
Abstract
This study investigated the use of a geographic object-based
image analysis (GEOBIA) approach with the incorporation
of object-specific grey-level co-occurrence matrix (GLCM)
texture measures from a multispectral Ikonos image for
delineation of deciduous, evergreen, and mixed forest
types in Guilford Courthouse National Military Park, North
Carolina. A series of automated segmentations was pro-
duced at a range of scales, each resulting in an associated
range of number and size of objects (or segments). Prior to
classification, the spatial autocorrelation of each segmenta-
tion was evaluated by calculating Moran’s I using the
average image digital numbers (DNs) per segment. An initial
assumption was made that the optimal segmentation scales
would have the lowest spatial autocorrelation, and con-
versely, that over- and under-segmentation would result
in higher autocorrelation between segments. At these
optimal segmentation scales, the automated segmentation
was found to yield information comparable to manually
interpreted stand-level forest maps in terms of the size and
number of segments. A series of object-based classifications
was carried out on the image at the entire range of segmen-
tation scales. The results demonstrated that the scale of
segmentation directly influenced the object-based forest
type classification results. The accuracies were higher for
classification of images identified from a spatial autocorre-
lation analysis to have an optimal segmentation, compared
to those determined to have over- and under-segmentation.
An overall accuracy of 79 percent with a Kappa of 0.65
was obtained at the optimal segmentation scale of 19.
The addition of object-specific GLCM multiple texture
analysis improved classification accuracies up to a value
of 83 percent overall accuracy and a Kappa of 0.71 by
reducing the confusion between evergreen and mixed forest
types. Although some misclassification still remained
because of local segmentation quality, a visual assessment
of the texture-enhanced GEOBIA classification generally
agreeable with manually interpreted forest types.
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Introduction
Natural resources managers have relied on the manual
interpretation of aerial photographs since the 1940s and
automated classification of medium resolution satellite
image data since the 1970s (Colwell, 1960; Heller, 1975;
Hoffer and Staff, 1975; Jensen, 1979; Lachowski et al.,
2000). Large-scale color infrared (CIR) aerial photographs
have been manually interpreted to develop detailed forest
databases and manage resources in state and federal conser-
vation lands (Welch et al., 1995; Lund et al., 1997; Welch
et al., 1999). Manual interpretation to identify forest stands
from aerial photographs is typically performed by human
interpreters using basic image interpretation elements of
tone, texture, shape, size, pattern, and associations (Avery,
1962; Teng et al., 1997). Although this technique provides
a high level of detail, it is a labor intensive classification of
forest types from digital imagery (Welch et al., 2002;
Read et al., 2003).

Very high spatial resolution (VHR) satellite imagery with
spatial resolutions of similar magnitude to those of aerial
photographs (1 to 4 m pixels) became available for resource
inventory and monitoring with the successful launch of
commercial imaging satellites in the late 1990s (Ehlers et al.,
2003; Ehlers, 2004). The VHR imagery is anticipated to be
an alternative to aerial photos for characterization of forest
structure and dynamics using automatic image classification
techniques. In recent years, for example, Ikonos imagery
has been frequently utilized for forest/vegetation mapping
purpose using pixel-based image classification methods
(Franklin et al., 2001a; Asner and Warner, 2003; Read et al.,
2003; Wang et al., 2004a; Wulder et al., 2004; Metzler
and Sader, 2005; Souza and Roberts, 2005). Pixel-based
approaches, however, have limitations for use with VHR
image classification because high spectral variability within
classes decreases classification accuracy (Woodcock and
Strahler, 1987; Marceau et al., 1990; Shiewe et al., 2001;
Yu et al., 2006; Lu and Weng, 2007). Pixel-based approaches
also ignore the context and the spectral values of adjacent
pixels (Fisher, 1997; Townshend et al., 2000; Brandtberg and
Warner, 2006). Various image classification techniques have
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been developed in remote sensing research, including object-
based, textural, and contextual image classifications, in
order to reduce the limitations associated with VHR images
(Guo et al., 2007; Lu and Weng, 2007). In this study, we
employ an object-based image classification approach with
the incorporation of texture for automatically interpreting
forest types from VHR satellite imagery.

