
Abstract
It is important to determine quickly the extent of flooding
during extreme cases. Even though SAR imagery with its own
energy sources is highly applicable to flood monitoring
owing to its sensitivity to the water area, topographic effects
caused by local terrain relief must be carefully considered
before the actual classification process. Since backscattering
coefficients of the shadow area in high relief regions are
very similar to those of the water area, it is essential to
regard these areas before and after the classification proce-
dure, although the process is a difficult and time-consuming
task. In this study, efficient and economical methods for
water area classification during floods in mountainous area
are described. We tested five different cases using various
synthetic aperture radar (SAR) image processing techniques,
texture measures, and terrain shape information such as
elevation and slope. The case whereby the SAR image was
classified with the local slope information exhibited the best
result for water area classification, even in small streams of
different elevation categories. Consequently in mountainous
areas, the combination of a SAR image and local slope
information was the most appropriate method in estimating
flooded areas.

Introduction
Synthetic Aperture Radar (SAR), an active sensor, transmits
pulses of microwave and detects echo, which carries infor-
mation about the surface. Due to relatively long wavelengths
in microwave, radar signals are capable of penetrating
clouds in the atmosphere and are independent of sunlight.
These characteristics of SAR are particularly useful in
monitoring floods over large areas, while accurate flood
mapping using other methods is difficult since hydrologic
instrument data and optical imagery are limited. The accu-
rate delineation of flood extent provides important informa-
tion that can help guide management decisions and provide
necessary data for flood mapping applications. Although SAR
data have been widely applied to these kinds of situations,
some problems need to be solved before they can be put to
actual use.

Numerous investigations have been carried out to
examine the capabilities of SAR sensors for wetland mapping
and monitoring flooded areas (Imhoff et al., 1987; Hess
et al., 1995; Pope et al., 1997; Brakenridge et al., 1998;
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Miranda and Fonseca, 1998; Alsdoforf et al., 2001; Townsend,
2001; Wickel and Jackson, 2001; Horritt et al., 2002). In
previous works, since most of the areas studied involved flat
terrain that did not cause serious radiometric distortions, it
was relatively easy to delineate water extent. The works of
Giacomelli et al. (1995), Birkett (1999), Liu et al. (2002), and
Costa (2004) used SAR images to extract water areas through
histogram analysis by setting the pre-defined threshold
value. The threshold value, however, practically varies in
every case, and it is not an easy to set the accurate threshold
value to distinguish between water areas and non-water
areas. In mountainous areas, the pre-defined threshold
method may mistakenly classify non-water area into water
area due to the more serious topographic effects caused by
high terrain relief.

The radiometric distortions depend strongly on the
terrain and increase significantly in mountainous areas, in
which the distortions should be corrected by a backscatter
model for better classification results. Several studies have
examined the influence of terrain relief on SAR images and
proposed various correction procedures. van Zyl et al.
(1993) and Ulander (1996) considered the inclination of the
backscattering surface in azimuth and in range, in order to
achieve more accurate radiometric corrections of topographic
effects on SAR images. van Zyl et al. (1993) used the local
incidence angle of the surface as a projection factor, while
Ulander (1996) used the smallest angle between the surface
normal and the image. Teillet et al. (1985) made use of an
empirical cosine-based backscatter model, while Rauste
(1989) examined the effect of topography on the imaging
geometry and set up an empirical model of the backscatter
variations.

While an accurate Digital Elevation Model (DEM) is
available, it is possible to correct topographic effects. How-
ever, this requires an enormous amount of time and compli-
cated procedures. In very rugged terrain areas such as the
Korean peninsula, new errors could manifest while removing
topographic effects due to the uncertainties in the accuracy
of elevation (Goering et al., 1995; Goyal et al., 1998; Sun
et al., 2001; Bernier et al., 2002). Especially for radar
shadows, since there is no signal to be normalized and no
improvement can be expected, SAR images have limited use
for flood monitoring in high terrain relief regions.
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A SAR image alone is rather hard to apply in flood
event analysis due to speckles noise, poor visual interpreta-
tion, and the single radar tonal channel. Previous studies
have shown that tonal classification of a single-date SAR
image might produce poor classification results (Aschbacher
et al., 1995; Wang et al., 1998). Additional data sets such
as optical satellite images, texture information referring
to the spatial distribution of tonal variation, and terrain
information can help improve the accuracy of classification
results. The water area classification of SAR images, in
particular, could be significantly improved by using multi-
date and multi-sensor images (Shang, 1996; Wang et al.,
1998; Sokol et al., 2000; Milne et al., 2000; Töyrä, 2002).
However, multi-date and multi-sensor images are not
always available.

