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Fisher linear discriminant analysis (FLDA) is a classic linear feature extraction and dimensionality reduction approach for face
recognition. It is known that geometric distribution weight information of image data plays an important role in machine learning
approaches. However, FLDA does not employ the geometric distribution weight information of facial images in the training stage.
Hence, its recognition accuracy will be affected. In order to enhance the classification power of FLDA method, this paper utilizes
radial basis function (RBF) with fractional order to model the geometric distribution weight information of the training samples
and proposes a novel geometric distribution weight information based Fisher discriminant criterion. Subsequently, a geometric
distribution weight information based LDA (GLDA) algorithm is developed and successfully applied to face recognition. Two
publicly available face databases, namely, ORL and FERET databases, are selected for evaluation. Compared with some LDA-based
algorithms, experimental results exhibit that our GLDA approach gives superior performance.

1. Introduction

Over the past two decades, face recognition (FR) has made
great progress with the increasing computational power of
computers and has become one of the most important
biometric-based authentication technologies. The key issue
of FR algorithm is dimensionality reduction for facial feature
extraction. According to different processes of facial feature
extraction, face recognition algorithms can be generally
divided into two classes, namely, (local) geometric feature
based and (holistic) appearance based [1]. The geometric
feature-based approach is based on the shape and the location
of facial components (such as eyes, eyebrows, nose, and
mouth), which are extracted to represent a face geometric
feature vector. However, for the appearance-based approach,
it depends on the global facial pixel features, which are
exploited to form a whole facial feature vector for face clas-
sification. Principle component analysis (PCA) [2] and linear

discriminant analysis (LDA) [3] are two famous appearance-
based approaches for linear feature extraction and dimen-
sionality reduction. They are also called Eigenface method
and Fisherface method in face recognition, respectively. The
objective of PCA is to find the orthogonal principle com-
ponent (PC) directions and preserve the maximum variance
information of the training data along PC directions. PCA
can reconstruct each facial image using all Eigenfaces. Since
PCA takes no account of the discriminant information, it
is unsuitable for classification tasks. LDA is a supervised
learning method and seeks the optimal projection mapping
under Fisher criterion such that the ratio of interdistance
to intradistance attains the maximum. Therefore, from the
classification point of view, LDA should give better perfor-
mance than PCA. LDA is theoretically sound. However, it
still has two issues. For one thing, LDA often encounters a
small sample size (3S) problem, which always occurs when
the dimension of the input sample space is greater than the
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number of training facial images. Under this situation, LDA
cannot be performed directly. To solve the 3S problem, a large
number of LDA-based approaches have been proposed [4–
16]. Among them, Fisher linear discriminant analysis (FLDA)
method, also called Fisherface method in FR, is a two-stage
algorithm. It first employs PCA for dimensionality reduction
to guarantee that the between-class scatter matrix is full rank,
and then LDA can be implemented in the PCA-mapped low
dimensional feature space.Direct LDA [6] (DLDA) is another
LDA-based approach which uses simultaneous diagonaliza-
tion technique [17] to solve 3S problem. The basic idea of
DLDA is to previously discard the null space of between-
class scatter matrix 𝑆𝑏 and then keep the null space of within-
class scatter matrix 𝑆𝑤. Although DLDA is computationally
efficient, it suffers from the performance limitation especially
when the number of training images increases.This is because
discarding the null space of 𝑆𝑏 would also discard the null
space of 𝑆𝑤 indirectly. Literature [5] shows that the null
space of 𝑆𝑤 contains the most discriminant information.
For another thing, these LDA-based methods are based on
the classic Fisher criterion, which does not consider the
geometric distribution weight information of the training
data. So, their recognition performances will be degraded.