Geographic Object-based Image Analysis and 
Object-specific T exture
The geographic object-based image analysis (GEOBIA) approach
has the potential to overcome inherent problems of high
spectral variability within the same land-cover classes in VHR
imagery (Yu et al., 2006). The GEOBIA approach has been
recognized as an important research area since the late 1990s,
partly in the hope that this approach will emulate the human
interpreters’ ability to identify and delineate features of
interest (Blaschke and Strobl, 2001; Schiewe et al., 2001;
Blaschke, 2003; Benz et al., 2004; Meinel and Neubert, 2004).

Two steps typically involved in GEOBIA are: (a) image
segmentation to produce image objects (or segments) that are
the relatively homogeneous groups of pixels, and (b) image
classification based on these image objects. The quality of
segmentation is known to influence the accuracy of image
classification (Dorren et al., 2003; Meinel and Neubert, 2004;
Addink et al., 2007). Blaschke (2003) suggests estimation of
the appropriate size of image objects (i.e., optimal segmenta-
tion scale) is a critical, but challenging, issue in GEOBIA. In
addition, Dorren et al. (2003) and Ryherd and Woodcock
(1996) emphasize the importance of image object size in
forest mapping. However, there have been few studies to
investigate the relationship between segmentation quality and
forest type classification using VHR satellite imagery compared
to a reliable reference data set. For example, with a manually
interpreted and field verified data set for comparison, it
is possible to examine how accurately object-based image
classification can delineate the boundaries of forest types,
and to investigate optimal segmentations for forest type
mapping. Even though there have been a number of attempts
to determine optimal segmentation (Wang et al., 2004a; Kim
and Madden, 2006; Feitosa et al., 2006; Kim et al., 2008),
there are no specific guidelines on this issue and the selec-
tion procedure remains highly dependent on trial-and-error
methods which subjectively influence segmentation quality
(Definiens, 2004; Meinel and Neubert, 2004). For this reason,
defining an optimal segmentation for the object-based classifi-
cations of various landscape units on the ground and devel-
oping methodologies for estimating the optimal segmentation
can be regarded as urgent research issues. An example of a
methodology to determine the appropriate segmentation for
forest stands delineation is the spatial autocorrelation analysis
employed by Kim et al. (2008). They performed a series of
image segmentations and found three levels of segmentation
in terms of spatial autocorrelation: over-segmentation, optimal
segmentation, and under-segmentation. Optimal segmentation
is considered a segmentation that produces desired image
objects of the lowest autocorrelation in terms of spectral
reflectance. On the contrary, over- and under-segmentations
result in image objects of higher autocorrelation than optimal
segmentation. Kim et al. (2008) computed and graphed
Moran’s I values across various segmentation scales to find
these three levels of segmentation quality for forest stands.

In addition, the problem of within-class spectral variation
of VHR imagery can potentially be addressed by a GEOBIA
approach that uses a combination of spectral and texture
information (Lu and Weng, 2007). The incorporation of texture
in pixel-based classification approaches is a recurrent theme

in remote sensing literature and has been successfully used to
improve the accuracy of pixel-based forest/vegetation mapping
with VHR satellite imagery (Zhang, 1999; Ferro and Warner,
2002). For example, Wang et al. (2004b) utilized first- and
second-order texture measures to map mangrove species from
VHR satellite images, such as Ikonos and QuickBird.

The grey-level co-occurrence matrix (GLCM) (Haralick
et al., 1973; Haralick and Shanmugam, 1974) is one of the
most common algorithms for computing texture measures
(Coburn and Roberts, 2004; Franklin et al., 2000, 2001a, and
2001b; Zhang et al., 2004). Common pixel-based texture is
dependent on the size of the moving window (also called the
kernel), specified by a particular number of columns and
rows, used in the texture calculation. In GEOBIA, texture is
essentially computed for non-overlapping irregularly-shaped
“windows” that correspond to individual image objects (Benz
et al., 2004). We term such texture object-specific texture
to distinguish it from texture computed with overlapping,
moving kernels. When using kernel-based texture, it has been
reported that between-class texture tends to degrade the
overall performance of kernel-based texture classification
(Ferro and Warner, 2002). However, between-class texture is
potentially excluded by computing texture based only on
pixels from within the boundary of an image object, as long
as the quality of the segmentation is reliable. In addition,
because image objects can potentially vary in size, object-
specific texture is not inherently limited to a single scale to
the extent that a single fixed-kernel size texture is limited.
Hay et al. (1996) conducted a study utilizing object-specific
texture measures which were computed within individual
triangulated areas, the vertices of which were derived from
the centers of tree crowns. Although they did not adopt an
image segmentation procedure, their calculation of texture
is similar to that of the object-specific texture adopted in this
study, and they found forest stand classification could be
improved by adding texture information computed from
triangulated areas of tree crowns.