The texture information derived from a SAR image has
been a very valuable characteristic for discriminating among
different land-cover types. Texture measures computed from
gray-level co-occurrence matrix (GLCM) have been widely
used for land-cover classification with optical and radar
data (Pultz and Brown, 1987; Marceau et al., 1990; Kurvo-
nen and Hallikainen, 1999; Treitz et al., 2000). Some
described that texture information may be more useful than
the image tone itself for interpreting a SAR image (Ulaby
et al., 1986).

Terrain information can also help improve the accu-
racy of SAR image classification used as an additional
source. There are few existing studies that combine SAR
images with terrain information for land-cover mapping.
Peng et al. (2003) mapped land-cover in mountainous areas
of southern Argentina using both the texture analysis of
radar imagery and a DEM generated from the same data
source of a radar stereo pair. Their study showed that DEM
information was useful for land-cover mapping in moun-
tainous areas.

In this study, we apply SAR imagery with additional
information derived from the SAR image itself or from
different sources such as DEM and Digital Surface Model
(DSM) in flood mapping. Various combinations of SAR
imagery with GLCM texture measures, DSM and/or DEM and
the best and most efficient among all combination to classify
the water area were selected. In this study, water area refers
to the flooded area above normal plus normal water area
during ordinary times.

The accuracy of water area classification was estimated
using visual interpretation analysis, the water area extraction
ratio on the basis of slope, and an error matrix constructed
using land-use map and the Annual Disaster Report of 1998
provided by the Korean National Disaster and Prevention
and Countermeasure Headquarters (KNDPCH).

As a result of various tests, the case when the SAR image
combined with the local slope information processed by two
iterations of MIN filter with 3 � 3 window size gave the
best performance in terms of water area estimation during
flooding, even in small streams with different elevation
categories. Consequently in the mountainous areas, the
combination of SAR image with the local slope information
exhibited the best classification result in terms of time and
efficiency.

Study Area and Data Description
Flood-related disasters have been most serious and frequent
in Korea, causing substantial suffering, severe losses of life,
and economic damage. In 1998, two typhoons, Yanni and
Penny, tragically passed over the middle province of Korean
peninsula, and among the hardest hit areas most suffered
areas were the residential and agricultural areas of Ok-Chun
and Bo-Eun City. Penny visited the Korean peninsula

between 11–12 August 1998 and caused about 400 mm/day
precipitation on 12 August alone. The study area can be
characterized as a narrow and mountainous region, so flash
flood history has been frequently recorded. The elevation
ranges from 28 to 830 m, indicating high relief areas, and the
maximum local slope is up to 64°. A single-date RADARSAT-1
SAR path image, acquired on 12 August 1998, with HH
polarization and standard beam mode, is used for this study.
Figure 1 shows RADARSAT-1 SAR amplitude image and the
location of the study area.

The high probable water areas usually present the
characteristics of relatively lower elevation than the
surroundings, lower slope due to water flow, and appear
lower radar backscatter coefficients in a SAR image.
Terrain information can be used to improve the classifica-
tion, and the most commonly used information is DEM.
DEM can be generated by stereo images using the space
intersection method, or lidar data, SAR interferogram, and
paper or digital topographic maps could be possible
sources for DEM. In this study, DEM was generated from
1:5 000 scale digital topographic maps provided by the
Korean National Geographic Information Institute (KNGII).
The DSM was also derived from the DEM and has the same
spacing as that of DEM for further analysis. Detailed
description of DEM and DSM will be provided in the later
sections.