To enhance the discriminant power of LDA-based
approach, this paper presents a novel Fisher criterion by
taking into account the geometric distribution weight infor-
mation of the training facial data. It is natural to think that
the intradata nearby its class center is more important to
represent the feature of the class. So, the proposed method
attempts to impose a penalty weight (small weight) on the
intradata if the intradata is far from its own class center. In
the meanwhile, if two different class centers are close to each
other, they will be given a small weight as well. To this end, we
should extract the geometric distribution weight information
of the training data. In recent years, lots of fractional order
based methods [18–25] have been proposed in the area of
dynamic systems, image processing, face recognition, and so
on. This paper will adopt radial basis function (RBF) with
fractional order [21–23] to model the geometric distribution
weight information of the training samples, and thus we
are able to establish a new Fisher criterion incorporated
with data geometric distribution weight information. Based
on the modified Fisher discriminant criterion, a geometric
distribution weight information based linear discriminant
analysis (GLDA) method is proposed for face recognition.
Our GLDA approach is tested on two face databases, namely,
ORL database and FERET database. Compared with FLDA
method and DLDA method, experimental results show that
the proposed GLDA method outperforms FLDA and DLDA
methods.

The rest of this paper is organized as follows. Section 2
briefly introduces the related works. In Section 3, RBF with
fractional order is exploited to model the data geometric
distribution weight information. The new Fisher criterion is
then established using geometric distribution weight infor-
mation of the training data, andGLDA algorithm is designed.
Experimental results on two face databases are reported in
Section 4. Finally, Section 5 draws the conclusions.

Figure 1: Images of one person from ORL database.

Figure 2: Images of two persons from FERET database.

2. Related Works

In this section, we will introduce some related linear feature
extraction and dimensionality reduction algorithms for face
recognition.

2.1. Some Notations. Let 𝑑 be the dimension of the original
sample space and let 𝐶 be the number of the sample classes.
The 𝑖th class 𝐶𝑖 = {𝑥

(𝑖)

1
, 𝑥
(𝑖)

2
, . . . , 𝑥
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PCA algorithm, total scatter matrix 𝑆𝑡, also called covariance
matrix, is defined by

𝑆𝑡 =
1
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In LDA algorithm, within-class scatter matrix 𝑆𝑤 and
between-class scatter matrix 𝑆𝑏 are defined, respectively, as
follows:

𝑆𝑤 =
1
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𝑇
.

(2)

The radial basis function 𝐾𝛼(𝑥) with fractional order 𝛼 is
given as follows

𝐾𝛼 (𝑥) = exp (−‖𝑥‖
𝛼
) . (3)

The previous RBF can be viewed as the normalized radial
kernel of fractional order 𝛼.
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Figure 3: Rank 1 accuracy versus training number on the ORL face database (b) and FERET face database (a).

Table 1: Recognition rates on ORL database.

TN 2 3 4 5 6 7 8 9
FLDA 66.13% 74.54% 84.54% 89.35% 92.63% 94.92% 95.25% 97.75%
DLDA 78.69% 85.07% 89.33% 91.50% 93.25% 94.67% 94.38% 96.25%
GLDA 79.98% 87.14% 93.75% 96.05% 97.63% 97.92% 98.50% 99.00%

Table 2: Recognition rates on FERET database.

TN 2 3 4 5
FLDA 62.85% 77.42% 85.54% 89.42%
DLDA 70.25% 77.58% 83.54% 85.58%
GLDA 72.94% 82.36% 87.33% 89.83%

2.2. PCA. Principal component analysis algorithm is also
known as Karhunen-Loeve transformation. It aims to find
orthogonal principal component directions such that the
scatter of all projected samples on large principal component
direction is maximal. PCA is theoretically based on total
scatter matrix 𝑆𝑡 which can be calculated via formula (1). The
PCA projection matrix𝑊PCA is determined by the following
criterion:

𝑊PCA = argmax
𝑊

󵄨󵄨󵄨󵄨󵄨
𝑊
𝑇
𝑆𝑡𝑊

󵄨󵄨󵄨󵄨󵄨
, (4)

where𝑊 ∈ 𝑅
𝑑×𝑚 and𝑚 ≪ 𝑑.