Research Objectives
The overall research objective was to investigate object-based
classification with GLCM texture measures, using a case
study of forest type mapping in the Eastern U.S., 4-meter
multispectral Ikonos imagery, and a comparison with a
reliable manually interpreted forest data set.

The overall research objective was addressed through
three research questions:

1. Does segmentation quality, associated with segmentation
scale, directly influence the classification results of forest
types from VHR satellite imagery? If so, which segmentation
is optimal for forest type mapping?

2. Can we determine optimal segmentation scale(s) prior to
actual object-based forest type classification?

3. Will classification accuracies be improved by adding texture
measures in object-based image classifications? If so, for
what forest types?

The first question is closely associated with finding
optimal segmentation of meaningful image objects for forest
type classification related to shape, size, and placement.
Although segmentation can be conducted across all possible
scales, there is no guideline to determine what scale will
produce optimal segmentation or to estimate the scale before
actual image classification. In this study, a series of object-
based forest type classifications was performed to: (a) exam-
ine the effect of segmentation quality on classification results,
(b) evaluate optimal segmentation scales for forest type
mapping, (c) confirm the validation of spatial autocorrelation
analysis for estimating optimal segmentation, and (d) compare
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Figure 1. The Guilford Courthouse National Military Park study area depicted in a
false color multispectral Ikonos image (bands 4, 3, and 2 as RGB). A color version of
this figure is available at the ASPRS website: www.asprs.org .

the effects of object-specific texture measures on forest type
classification with a benchmark of a manually interpreted and
field verified forest stands database. In addition, the boundary
delineation of forest types from object-based classification was
compared to the boundaries of a forest stands database
derived from manual interpretation.

Study Ar ea and Data
The study site is the National Park Service (NPS) Guilford
Courthouse National Military Park (GUCO) which is located
in Greensboro, North Carolina (Figure 1). The geographic
coordinates of the site are 36°07�39� � 36°08�11� N, and
79°49�56� � 79°50�58� W. The National Military Park is
about 1 km2 in area, and it is located in a region experienc-
ing rapid urban sprawl (Hiatt, 2003). This remaining green
space is heavily used for recreation by the surrounding
residents, placing increasing pressure on park managers
to protect its natural and cultural resources. The park is
managed to preserve the vegetation and landscape of the
battlefield in a state as similar as possible to that of the
time of the American Revolution.

The vegetation of the GUCO park was mapped by the
University of Georgia (UGA) Center for Remote Sensing
and Mapping Science (CRMS) in conjunction with NPS and
NatureServe as a part of the United States Geological Survey
(USGS)-NPS National Vegetation Mapping Program (Madden
and Jordan, 2004; NPS, 2008). CIR aerial photographs,

acquired on 20 October 2000, at 1:12 000 scale, were
utilized for manual interpretation of vegetation based on
the National Vegetation Classification System (NVCS) with
19 association (community)-level forest classes for the GUCO
park. An independent field-based assessment performed by
NatureServe, a non-profit conservation organization, indi-
cated that the overall classification accuracy of the GUCO
vegetation geodatabase was 83 percent, with a Kappa of
0.81 (NatureServe, 2007). In this study, we collapsed the
19 floristic forest associations into three physiognomic
formations (Figure 2): deciduous broad-leaved forest (DF),
evergreen needle-leaved forest (EF), and mixed evergreen-
deciduous forest (MF). These classes approximate the upper
L3-Formation Hierarchy Level of the Federal Geographic
Data Committee (FGDC) National Vegetation Classification
Standard Version 2 (Draft) and will hereafter be referred to
as forest types (FGDC, 2007).