Water Area Classification
In this study, a RADARSAT-1 SAR image and additional
data that were relatively inexpensive and easy to obtain,
process, and analyze were used for water area classification
during a flooding event. Figure 2 depicts the schematic
diagram of the whole processing step used in this study.
As shown in Figure 2, we tested five different cases for
water area classification applicable to high relief moun-
tainous areas; (a) preprocessed SAR image, (b) GLCM
texture information acquired from preprocessed SAR
image, (c) preprocessed SAR image combined with radio-
metric slope correction, (d) preprocessed SAR image with
DEM, and (e) preprocessed SAR image with DSM. Here,
preprocessing refers to general SAR image processing
steps such as radiometric and geometric correction. The
radiometric correction step involves the calculation of
radar backscatter coefficients, the antenna pattern com-
pensation, and the speckle noise reduction. The prepro-
cessing step does not include the radiometric slope
correction of topographic effect caused by the local
terrain relief. The rigorous geometric correction devel-
oped in our research group (Sohn et al., 2005) was also
performed as a preprocessing step using ground control
points (GCPs) and a DEM.

Due to the physical characteristics of the water area, the
extent of water during a flooding is also greatly affected by
the local terrain. Therefore, we expected that local terrain
information could be a useful tool for improving the accu-
racy of water area classification in the mountainous area.
Terrain information such as aspect, flow accumulation, and
watershed might be good additional sources of data, but
our tests showed that these details could not improve the
accuracy of our results, so they were not discussed in this
study. Since the result from RADARSAT-1 SAR image com-
bined with both DEM and DSM were so similar to those of
case 4 (DEM only) in Figure 2, this was also excluded from
further consideration.

Special attention is needed in the case when DSM
was used as additional information. It is assumed that
the probabilities of water area are high in the lower slope
condition. When the water area is suddenly extended by a
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flash flood, this assumption may not be true any more.
This means that there exists a high probability of water
area at the boundary between the water area during

ordinary days and the bank. To resolve the problem, the
MIN filter that selects the smallest value within the filter
window was applied to the DSM.
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Figure 1. Study area and RADARSAT-1 SAR image of the study area.

Figure 2. Schematic diagram.
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The supervised maximum likelihood method was used
to classify the water area in all cases mentioned in Figure 2.
The rationale of using this approach here is that the prepro-
cessing through spatial filtering not only reduced the vari-
ance, but also the skew of the distribution to an extent that
a Gaussian distribution applies (Lee, 1981; Giesen, 2000).
The accuracies of each classification result were checked
using three different methods: visual inspection, an error
matrix, and the water area extraction ratio.

Preprocessing Procedure
The first preprocessing step is converting digital number
(DN) to backscatter coefficients. The radar backscatter
coefficients, �0, were calculated for the radiometric correc-
tion instead of conventional 16-bit DN (digital numbers)
values. The radar brightness, �0, should be informed to
calculate to get �0 and calculated by Equation 1:

(1)

where, A2j is the scaling gain value of jth pixel toward a
slant range direction, determined by interpolating gain
values provided from the image header file. A3 is a fixed
offset and DNj refers to the digital number that represents
the magnitude of jth pixel from the start line of a range line
in the image data. �0, then, can be obtained as follows (see
Equation 2), and its unit is in dB:

(2)

where, Ij is the incidence angle of j th range pixel and could
be calculated from Equation 3 below:

(3)

where, R is the earth radius, h is the orbit altitude for the
image, and rj is the slant range of jth pixel. Since the ground
range image is used in this study, the Equation 4 is used to
convert from the ground range to the slant range:

(4)

where a,b,c,d,e, and f are the conversion coefficients from a
ground range to a slant range, and dRg represents the pixel
spacing.

Since the antenna pattern causes different pixel values
for the same or similar objects in RADARSAT-1 SAR image and
the radiation distortion occurs along the range direction, the
central part of the radar image is brightest, and its brightness
gradually decreases from the central part to its two sides (Liu
et al., 2002). For certain SAR geometries (e.g., SIR-C, wide
swath SCANSAR), the local terrain height should also be
considered during this correction. However, for single-beam
RADARSAT-1 scenes, the high altitude of the satellite together
with the relatively small range of incidence angles and the
flatness of the antenna pattern within a single beam swath
reduces the magnitude of such radiometric errors to one or
two dB (Holecz et al., 1995). In this study, the second
polynomial method was applied to compensate for the above.