Problem (4) is equivalent to solving the eigen-system:
𝑆𝑡𝑊 = 𝑊Λ, where Λ = diag{𝜆1, 𝜆2, . . . , 𝜆𝜏, 0, . . . , 0} with
𝜆1 ≥ 𝜆2 ≥ ⋅ ⋅ ⋅ ≥ 𝜆𝜏 > 0 and 𝑊 = [𝑤1, 𝑤2, . . . , 𝑤𝑑].
The PCA projection matrix 𝑊PCA can be chosen as 𝑊PCA =

[𝑤1, 𝑤2, . . . , 𝑤𝑚] (𝑚 ≪ 𝑑). The column vectors 𝑤𝑖 (𝑖 =

1, 2, . . . , 𝑚) are called the eigenfaces in face recognition. It can
be seen that PCA does not use the class label information.

So, PCA is an unsupervised learning method, and its perfor-
mance is not good in classification tasks.

2.3. Fisher LDA. The goal of linear discriminant analysis is to
find a low dimensional feature space in which the intradata
are tightly clustered and the interdata are far from each other.
Therefore, LDA should acquire an optimal projection matrix
𝑊LDA to maximize the ratio of between-class scatter and the
within-class scatter; namely,

𝑊LDA = argmax
𝑊

󵄨󵄨󵄨󵄨󵄨
𝑊
𝑇
𝑆𝑏𝑊

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑊
𝑇𝑆𝑤𝑊

󵄨󵄨󵄨󵄨

. (5)

The previous problem is equivalent to solving the following
eigen-system:

𝑆
−1

𝑤
𝑆𝑏𝑊 = 𝑊Λ, (6)

where Λ is a 𝑑 × 𝑑 diagonal eigenvalue matrix with its
eigenvalues sorted in decreasing order.The projectionmatrix
𝑊LDA is formed with the eigenvectors corresponding to the
largest 𝐶 − 1 eigenvalues. In face recognition, the column
vectors of 𝑊LDA are called Fisherfaces as well. However,
LDA often suffers from small sample size problem when the
number of training samples is smaller than the dimension
of the sample vector. Under this situation, the within-
class scatter matrix is invertible, and the eigensystem (6)
cannot be solved.This means that LDA cannot be performed
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Figure 4: CMC curve comparisons on the ORL database.

directly. So, Fisher LDA (FLDA) uses PCA for dimensionality
reduction in advance.

2.4. Direct LDA. Yu and Yang [6] proposed a direct LDA
(DLDA) approach using simultaneous diagonalization tech-
nique [17]. Direct LDA is actually a subspace approach to
overcome 3S problem of LDA. It attempts to obtain the
optimal projection matrix𝑊 in the subspace𝑁(𝑆𝑤) ∩ 𝑁(𝑆𝑏)

and satisfies the following equations:

𝑊𝑆𝑏𝑊
𝑇
= 𝐼, 𝑊𝑆𝑤𝑊

𝑇
= Λ, (7)

where 𝑁(𝑆𝑤) means the null space of 𝑆𝑤, 𝑁(𝑆𝑏) denotes
the complement subspace of 𝑁(𝑆𝑏), and 𝐼 is an identity
matrix. Diagonal matrix Λ may contain 0s and some small
eigenvalues in its diagonal. Details can be found in [6].

We can see that some useful discriminant information
will be discarded in the intermediate PCA stage of FLDA or
simultaneous diagonalization stage of DLDA.Moreover, both
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Figure 5: ROC curve comparisons on the ORL database.

FLDAmethod andDLDAmethod do not exploit the geomet-
ric distribution weight information of the training samples.
These factors will affect their recognition performance.

3. Proposed GLDA Method

This section will propose a novel discriminant criterion,
which will use the geometric distribution weight information
of the training samples. Based on the new discriminant crite-
rion, our GLDAmethod is proposed. Details are discussed as
follows.