A multispectral Ikonos image with 8-bit radiometric
resolution and 4-meter spatial resolution was used for
object-based forest type classifications of the park. The
Ikonos image was acquired on 06 July 2002 (see Figure 1)
and rectified to a 1999 USGS digital orthophoto quarter
quadrangle (DOQQ) with a root-mean-square-error of � 4 m.
The CRMS vegetation geodatabase was employed to obtain
training data sets for individual forest types and samples for
evaluating classification accuracy. The sample points were
obtained by stratified random sampling method and verified
using the DOQQ and CIR air photos.
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Figure 2. Forest types of GUCO park from the CIR manual
interpretation. A color version of this figure is available
at the ASPRS website: www.asprs.org .

Methods
In order to compare the different GEOBIA classification
strategies, a systematic series of classifications was under-
taken. Before image segmentation and classification, we
masked out non-forest areas such as pastures, home-sites,
cemeteries and roads since the main concern of our study
focused on forest types.

A series of segmentations was conducted using
Definiens Developer, version 7.0 software. All spectral bands
of the masked Ikonos image were used in the segmentations.
Segmentations were produced using Definiens scale parame-
ters (hereafter referred to as “scales”) varying from 2 to 29,
in steps of 1, producing a total of 28 segmentations. We
chose 29 as a maximum scale because at this scale the
largest image object was 45,920 m2, which is similar to the
maximum size of forest stands produced by the manual
interpretation (46,286 m2). The values of 0.1 and 0.9 were
chosen for the ratios of shape and color, respectively. Each
segmentation produced from the entire range of segmenta-
tion scales was separately processed using object-based
forest type classification.

Spectral signatures of individual forest types were
extracted from the four bands of the masked Ikonos image
by using training data sets identified from the CRMS geodata-
base, and then supervised object-based image classifications
were performed by standard nearest neighbor classifier
implemented in Definiens Developer. For these initial
classifications, we utilized only the spectral values of the
image to find the effect of segmentation quality and optimal
segmentation for object-based forest type classification.

For the classifications involving object-specific texture
classification, eight GLCM texture measures were employed:
angular second moment (ASM), contrast (CON), correlation
(COR), dissimilarity (DIS), entropy (ENT), homogeneity (HOM),
mean (MEAN), and variance (VAR). The object-specific texture
measures were computed using Definiens Developer from the
near infrared (NIR) band of a segmentation which resulted in
the highest overall classification accuracy when using
spectral information alone. The NIR band was chosen for this
segmentation because it contained the greatest range in
spectral brightness values, and also carries important infor-
mation for differentiating deciduous and coniferous species.

A directionally invariant texture measure was obtained by
calculating the mean of the texture results in all four direc-
tions (0°, 45°, 90°, and 135°), which was then assigned to the
associated image object. These object-specific texture meas-
ures were entered into forest type classifications as addi-
tional bands.

Accuracy Assessment
Based on the assumption that the manual map represented
an optimal classification, overall accuracy and Kappa
coefficient were employed to provide summary measures,
and conditional Kappa coefficients to quantify accuracies
of individual forest types based on agreement with the
manual interpretation of forest types. A conditional Kappa
coefficient indicates the classification accuracy of each
individual class (Gong et al., 1992), and it can be used to
compare individual class differences between distinct
classifications (Coburn and Roberts, 2004). In addition,
error maps were generated to explore the spatial distribu-
tion of differences between the classifications. The CRMS
forest type shapefile was rasterized with 4-meter pixel size
and overlaid on the classified images in order to generate
error maps which displayed the spatial distribution of
differences between the automated GEOBIA classifications
and the manual mapping, and to compute the percentages
of classification confusions among three forest types.

