(digital map) Building Bare-earth, vegetation

57136(89.9%)
26763(3.6%)

6431(10.1%)
721305(96.4%)

Building
Bare-earth, vegetation
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TABLE 2. LIST OF THRESHOLD VALUES

The entropy classifying vegetation region 2.5

The region size to remove small areas in Figure 11b 25 pixels

The ratio to extract a coarse building boundary in the 80%
Extracting a Coarse Building Region section.

The distance to search edge around building in the 20 pixels
Searching for Edges Around a Building section.

The average distance in height compatibility in the 100

Height Compatibility section

The angle for edge linking in the Edge Linking section 5°

The distance for edge linking in the Edge 50 pixels
Linking section

The score of line segment matching in the Line 3.0
Segments Matching section

was given as 25 pixels considering the size of a tree. In the
Extraction of a Coarse Building Region section, the threshold
80 percent of the ratio is the value that is conventionally
used. In the Extracting Building Boundary Candidates
section, to search for candidate edges of building regions,
we accepted edges within a 20 pixel distance from coarse
building boundaries corresponding to the registration error,
which is 20 pixels. In the Height Compatibility subsection,
the average distance between left and right windows in
height compatibility part should be 255 (white-black pixel
value), but considering registration error, the distance
threshold was given as 100. In the Edge Linking subsection,
the angle and distance for edge linking were defined as 5°
and 50 pixels, heuristically. In the Line Segments Matching
subsection, the threshold score was given as 3.0 similar to
the height compatibility case.

Analysis of Extracted Building Boundary

Unfortunately, it is difficult to acquire large data sets for a
valid statistical evaluation. In addition, most of the building
detection and description systems have different representa-
tional powers, and statistical evaluation on a small number
of examples is less meaningful when the results depend on
the choice of test data set. In this paper, we use two data
sets to analyze the extracted building boundary. Set 1
shows a wide and complex building region, and Set 2
shows a region where buildings are described in detail and
the building wall edges may interfere the line segment
matching. Figure 13 shows the results of each process for
the building boundaries in Set 2. Moreover, we compare the
accuracy of building boundary extraction results obtained
from only lidar data without any refinement, and lidar data
with refinement, and from combining lidar data and pho-
togrammetric imagery with intermediate coarse boundary
extraction and precise refinement. The refinement process
for the results extracted from the lidar data case is identical
to the precise refinement of the combined case. To evaluate
the results of our proposed method, ground truth of build-
ing boundaries are extracted manually from warped aerial
images. For quantitative analysis of our result, we selected
the data (aerial images) with higher accuracy to use as

the ground truth. It is then possible to compare building
extraction results with the ground truth. For performance
evaluation, two kinds of methods are used. First, a buffer
window is established around building boundaries corre-
sponding to possible error. Figure 14 shows the buffer

of Set 1, where the width of the buffer is 20 pixels. For
evaluation, we check correspondence on each building
boundary pixel, and define a ratio A, between the total

Figure 13. The results of extracting building boundaries in Set 2: (a) aerial image, (b) segmentation
result of (a), (c) lidar result, (d) extracted coarse building regions by (b) and (c), (e) trimmed coarse
building boundaries by Douglas-Peuker method, (f) building boundary candidates by constructing precise
building boundaries, (g) the result of line segments matching, and (h) the result of constructing a
closed loop. A color version of this figure is available at the ASPRS website: www.asprs.org.
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Figure 14. Buffers around the building boundries. (a) Ground truth of set 1, (b) Lidar result of set 1,
(c) Building boundries by lidar result and precise method of set 1, (d) Building boundries by course and
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boundary pixels within the buffer region N
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Abb = (10]

Second, Chamfer distance is applied to evaluate each
method. To estimate Chamfer distance, the extracted building
boundaries are converted from simple edges to a distance
image. The result of each method is superimposed on the
distance image of the ground truth, and the average of the
distance values where the edges of the results intersect with
the distance image represents the Chamfer distance. If the
edges of a building boundary extraction results fits the distance
image of the ground truth perfectly, the Chamfer distance is 0.
In this paper, root mean square Chamfer distance is chosen:

1&
Chy = \|— 2 v, (11)
nj—y

where Chgy;, is Chamfer distance, v; is distance value, and n
is the number of points.

Table 3 and Table 4 show the accuracy of the three
proposed methods. In Table 3, a performance improvement
of about 2 to 11 percent was obtained in each step. In Table 4,
because we scaled the lidar data result up to fit the high-
resolution aerial images, a 5.2 pixel distance denotes 1 m.
Here, a performance improvement of about 1 to 4 pixel
distance was obtained in each step. However, the result of
the coarse and precise building boundary in Set 2 did not
show any improvement in the performance due to error
in the segmentation result which is shown in the bottom
building of Figure 13b. This false segmentation can occur
where the texture of the building roof and walls are similar,
and this has an effect on the Chamfer distance considerably.
This is a limitation of applying the coarse building boundary
extraction method based on color segmentation techniques

TABLE 3. EVALUATION BY BUFFERS AROUND
BUILDING BOUNDARIES
Method Data Set
Set 1 Set 2
Only lidar (%) 82.92 77.52
Lidar + refinement (%) 88.10 88.87
Lidar + image + refinement (%) 95.05 90.74
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TABLE 4. EVALUATION BY CHAMFER DISTANCE
Method Data Set
Set 1 Set 2

Only lidar 5.56(1.07m) 7.46(1.44m)

(pixel distance (meters))
Lidar + refinement 4.55(0.88m) 3.24(0.62m)

(pixel distance (meters))
Lidar + image + refinement 2.27(0.44m) 3.54(0.68m)

(pixel distance (meters))

exclusively, but as shown in Figure 13d, a more detailed
description of building boundaries comparing to lidar results
in Figure 13c is obtained by coarse boundary processes.

Conclusions
A new approach to extract the boundaries of complex
buildings from lidar and photogrammetric imagery has been
developed. The method is based on the application of
information fusion to compensate for each sensor’s shortcom-
ings. To do this, we describe several techniques to group low-
level features, such as height distributions, segments, and
edges, into higher level features by using directional his-
tograms, entropy, region segmentation and merging, line
segments matching, and perceptual grouping. We used two
kinds of measures to evaluate the proposed methods. From
the evaluation, we have shown that the proposed multi-
sensor fusion-based building detection method has improved
the performance substantially in the accuracy of building
boundaries compared to those of methods using lidar data
only. The building boundary accuracy has improved more
than 50 percent, and we could achieve satisfactory 3D
reconstruction result based on extracted building boundary.
In our proposed method, many parts of proposed
processes are performed separately, since each process in
large area data requires high cost. However, in the very near
future, the improvement of computing system will enable
fast and incorporated processes within reasonable bounds.
Therefore, we expect that the use of such methods will be
automatically helpful in many other building detection and
reconstruction problem domains as well. The problems of
modeling complex buildings and automatic multisensor
registration show many complexities requiring substantial
future research, but we believe that this work indicates a
promising approach.
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