3.1. Proposed Discriminant Criterion. To take advantage of
geometric distribution weight information of face pattern
space, we redefine the within-class scatter matrix 𝑆𝑤 and
between-class scatter matrix 𝑆𝑏, respectively, as follows:

𝑆𝑤 =
1

𝑁

𝐶

∑

𝑖=1

𝑁𝑖

∑

𝑗=1

(𝑥
(𝑖)

𝑗
− 𝜇𝑖) (𝑥

(𝑖)

𝑗
− 𝜇𝑖)
𝑇

⋅ 𝐾𝛼𝑤
(𝑥
(𝑖)

𝑗
− 𝜇𝑖) ,

𝑆𝑏 =
1

𝑁

𝐶

∑

𝑖=1

𝑁𝑖 (𝜇𝑖 − 𝜇) (𝜇𝑖 − 𝜇)
𝑇
⋅ [1 − 𝐾𝛼𝑏

(𝜇𝑖 − 𝜇)] ,

(8)
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Figure 6: CMC curve comparisons on the FERET database.

where𝐾𝛼𝑤(𝑥
(𝑖)

𝑗
−𝜇𝑖) and𝐾𝛼𝑏

(𝜇𝑖 −𝜇) are radial basis functions
defined by (3). 𝛼𝑤 and 𝛼𝑏 are fractional order parameters,
which can be more flexibly adjusted to obtain the optimal
parameters. It can be seen from (8) that if the distance
between the samples 𝑥𝑗

𝑖
and 𝜇𝑖 is large, it will impose a penalty

weight. Similarly, if the class center 𝜇𝑖 is nearby the center 𝜇,
then we also give it a small weight. Otherwise, it will have a
large weight.

Based on the previous analysis, our geometric distribu-
tionweight information based Fisher criterion function 𝐽(𝑊)

is defined by

𝐽 (𝑊) =

󵄨󵄨󵄨󵄨󵄨
𝑊
𝑇
𝑆𝑏𝑊

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨
𝑊𝑇𝑆𝑤𝑊

󵄨󵄨󵄨󵄨󵄨

. (9)

To obtain the following optimal projection matrix:

𝑊GLDA = argmax
𝑤

𝐽 (𝑊) , (10)

we can equivalently solve the following eigensystem:

𝑆
−1

𝑤
𝑆𝑏𝑊 = 𝑊Λ, (11)

where Λ is a diagonal eigenvalue matrix with its eigenvalues
sorted in decreasing order. The projection matrix 𝑊GLDA is
formed with eigenvectors corresponding to the largest 𝐶 − 1

eigenvalues.

3.2. Algorithm Design. This subsection will develop our
GLDA algorithm based on geometric distribution weight
information Fisher discriminant criterion (9). Details are as
follows.

It is easily seen that two scatter matrices 𝑆𝑤 and 𝑆𝑏 can be
rewritten in the following forms, respectively:

𝑆𝑤 = Φ̃𝑤Φ̃
𝑇

𝑤
∈ 𝑅
𝑑×𝑑

, (12)
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Figure 7: ROC curve comparisons on the FERET database.
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Since the total scatter matrix 𝑆𝑡 = 𝑆𝑤 + 𝑆𝑏, if we define

Φ̃𝑡 = [Φ̃𝑤, Φ̃𝑏] ∈ 𝑅
𝑑×(𝑁+𝐶), then 𝑆𝑡 can be written as

𝑆𝑡 = Φ̃𝑡Φ̃
𝑇

𝑡
∈ 𝑅
𝑑×𝑑

. (15)

To solve the problem of eigensystem (11) and compare the
proposed GLDA with FLDA algorithm under the same

conditions, this paper will also use PCA for dimensionality
reduction and guarantee that the geometric information
based within scatter matrix 𝑆𝑤 is nonsingular. This means
that GLDA can be carried out in the PCA-transformed low
dimensional feature space. Thereby, our GLDA algorithm is
designed as follows.