Results and Discussion
Segmentation Quality for Forest Stands and Spatial Autocorrelation
Figure 3 illustrates a visual comparison of how the segmen-
tation scale influences the quality of image segmentations.
Figure 3a shows the manually-interpreted, community-level
forest stands considered as the smallest unit on the GUCO
park. Vegetation mapping for National Parks is normally
carried out with a minimum mapping unit (MMU) of 0.5 ha
(5,000 m2), however for GUCO Park, a much smaller MMU
was realized because photointerpreters included smaller
mappable units of discernable forest communities. Thus,
the smallest forest stand mapped was 240 m2, with an
average size of 4,025 m2. The other parts of Figure 3
illustrate three levels of segmentation at four scales. The
results at smaller segmentation scales were highly over-
segmented, and the size of image objects was much smaller
than the manually-interpreted forest stands, as shown in
Figure 3b. As the scale increases, the segmentation results
start to resemble the forest stands of the manual interpreta-
tion. In particular, the scales of 18 and 19 produced image
segmentations most similar to the manually interpreted
forest stands. Even at a scale of 18, the dashed-circle areas
in Figure 3c indicate manually-interpreted forest stands that
were divided into several image objects on the segmented
image. Conversely, some forest stands on the manually-
interpreted database corresponded to merged image objects
as indicated by arrows in Figure 3c. The other segmentation
at scale of 19 showed several image objects, produced with
the scale of 18, were merged further and formed larger
image objects illustrated by arrows in Figure 3d. Neverthe-
less, the segmentation from the scale of 19 was relatively
similar to that of scale 18. At a scale of 26, the image was
under-segmented, particularly in areas indicated by arrows
(Figure 3e). These areas were composed of several image
objects at scales of 18 and 19, but at the scale of 26, each
area was represented as a single image object where more
than two forest types were included.

In a previous evaluation of segmentation quality for GUCO
park, Kim et al. (2008) found that optimal segmentations
occurred at scales that were close to manually-interpreted
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Figure 3. Over- and under-segmentation compared to manual interpretation:
(a) manually-interpreted map, (b) over-segmentation at the scale of 4, (c) optimal
segmentation at the scale of 18, (d) optimal segmentation at the scale of 19, and
(e) under-segmentation at the scale of 26. A color version of this figure is available
at the ASPRS website: www.asprs.org .

Figure 4. Median size and number of image objects
produced at each segmentation scale.

forest stands in terms of number and average size (Figure 4).
The average sizes of image objects at the scales were 4,432 m2

and 6,608 m2, respectively. These object sizes are comparable

to the average size of manually interpreted forest stands
(4,025 m2) indicating automatic segmentation can potentially
delineate forest stands at least similar to that obtained from a
manual interpretation.

In addition to image object size, quality of segmentation
can be assessed by using spatial autocorrelation. Kim et al.
(2008) assumed that with over-segmentation, as in Figure 3b,
neighboring image objects would be spatially autocorrelated
due to their similar mean spectral values. Similarly, the
spatial autocorrelation of neighboring objects would be high
with under-segmentation (as in Figure 3e) as the segments
would tend to comprise mixtures of spectral values. On
the other hand, they suggested that the least similarity in
spectral values of adjacent segments would indicate optimal
segmentation. Kim et al. (2008) found that over- and under-
segmentations occurred when Moran’s I index values were
positive, while optimal segmentation was associated with
lowest, even negative, index values (Figure 5).

Object-based Spectral Classification
The relationship between classification accuracy and segmen-
tation scale is shown in Figure 6. Generally, the accuracy
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Figure 5. Moran’s I graphed as a function of segmen-
tation scale. (The figure was reprinted with permission
of Springer Science and Business Media.)

TABLE 1. ERROR MATRIX OF AN OBJECT -BASED CLASSIFICATION AT THE
SCALE OF 19 USING SPECTRAL BANDS

Reference

DF EF MF User’s accuracy (%)

DF 144 13 3 90

EF 11 46 6 73

MF 15 15 47 61

Producer’s accuracy (%) 85 62 84

Overall accuracy: 79 %, Kappa coefficient: 0.65
DF Kappa coefficient: 0.76
EF Kappa coefficient: 0.64
MF Kappa coefficient: 0.52

Figure 6. Object-based classification accuracies graphed
against segmentation scales.

C
lassification

rises from the smallest scale of 2, with a peak accuracy at the
scale of 19 (overall accuracy 79 percent and Kappa 0.65). By
comparison, the scale of 18, which was determined to be the
optimal scale based on image object size, has an overall
accuracy of 76 percent with a Kappa of 0.57.