The presence of speckle in an image reduces the detect
ability of ground targets, obscures the spatial patterns of
surface features, and decreases the accuracy of automated
image classification (Sheng and Xia, 1996). Typical noise
reduction filters, such as the moving average or the median

� ( j �dRg )4 �e � ( j �dRg )5 �f

rj � a � j �dRg �b � ( j �dRg)2�c � (j �dRg)3�d

Ij � cos�1� (h2 � r j2  � 2 �R �h)
2 �  rj �  R

�

s0
j � b0

j  � 10 log10(sin Ij)

b0
j � 10 � log10�(DN 2j  � A3)/A2j�

filter, are not well suited for preserving edges. Zaman and
others (1993) summarized the evaluation of several filters
with respect to the edge preservation in single-look and
multi-look SAR images and recommended the Lee-sigma
filter. In this study, a Lee-sigma filter with a window size of
3 � 3 was applied twice for better accuracy.

Rigorous geometric correction is essential for the interpre-
tation of SAR images of high relief areas to perform meaningful
multi-source analysis using images acquired with different
geometries. The main consideration with geometric correction
is to find the slant range and azimuth coordinates in the SAR
image of object points on the ground range. The fundamental
equations to relate the ground and image coordinates are the
range and Doppler equation (Curlander, 1982). In the geometric
correction process, it is critical to estimate the satellite orbit
parameters, but the RADARSAT-1 satellite had often provided
inaccurate platform positional data. Substantial refinement of
the orbit geometry using control points was required. A total of
20 GCPs were selected from 1:5 000 Korean digital topographic
maps having horizontal and vertical accuracy of about 2 m,
and were used to refine the satellite orbit parameters. The
RADARSAT-1 SAR image was then transformed into map geome-
try, the Transverse Mercator coordinate system based on Bessel
1841 ellipsoid, using backward geometric correction technique
(Sohn et al., 2005) and a DEM generated from the 1:5 000
Korean digital topographic maps of the study area.

Radiometric Slope Correction
The topographic effect depends on terrain relief of the target
area and increases radiometric distortions. The local slope
can cause the actual back scattering to be different from that
calculated using the flat Earth assumption. This distortion
can be corrected by a high-resolution DEM, but it is time-
consuming and difficult to apply in rugged terrain. van Zyl
(1993) proposed the radiometric slope correction of the
topographic effects using a DEM. We applied his approach,
which considers the local incidence angle of the surface, to
the SAR image. According to van Zyl (1993), the power of
received waves from the scattering area, A, is represented by
Equation 5:

(5)

where Pt is the transmitted power, � is the radar wavelength,
R is the distance to the scattering area, g is the radar look
angle, Gt(g ) and Gr (g) are the transmit and receive antenna
gains at look angle g respectively, and �0 is the normalized
radar cross section for area A.

A is defined as Equation 6, when the ground is flat
without terrain relief or spherical Earth:

(6)

where 	 is the incidence angle, and 
r and 
a are the slant
range and azimuth pixel spacing, respectively. In reality, the
scattering area of the non-flat terrain A� varies according to
the ground slope and the azimuth direction when the image
is acquired:

(7)

where �r is the tilt of the surface in the range direction, and
�a is the tilt of the surface in the azimuth direction. There-
fore, the difference introduced by using Equation 6 instead
of Equation 7 is the value of the ratio A/A�. Figure 3
illustrates the geometry of SAR signal scattering surface by
local terrain relief. Figure 4 represents the incidence angle

A� �
dr

sin (h � wr)
 

da

cos (wa)

A �
dr da

sin(h)

Pr �
Pt l

2Gt (g)Gr (g)
(4p)3R4  s0A
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map (	 in Equation 6) and local incidence angle map (	 � �r
in Equation 7) for radiometric slope correction estimated
from the DEM.

GLCM Texture Measures
The GLCM is a two-dimensional array that provides the co-
occurrence probability of pairs of gray-level pixels within
a local window (Haralick et al., 1973). Four parameters
(window size, inter pixel angle, inter pixel distance, and
quantization level) need to be considered when generating a

GLCM. Haralick et al. (1973) defined 13 texture measures to be
computed from the GLCM, and the seven GLCM texture meas-
ures were commonly used (Arzandeh and Wang, 2002). These
are the homogeneity, the contrast, the mean, the variance, the
entropy, the angular moment, and the correlation. The study
showed that the accuracies increase remarkably when the
number of texture channels increases from one to three.
Adding the fourth texture did not improve the best results of
three-texture combinations but did improve the best results of
three-texture combinations that had lower accuracy. The
relationship between window size and classification accu-
racy was positive, and the accuracies of classification increase
with increasing window size until it reached the optimum
size at 17 � 17 for various classification classes.