Step 1. Performing singular value decomposition on Φ̃
𝑇

𝑡
Φ̃𝑡 ∈

𝑅
(𝑁+𝐶)×(𝑁+𝐶), we have Φ̃

𝑇

𝑡
Φ̃𝑡

svd
= 𝑈Λ𝑈

𝑇, where 𝑈 is an
orthonormal matrix, Λ = diag{𝜆1, 𝜆2, . . . , 𝜆𝜏, 0, . . . , 0} with
𝜆1 ≥ 𝜆2 ≥ ⋅ ⋅ ⋅ ≥ 𝜆𝜏 > 0. Denote Λ 𝑡 = diag{𝜆1, 𝜆2, . . . , 𝜆𝜏},
𝑈𝑡 = 𝑈(:, 1 : 𝜏) ∈ 𝑅

(𝑁+𝐶)×𝜏, and then let 𝑊𝑡 = Φ̃𝑡𝑈𝑡Λ
−1/2

𝑡
∈

𝑅
𝑑×𝜏.

Step 2. Perform singular value decomposition

𝑊
𝑇

𝑡
Φ̃𝑤

svd
= 𝑈𝑤 (

Σ𝑤 0

0 0
)𝑉
𝑇

𝑤
∈ 𝑅
𝜏×𝑁

, (16)

where 𝑈𝑤 ∈ 𝑅
𝜏×𝜏 and 𝑉𝑤 ∈ 𝑅

𝑁×𝑁 are orthonormal matrices,
Σ𝑤 = diag{𝜎1, . . . , 𝜎𝑟} with 𝜎1 ≥ ⋅ ⋅ ⋅ ≥ 𝜎𝑟 > 0 and 𝑟 ≤ 𝜏.
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Step 3. If 𝑟 = 𝜏, then let 𝑌 = Σ
−1

𝑤
𝑈
𝑇

𝑤
𝑊
𝑇

𝑡
∈ 𝑅
𝜏×𝑑, and

𝑆𝑏 = 𝑌𝑆𝑏𝑌
𝑇

∈ 𝑅
𝜏×𝜏, and go to Step 4. Otherwise, update 𝑊𝑡

according to the rule 𝑊𝑡 = 𝑊𝑡(:, 1 : 𝜏 − 1), let 𝜏 = 𝜏 − 1, and
go to Step 2.

Step 4. Perform an eigenvalue decomposition 𝑆𝑏 = 𝑈𝑏Λ 𝑏𝑈
𝑇

𝑏
,

whereΛ 𝑏 is a diagonal eigenvalue matrix of 𝑆𝑏 with its diago-
nal elements in a decreasing order and 𝑈𝑏 is an orthonormal
eigenvector matrix. Let𝑊𝑏 = 𝑈𝑤Λ

−1

𝑤
𝑈𝑏.

Step 5. The final GLDA optimal projection matrix is

𝑊GLDA = 𝑊𝑡𝑊𝑏. (17)

4. Experimental Results

This section will evaluate the performance of the proposed
GLDA method for face recognition. Two LDA-based algo-
rithms, namely FLDA [3] and DLDA [6] algorithms, are
chosen for comparisons under the same experimental con-
ditions. In the following experiments, the values of fractional
order parameters are given as 𝛼𝑤 = 0.25 and 𝛼𝑏 = 0.0125.
They are manually determined using full search method.

4.1. Human Face Image Databases. Two popular and pub-
licly available databases, namely, ORL database and FERET
database, are selected for the evaluation. In ORL database,
there are 40 persons and each person consists of 10 images
with different facial expressions, small variations in scales,
and orientations.The resolution of each image is 112×92 and
with 256 gray levels per pixel. Image variations of one person
in the database are shown in Figure 1. For FERET database,
we select 120 people, 6 images for each individual. The six
images are extracted from 4 different sets, namely, Fa, Fb,
Fc, and duplicate. Fa and Fb are sets of images taken with
the same camera at the same day but with different facial
expressions. Fc is a set of images taken with different cameras
at the same day. Duplicate is a set of images taken around 6–12
months after the day the Fa and Fb photos were taken. Details
of the characteristics of each set can be found in [26]. All
images are aligned by the centers of eyes andmouth and then
normalized with resolution 112 × 92. This resolution is the
same as that in ORL database. Images from two individuals
are shown in Figure 2. For all facial images, the following
preprocessing steps are preformed.