In general, Figure 6 shows lower overall classification
accuracies for the scales that produced over- and under-
segmentations, and higher accuracies for those that produced
more optimal segmentations. The accuracies of forest type
classification were directly influenced by the quality of
segmentation related to the average size of image objects
(see Figure 4). Higher classification accuracies were obtained
at segmentations that resemble the average size of forest stands
from the manual interpretation. This result supports our
hypothesis that optimal segmentation scales for forest type
mapping can create a meaningful segmentation that resembles
stand-level forest polygons on manual interpretation, and the
appropriate scale can be estimated by computing Moran’s I
values and graphing them against segmentation scales. As
shown in Table 1, at the scale of 19, individual classification
accuracies of deciduous forest based on spectral information
alone were 85 percent and 90 percent for producer’s and
user’s accuracies, respectively, with a Kappa of 0.76. However,
the producer’s accuracy of evergreen forest and the user’s
accuracy of mixed forest were 62 percent and 61 percent with

Kappa of 0.64 and 0.52, respectively. Figure 7a shows a
classification result that was derived at a scale of 19 with only
spectral bands.

In order to compare the edge boundaries and placement
of image segments from the optimal scale of 19 versus
manually-interpreted forest stands, the two data sets were
overlaid to produce an “error” map as shown in Figure 7b.
The classification error map depicts misclassifications
visually and quantitatively between the automatic classifica-
tion and the manual interpretation with differences generally
being less than 10 percent. The percentage of misclassifica-
tion between deciduous and evergreen forest types was
8 percent and that between deciduous and mixed forest was
6 percent when compared with manual interpretation. The
confusion between evergreen and mixed forest types was
6 percent. The spectral information alone in object-based
forest type classification produced higher confusion between
pure and mixed forest types than between pure forest types.
Therefore, object-specific texture classifications were adopted
to reduce this classification confusion.

Object-specific Texture Classification
A total of eight object-specific GLCM texture measures were
computed based on the segmentation that resulted in the
best overall classification accuracies, i.e., at the scale
of 19. Texture measures for the segmented objects were
individually combined with the spectral bands of mean
brightness values, and then entered into each object-based
texture classification. Object-specific texture classification
accuracy results using a single texture measure ranged
from 60 percent (Kappa of 0.37) for GLCM homogeneity,
to 79.3 percent (Kappa of 0.65) for GLCM mean (Figure 8).
Compared to the 79 percent accuracy (Kappa of 0.65) of
object-based classification using spectral bands alone, the
addition of the GLCM mean texture measure enhanced
overall accuracy by just 0.3 percent, and the incorporation
of the remaining texture measures, except angular second
moment and contrast, decreased classification accuracy.

As another way of using texture measures, the multiple
texture analyses, which incorporated multiple texture meas-
ures simultaneously for object-specific texture classifications,
were employed using the same segmentation scale (i.e., 19).
Seven combinations of GLCM texture measures were investi-
gated: all combinations of two, three, four, five, six, seven,
and eight texture measures. Figure 9 illustrates the minimum,
median, maximum, first quartile and third quartile of overall
classification accuracies for texture combinations with two to
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Figure 7. (a) Object-based classification of spectral
data at a scale of 19, and (b) differences between the
object-based classification and the manually interpreted
map. A color version of this figure is available at the
ASPRS website: www.asprs.org .

Figure 9. Box plot illustrating classification accuracies
across possible combinations of GLCM texture measures.
Each marker within individual boxes represents median
values and the number on the abscissa represents the
number of texture measures entered into classification.

Figure 8. Classification accuracies using individual
GLCM texture measures.

seven measures. The incorporation of all eight texture
measures resulted in an overall accuracy of 78 percent, with a
Kappa of 0.64. The highest overall classification accuracies,
with relatively uniform values of approximately 83 percent
and Kappa values of 0.71, were obtained with selected
combinations from two to five texture measures. For example,
for just two texture measures, the combination that produced
the highest accuracy was GLCM correlation and variance. The
highest accuracy for three texture measures was obtained
with GLCM correlation, variance, and dissimilarity. The
highest accuracy for four texture measures was acquired with
two different groups: GLCM contrast, correlation, dissimilarity,
and variance; and GLCM correlation, dissimilarity, mean, and
variance. The highest accuracy that was obtained with five
texture measures was GLCM contrast, correlation, dissimilarity,
mean and variance. A notable feature of this multiple texture
analysis is that the incorporation of GLCM homogeneity
texture measure generally degraded classification accuracies
of the object-based texture classifications.