Water areas with larger sizes and smoother texture
however, tend to exhibit lower accuracy when a window
size increases. If the window size is too large, the misclassifi-
cation seemed to have occurred in the borders of the water
area. Also, excessively large windows tend to interfere with
determination of small streams that have linear shapes. The
window size and the combination of texture measures have
been considered as two important factors that affect water area
classification results using texture channels. To determine
which combinations of texture measures produce better results
at a certain window size, we performed several experiments
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Figure 3. Geometry of SAR signal scattering surface.

Figure 4. Incidence angle map (a) and local incidence angle map (b).
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on various combinations of texture measures at different
window sizes. The final three texture information selected are
the mean, the contrast and the variance at a window size of 3
� 3 for water area classification. Figure 5 shows the mean, the
variance, and the contrast texture measures generated from the
preprocessed image.

Terrain Information
The overall accuracy of the 1:5 000 scale digital topographic
map compiled photogrammetric method from 1:20 000 scale
aerial photos are about 2 m horizontally and vertically. The
spatial resolution of the DEM used in this study is 20 m.
KNGII has generated several scale digital topographic maps
that cover the Korean peninsula and these digital maps have
been a good source of generating a DEM. Those maps are
composed of several layers according to the ground object
type, and the layers that contained three-dimensional

coordinates were only selected to generate a DEM. These
selected layers were used to construct the triangulated
irregular network (TIN), which were then resampled to a
20 m grid format using Kriging algorithm. To ensure the
quality of the DEM, we tested and searched any possible
errors that need to be eliminated, and the final product of
DEM is illustrated in Figure 6.

The DSM was calculated from the DEM and has the same
pixel spacing as that of the DEM. Since the window size and
the number of iterations are critical factors for the final
result, we performed experiments on various numbers of
iteration at different window sizes. Consequently, the MIN
filter with two iterations and with widow size of 3 � 3
applied to the DSM to compensate for water boundary
expansion caused by a flash flood. Figure 7 illustrates the
result of the DSM before and after the MIN filter was applied.
The dark areas represent the lower slope area and light areas
refer to the higher slope area.

Water Area Classification
Plate 1 illustrates the images used for classifying each case
in Figure 2. Each processed image has 20 m spatial resolu-
tion, which is the same as that of the generated DEM. The
geometric accuracy of RADARSAT-1 SAR image was checked
using 16 checkpoints. The results were 1.5 pixels for range
direction and 1.8 pixels for azimuth direction, respectively.
The image after the preprocessed procedure is not 16-bit DN
values but dB values.

Plate 1a represents the preprocessed image. The calcu-
lated backscatter coefficients range from approximately
�24.2 to 6.7 dB and water areas usually have low dB values
around �20 dB. Plate 1b is a false color composite image
combining three textures with mean as red, contrast as blue,
and variance as the green band. Plate 1c represents the
topographic effect corrected image cased by local terrain
relief applied on the preprocessed image. For the study area,
the radiometric distortion caused by topographic effect was
corrected up to 6 dB. In Plate 1d, the preprocessed image
was combined with the DEM for regarding terrain elevation.
Finally, Plate 1e combined the preprocessed image and the
DSM instead of the DEM. For the cases that combine SAR
image with terrain information, the SAR image was assigned
to a green band, the DEM and DSM to a red band, and a blank
layer that has constant value to a blue band, respectively.

The supervised classification of the maximum likeli-
hood was performed with 22 training sites. The training
sites for 12 water and 10 non-water areas were carefully
selected over an entire image. Since this study was focused
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Figure 5. GLCM texture measures: (a) mean, (b) variance
and (c) contrast.

Figure 6. Digital elevation model: Bessel 1841 ellipsoid,
transverse Mercator projection, Tokyo Korea datum,
size 2438 � 1344, and resolution 20 m.
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Figure 7. Digital surface model: (a) Original DSM, and (b) DSM applied MIN filter.

on identifying water and non-water areas in various
elevations, training sites for water areas accumulated in
various terrain areas were carefully selected over the
region. Table 1 shows characteristics of the training site
used for image classification. The results of supervised
maximum likelihood classification for each case are shown
in Figure 8.