(i) All images are aligned with the centers of eyes and
mouth. The orientation of face is adjusted (on-the-
plane rotation) such that the line joining the centers
of eyes is parallel with 𝑥-axis.

(ii) The dimension of the images is reduced by one-fourth
usingDaubechies’ D4wavelet filter.The resolution for
all images in the following experiments is 30 × 25.

(iii) For each facial image sample 𝑥 ∈ 𝑅
𝑑, it is normalized

using the following formula:

𝑥
∗
= (𝑥 −mean (𝑥)) /std (𝑥) . (18)

In the recognition stage, the nearest neighbor approach is
employed for face classification, which is base on Euclidian
distance measurement between the testing image and the
class center.

4.2. Comparisons on ORL Database. The experimental set-
ting on ORL database is as follows. We randomly selected
𝑛 (𝑛 = 2, 3, . . . , 9) images from each individual for training
and the rest (10 − 𝑛) of the images are for testing. In order to
have a fair comparison, all methods use the same training and
testing facial images. Moreover, the experiments are repeated
10 times, and the average accuracies are then calculated to
avoid the statistical variations. The average accuracies are
recorded and tabulated in Table 1 and plotted in Figure 3. TN
in Table 1 means the numbers of training samples. It can be
seen that the recognition accuracy of each approach ascends
when the number of training images increases. The recog-
nition accuracy of GLDA method increases from 79.98%
with 2 training images to 99.00% with 9 training images.
However, for FLDA and DLDA methods, their accuracies
increase from 66.13% and 78.69% with 2 training images
to 97.75% and 96.25% with 9 training images, respectively.
Experimental results show that our GLDA method gives the
best performance on ORL database.

We would also like to see the detailed performance
of every method, which is graphically illustrated using
the cumulative match characteristic (CMC) curve and the
receiver operating characteristic (ROC) curve. The CMC
curve shows the recognition accuracy against the rank, and
the ROC curve displays the false acceptance rate (FAR) versus
the genuine acceptance rate (GAR). High accuracy or high
GAR with low FAR means good performance.

For each number of training images, the CMC curves and
the ROC curves are plotted in Figure 4 ((TN = 2)–(TN = 9))
and Figure 5 ((TN = 2)–(TN = 9)), respectively. It can be seen
that our method gives the best performance for all cases.

4.3. Comparisons on FERET Database. The experimental
setting for the FERET database is similar with that of ORL
database. As the number of images for each person is 6,
the number of training images ranges from 2 to 5. The
experiments are repeated 10 times and the average accuracy
is then calculated. The average accuracy is recorded and
tabulated in Table 2 and plotted in Figure 3, respectively.
When 2 training images is used for testing, the recognition
rate of our method is 72.94%, while those of FLDA and
DLDA methods are 62.85% and 70.25%, respectively. The
performance for each method is also improved when the
number of training images increases. When the number of
training images is equal to 5, the accuracy for GLDAmethod
is increased to 89.83% while those for FLDA method and
DLDAmethod are 89.42% and 85.58%, respectively. It can be
seen that the proposed method outperforms FLDA method
and DLDA method on FERET database as well.

Like the ORL database, the detailed performance of
each approach is shown using CMC and ROC curves. They
are plotted in Figure 6 and Figure 7, respectively, with the
number of training images ranging from 2 to 5.
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Figures 6 and 7 demonstrate that our GLDA method has
superior performance on the FERET database.

5. Conclusions

In order to enhance the discriminant power of the tradi-
tional LDA-based FR algorithms, this paper proposed to
integrate the geometric distribution weight information of
the training samples into Fisher criterion and developed
a novel geometric distribution weight information based
LDA (GLDA) face recognition approach. The geometric
distribution weight information is learnt using radial basis
function with fractional order. The proposed GLDA method
is tested using two face databases, namely, ORL and FERET
face databases. Compared with FLDA method, experimental
results demonstrate that our GLDA method has the best
performance.
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