Besides these enhanced overall classification accuracies
and Kappa coefficients using combined spectral and texture
information, there also was notable improvement of individual
classification accuracies for evergreen and mixed forest types.
For example, as shown in Table 2, classification accuracies of
evergreen and mixed forest types were generally improved

TABLE 2. ERROR MATRIX OF AN OBJECT -BASED CLASSIFICATION AT THE
SCALE OF 19 USING SPECTRAL BANDS AND TEXTURE MEASURES OF GLCM

CONTRAST , C ORRELATION , D ISSIMILARITY , AND VARIANCE

Reference

DF EF MF User’s accuracy (%)

DF 145 13 7 88

EF 10 58 3 82

MF 15 3 46 72

Producer’s accuracy (%) 85 78 82

Overall accuracy: 83%, Kappa coefficient: 0.71
DF Kappa coefficient: 0.72
EF Kappa coefficient: 0.76
MF Kappa coefficient: 0.65

C
lassification
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Figure 10. (a) Forest type classification result, and
(b) misclassifications on object-specific texture classifi-
cation using GLCM contrast, correlation, dissimilarity
and variance. A color version of this figure is available
at the ASPRS website: www.asprs.org . (In Figure 10a of
the color version, the black line indicates the boundary
of individual forest type stands.)

(ranging from 72 percent to 88 percent correct) by incorporat-
ing multiple texture measures in terms of producers’ accuracy,
user’s accuracy and conditional Kappa coefficient. By adding
GLCM contrast, correlation, dissimilarity and variance, the
producer’s and user’s accuracies of evergreen forest type were
improved by 16 percent and 9 percent, respectively, when
compared with those accuracies from spectral information
alone. In addition, the user’s accuracy of mixed forest type
was enhanced by 11 percent with four object-specific GLCM
texture measures. Gains of 0.12 and 0.13 in conditional Kappa
coefficients for evergreen and mixed forest types, respectively,
were observed, although there was a slight decrease (i.e., 0.04)
in the conditional Kappa coefficient of deciduous forest type.
The other GLCM texture combinations, mentioned above, also
enhanced classification accuracies by reducing the classifica-
tion confusion between evergreen and mixed forest types.
Overall, the accuracy of object-based classification could be
improved through the incorporation of multiple GLCM texture
measures, although not in all cases as shown in Figure 9 by
the variation between the minimum and maximum accuracy
achieved. Figure 10a illustrates a GEOBIA forest type classifica-
tion result produced by using spectral information and GLCM
texture measures of contrast, correlation, dissimilarity and
variance.

This object-specific GLCM multiple texture analysis raises
the question of why overall classification results were not
enhanced beyond 83 percent. To answer this question, we
produced a classification error map using an automatic
classification result from a texture combination of GLCM
contrast, correlation, dissimilarity and variance and the
manually-interpreted forest stands, as shown in Figure 10b. In
addition, we calculated the percentages of confused classifica-
tion among the three forest types. The confusion percentages
of DF-EF and DF-MF were the same as those from the
spectral classification (i.e., 8 percent and 6 percent, respec-
tively) even though the classification confusion between
evergreen and mixed forest types was lowered to 2 percent.
As illustrated in Figure 10b, the confusion between decidu-
ous and evergreen forest types came from transition areas
between the two types and local segmentation result that did
not produce smaller evergreen stands designated by circles in
Figure 10b. In addition, the confusion between deciduous and
mixed forest types resulted from local segmentation quality
even at the optimal scale of 19. The classification confusion
between evergreen and mixed forest types also occurred
because of local segmentation quality even after adding
object-specific GLCM multiple texture measures. The confusion
percentages and error map of this study revealed that the
object-based forest type classification result could not per-
fectly resemble the manual interpretation possibly because of
poor segmentation quality even at the optimal scale of 19 or
due to the subjective nature of manual interpretation. At any
rate, the quality of segmentation has a critical effect on forest
type classifications when using object-based classification and
VHR satellite imagery.

Overall, the object-based classification combined with
object-specific GLCM texture produced a map of forest types
that most closely resembled the manually interpreted forest
type map (see Figure 10a). In addition, the best object-based
classification could be converted to a vector polygon format
representing forest type stands. This vector file of forest type
stands can be used for further GIS analysis, e.g., vegetation
modeling or forest fire fuels analysis.