Analysis of Classification Results
The reference data used for checking the accuracy of our
results were land use map and the Annual Disaster Report
98 of the KNDPCH. We also manually generated the ground
truth of region of interest (ROI) from the reference data to
check the results and constructed an error matrix accord-
ingly (Table 2).

As illustrated in Table 2, the overall accuracy of all cases
exceeded 95 percent and case 5 showed the highest accuracy
of 99.36 percent. The kappa coefficient results ranged from
0.89 to 0.98, and case 5 showed the highest kappa coefficient,
0.98. Although the accuracy of case 4 was very similar to that
of case 5, the classification results were drastically different.
Detailed discussions on all cases are as follows.

The dominant classification errors of case 1 were the
errors caused by a severe topographic effect such as shadow

regions where the high relief areas lied. The northwestern
section, marked region A in Figure 8a, marked region B
in Figure 8a, were misclassified into water areas because
of topographic effect (see Figure 9a and 9b). Case 1 was
compared with all other cases in the following discussion.

For case 2, even though most of the classification errors
caused by topographic effect were corrected, major misclas-
sification occurred at the borders of the water areas. Regions
at the boundary of water areas were not classified into water
areas because of discontinuity of texture values in edges as
shown in Figure 5b and 5c. This caused overall underesti-
mation of the water area over the study area.

The resulting classification image of case 3 showed that
most of the misclassification in high relief areas located
in the northwestern part of the study area was corrected.
However, as shown in region C in Figure 8b and Figure 9c
the classification errors were not completely removed in the
severe steep areas due to shadow effects. This case pre-
sented a slight improvement in classification results, but
required complicated calculation time and substantial efforts
to remove the topographic effect.

In case 4 where the RADARSAT-1 SAR image was combined
with the DEM, the classification accuracy was greatly improved
in the flat areas and steep areas of the northwestern section.
The result, however, failed to classify water areas in high
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Plate 1. Processed RADARSAT images for classification: (a) only preprocessed image, (b) the combina-
tion image of three texture measures, (c) preprocessed and radiometric slope corrected image, (d)
preprocessed image with DEM, and (e) preprocessed image with DSM.

TABLE 1. CHARACTERISTICS OF TRAINING SITE

Water Area Non-water Area

Min. Max. Mean Std. Min. Max. Mean Std.

Back. coeff. (dB) �23.95 �5.80 �19.71 1.60 �21.34 7.39 �8.30 3.56
Elevation (m) 39.24 145.16 72.52 14.76 105.00 929.27 324.85 200.72
Slope (degree) 0.00 11.34 0.43 0.91 0.00 39.56 10.31 9.99
GLCM

Mean 0 255 15.37 27.16 0 255 44.05 50.43
Contrast 0 193 21.09 17.45 19 255 164.85 38.75
Variance 0 255 13.22 22.53 0 255 41.46 49.87

Total Number of 
Samples 10191 47595

elevation and steep areas such as the upper middle section,
marked region E in Figure 8d. In case 4, even a significant
amount of misclassification was corrected over the areas where
topographic effects such as shadow areas were dominant,
but high elevation water areas failed to be classified as water

areas. This suggests that if a flash flood occurred over a
relatively flat area, a DEM could significantly improve classifi-
cation accuracy.

The classification result of case 5 in which the pre-
processed RADARSAT-1 SAR image was combined with the DSM
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Figure 8. Results of water area classification: (a) case 1, (b) case 2, (c) case 3, (d) case 4, and (e) case 5.