Conclusions
Forest type mapping for a National Park unit was performed
using an object-based approach applied to a 4-meter
multispectral Ikonos image acquired during the summer.

The classification of forest types, including deciduous
broadleaf, evergreen coniferous and mixed forests, was
achieved through exploration of the effects of combining
spectral and contextual texture information. A manually
interpreted forest stands geodatabase was employed as a
benchmark to investigate the extent to which object-based
segmentation and classification can emulate a field-verified
manual interpretation of forest types.

Important findings associated with object-based forest
type classification on the Ikonos image include:

1. The level of segmentation directly influenced forest type
mapping when adopting an object-based approach. In general,
classification accuracies were lower for data sets resulting
from over- and under-segmentation than optimal segmenta-
tion. Overall classification accuracy for GEOBIA results with
extreme over-segmentation, i.e., at the scale of 2, was
improved by 31 percent (0.42 Kappa) when optimal segmen-
tation (i.e., 19) was used. At the optimal segmentation scale
of 19, an overall classification accuracy of 79 percent with a
Kappa 0.65 was realized using only with spectral informa-
tion. Our previous study (Kim et al., 2008) showed the
number and average sizes of image objects obtained at
segmentation scales of 18 and 19 were comparable to the
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number and size of forest stands contained in a manually
interpreted and field verified forest type data set.

2. Given the importance of segmentation quality on object-based
classification accuracy, an objective method of determining
the optimal segmentation level was desired. A series of
object-based classification results demonstrated that a spatial
autocorrelation analysis, based on Moran’s I index values,
could discriminate segmentation levels. The analysis yielded
lowest, even negative, Moran’s I values at optimal segmenta-
tions compared with over- and under-segmentations. This
analysis is anticipated to reduce processing time and labor
of selecting appropriate segmentation scales for object-based
forest type mapping with VHR satellite imagery in comparison
with a trial-and-error method.

3. Object-specific GLCM texture measures did not produce a
notable increase in classification accuracies (ranging from
60 percent to 79 percent for overall accuracy) when they were
employed individually with spectral information in classifica-
tion procedures. However, forest type classification results
were enhanced by adopting multiple texture measures. By
employing selected multiple texture analysis, classification
accuracies were enhanced to 83 percent for overall accuracy
with Kappa of 0.71 at the optimal segmentation of scale 19.
These improved results were attributed to reducing classifica-
tion confusion between evergreen and mixed forest types
up to 2 percent. An error map, produced from a GEOBIA
classified image and manual interpretation, showed that the
placement of image objects only differed by 8 percent or less.
Some misclassification occurred because of local segmentation
quality, and other misclassification occurred at transition
areas between two different forest types.

4. It is possible to produce GIS-ready vector polygons of forest
type stands from object-based classification of a VHR satellite
image for further GIS analysis, thus enhancing the potential
for a close coupling between remote sensing and GIS analyses.

Overall, this study resulted in a forest type map that was
similar to that of a manual interpretation by adopting object-
based image classification with the addition of multiple
object-specific GLCM texture measures. The best classification
meets accuracy standards that are required for National Park
vegetation mapping (over 80 percent in overall accuracy).

With increasing availability of VHR imagery and high
demand for mapping natural and cultural resources, the
GEOBIA approach offers great potential for automated classifi-
cation techniques that emulate the delineation and classifi-
cation of manual interpretation. However, it is important to
develop methodologies that estimate optimal segmentations
across various landscape units and that enhance the quality
of segmentation. In addition, although a single segmentation
scale was utilized in this study, future research needs to
consider multi-scale segmentation analyses when employing
hierarchical classification scheme. That is because a single
segmentation scale may not be appropriate for object-based
land-use and land-cover classifications.

In future work, we plan to evaluate optimal segmentation
quality by using a spatial autocorrelation analysis for other
landscapes, e.g., urban or suburban land-use and land-cover,
and investigate the relationship between segmentation quality
and classification results. Keeping the need for future updating
of databases within the National Vegetation Mapping Program
in mind, we plan to perform stand-level forest/vegetation
GEOBIA classification for a large National Park like Great
Smoky Mountains National Park. In addition, we intend to
investigate whether it is possible to find a method to assist
researchers in identifying the optimal combination of GLCM
texture measures for inclusion in GEOBIA classification.
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