TABLE 2. ACCURACY OF CLASSIFICATION RESULTS

Producer User 
Accuracy (%) Accuracy (%)

Non- Non- Overall Kappa
Water water Water water Accuracy (%) Cofficient

Case 1 99.25 96.02 86.54 99.80 96.67 0.90
Case 2 88.43 98.90 95.40 97.07 96.75 0.89
Case 3 97.73 97.02 89.42 99.40 97.16 0.91
Case 4 96.20 99.88 99.50 99.03 99.12 0.97
Case 5 98.20 99.66 99.54 98.68 99.36 0.98

exhibited the best performance (Figure 8e). This case not only
classified correctly the areas where shadow effect was
dominant, it also greatly improved the water area existed on
high elevation and steep areas. Even though the result of case
5 is visually similar to that of case 3, case 5 has two distinct
advantages over case 2. First, a DSM is easier to produce than

the radiometric slope correction in which a complicated
process needs to be performed. Second, the amount of
processing time required by case 5 is much less than that of
case 3. Since the DEM is usually available for SAR geometric
correction, DSM can be easily reproduced out of the same DEM.

For more accurate assessment of the result, we intro-
duced a diagram that represented the water area extraction
ratio based on the slope. As shown in Equation 8, RSi

refers
to the water extraction ratio between the number of pixels
with slope Si classified into water areas and the number
of pixels with slope Si. The water extraction ratios were
calculated over the entire classified images of each case:

(8)

Figure 10 illustrates the plot of water extraction ratio
versus local slope. The upper plot, in which the slope ranges
from 0° to 3°, is the enlarged portion of the lower plot. The

Rsi
�

number of pixels with slope Si classified into water area
total number of pixels with slope Si

(a)

(c) (d)

(e)

(b)
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Figure 9. Detailed visual interpretation analysis of Figure 8: (a) region A in Figure 8a, (b) region
B in Figure 8a, (c) region C in Figure 8b, and (d) region D in Figure 8c.

Figure 10. Water area extraction ratio based on slope.

slope information was obtained from the previous DSM.
Based on the water extraction ratio, it can be hypothesized
that the lower the slope, the higher the probabilities of water
area become and the higher the slope, the lower the probabil-
ities of water become. As shown in Figure 11, for all five
cases the water extraction ratio gradually decreases about
from 0° to 24°, but the patterns vary over 30° for each case.

Assessment of accuracy is based on our above-mentioned
hypothesis. For lower slopes, which range from 0° to 30°,
case 1 and case 5 are the best candidate approach, including

most candidate pixels of the water area. For slopes higher
than 40°, case 1 shows the worst results due to topographic
effect of high relief. On the other hand, case 5 fits best with
the hypothesis on the high slope areas. Based on the error
matrix, visual interpretations, and the water extraction ratio
analysis, we concluded that case 5 is the most appropriate
method for classifying water areas in mountainous regions.

Additional study was performed to estimate the flooded
area based on the water area extracted from RADARSAT-1 SAR
image using the proposed method of case 5. For this, the
raster format of the classified water area in case 5 was
converted into vector format. The converted vector data was
overlaid with the land-use map to verity the flooded areas and
their land use. The land-use map was compiled at KNGII using
ground survey, aerial photos, and satellite imagery. Figure 11
represents the portion of the flooded areas map generated from
Figure 5e along the main river of the study area. In Figure 11,
majority of the flooded areas were agricultural land while the
area was 1.765 km2. The flood caused additional damage of
0.193 km2 to forestry, roads, and residential areas.

Conclusions
SAR images comprise a valuable tool for analyzing and
monitoring a flood with cloud penetration capability and
with the distinctive radar response of water surface. The
classification of water area on flat regions is less problematic
due to less radiometric and geometric distortions. On
relatively flat areas, basic SAR processing techniques such as
antenna pattern compensation, speckle noise reduction, and
accurate geometric correction may be sufficient to compen-
sate for the distortions to delineate water areas. In high
relief mountainous area, however, local terrain relief, which
causes severe radiometric distortions on the SAR image and

(a)

(c) (d)

(b)
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Figure 11. Map of flooded areas.

the fact that removing them requires considerable time and
effort, must be carefully considered.

In this study five different cases based on RADARSAT-1
SAR image, GLCM texture measures, and additional terrain
information (DEM and DSM) were investigated for efficient
and accurate water area classification during a flood in a
high relief mountainous environment. Among them, the
DSM-based classification method emerged as the best choice
for extracting water areas from a SAR image. The method
provides promising results in both time efficiency and
improving accuracy. However, the MIN filter needs to be
applied to the DSM for better classification results during a
flood, and the window size of the MIN filter and the number
of iterations proved to be very critical factors affecting the
result.
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