
Abstract
The arrival of new-generation, high-spatial-resolution satellite
imagery (e.g., Ikonos) has opened up new opportunities for
detailed mapping and analysis of urban land use. Drawing on
the traditional approach used in aerial photointerpretation,
this study investigates an “object-oriented” method to classify
a large urban area into detailed land-use categories. Spatial
metrics and texture measures are used to describe the spatial
characteristics of land-cover objects within each land-use
region as derived from interpreted aerial photographs. In
assessing how land-use categories vary in their spatial config-
uration, spatial metrics were found to provide the most impor-
tant information for differentiating urban land uses. A de-
tailed land-use map with nine categories was derived for the
Santa Barbara South Coast Region area. Results from our
work suggest that the region-based method exploiting spatial
metrics and texture measurements is a potential new avenue
to extract detailed urban land-use information from high-
resolution satellite imagery. 

Introduction
Detailed information on urban land use is essential for appli-
cations related to urban management and planning (Jensen
and Cowen, 1999). For decades, large-scale air photos have
been employed to obtain such information by applying the
principles of aerial photointerpretation. Interpretation using
texture, context, and spatial configurations of urban land-
cover features are well documented (Bowden et al., 1975;
Haack et al., 1977; McKeown, 1988). The availability of very-
high-spatial-resolution satellite imagery offers a new avenue
to obtain urban information on a very detailed level (Welch,
1982; Donnay et al., 2001; Small, 2001). Traditional human
approaches followed the hierarchical relationships of the
basic image interpretation elements shown in Figure 1. Tone
and color are of fundamental importance and represent pri-
mary image elements. For digital data this primary feature is
given by the spectral information (on a per-pixel basis) and
characterizes the land-cover type of a specific surface object
such as a vegetated zone or a built-up area. The spatial
arrangement and configuration of the basic elements represent
interpretation features of greater complexity such as size,
shape and texture, or pattern and association. Higher elements
of interpretation usually improve the level of detail and accu-
racy that can be derived from the remote sensing datasets.
Their application, however, commonly requires higher level
efforts in the image analysis processes in terms of more so-
phisticated knowledge of the human interpreter or more com-
plex and customized digital image processing algorithms
(Haack et al., 1997). 

Although an experienced image interpreter can utilize
image elements well in visual interpretation, the expert
knowledge is not easily translated to the analysis of satellite
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imagery. To explore the rich dataset provided by Ikonos or
QuickBird, a bridge needs to be built between the well-
established approaches of visual interpretation and digital
image processing. A key issue is to explore and evaluate the
quantitative descriptors of spatial urban form to find distinct
relationships between the physical spectral measurement (of
radiance) and the land-use, socio-economic, demographic,
and ecological characteristics of individual land-cover objects. 

Techniques for including spatial, textural, and contextual
information in digital mapping of urban areas from remotely
sensed imagery have been developed and tested in the last
three decades (Gong et al., 1992; Barnsley et al., 1993). The
approaches vary in terms of their image base (continuous
spectral image or discrete land-cover classification), the spa-
tial analysis domain (kernel-based or region-based), and the
statistical approach used in describing the spatial and textural
components. In the domain of high spatial resolution remote
sensing, image analysis has to consider the specific character-
istics and limitations of the data for depicting the urban envi-
ronment. The incorporation of higher order image interpreta-
tion elements such as shape and size of land-cover objects
requires a clear representation of these characteristics in the
remotely sensed imagery. For urban areas, spatial resolutions
of better than five meters are usually required for the identifi-
cation of land-cover objects such as buildings (Welch, 1982;
Jensen and Cowen, 1999). 

The hierarchy of urban image objects (Haack et al., 1997;
Zhan et al., 2002) represents the urban landscape as “land-
cover objects” and “land-use regions” (or objects). Land-use
regions are comprised of land-cover objects, e.g., a block
(land-use object) consisting of several buildings and vegetated
areas (land-cover objects). In contrast to natural environments,
man-made structures have been identified as one of the few
examples of objects within a landscape that have distinct and
crisp boundaries (Couclelis, 1992). This characteristic makes
the general approach particularly suitable in urban analysis. 

Recent developments in “object-oriented” image classifi-
cation (based on image segmentation) have taken advantage of
the detailed spatial characteristics of high-resolution datasets.
The research in this area has emphasized the reduction of
spectral variability within the objects and the incorporation of
additional information from spatial and contextual image/
object characteristics (Johnsson, 1994; Blaschke and Strobl,
2001). Land-use regions or objects follow the concept of
“analytical areas” and “photomorphic areas or units” (Peplies,
1974; Haack et al., 1997). This concept of regionalization was
developed and is commonly used for aerial photographic in-
terpretation and mapping. Land-use regions are defined as
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spatially distinct areas with homogeneous structure that are
composed of an aggregation of land-cover objects representing
a specific type of land use (Moller-Jensen, 1990; Aplin et al.,
1999; Herold et al., 2002a; Zhan et al., 2002). Given this back-
ground, it is argued that the analysis of high-spatial-resolution
remote sensing data in the urban environment has to consider
an “object-oriented” approach. Common techniques using ar-
tificial image structures such as pixels or a moving kernel
window should be reconsidered because object-based meth-
ods focus on the analysis of thematically defined, irregularly
shaped objects and regions. 

There are several approaches describing the spatial, tex-
tural, and contextual characteristics of urban land-cover ob-
jects. Texture parameters based on the co-occurrence matrix
(Haralick, 1973) have shown the capability of capturing the
land-use variation within an urban environment (Baraldi and
Parmiggiani, 1995; Liu and Clarke, 2002). Other second-order
image interpretation elements in Figure 1 were also studied.
Related research has focused on the analysis on image-derived
objects such as buildings and roads, and tried to describe their

shape and spatial arrangement (Moller-Jensen, 1990; Barnsley
and Barr, 1997) usually referred to as “urban morphology”
(Webster, 1995, p. 280). In that context, the use of spatial met-
rics has provided a new avenue for describing the spatial
land-cover heterogeneity and morphological characteristics
within the urban environment. As landscape metrics, spatial
metrics are already commonly used to quantify the shape and
pattern of quasi-natural vegetation in natural landscapes
(O’Neill et al., 1988; Gustafson, 1998; McGarigal et al., 2002).
Recently, there has been an increasing interest in applying
spatial metric techniques in an urban environment to link
land-cover heterogeneity to structures and dynamic changes
in urban land uses (Herold et al., 2002a).

The research presented here provides an evaluation of
texture measurements and spatial metrics as quantitative dis-
criminators of urban spatial characteristics for the mapping of
urban land uses. The analysis is based on a mosaic of seven
multispectral Ikonos images that cover the whole urban area
in the Santa Barbara South Coast Region, California. Given the
size and heterogeneity of the study area, this study contains
considerable variability within urban land-use classes and is
not limited to specific unique small test sites. The study is part
of the UCIME project (UCIME, 2001), which in part aims to
identify innovative data sources to describe urban morphology
and provide useful information for managers and planners.

Study Area
The focus of the study is the urbanized area of the south coast
region in Santa Barbara County, California. The South Coast
Region is located about 170 kilometers northwest of Los
Angeles in the foothills of the Santa Ynez Coast Range (Fig-
ure 2) with a size of about 300 sq km and a total population
of around 200,000 people. The area consists of different types
of land use, including residential areas with different density
and socio-economic structure; mixed-use areas (e.g., down-
town areas); and commercial and industrial districts with
various urban built-up cover types like roofs, roads, parking
lots, sidewalks, recreational areas, and others. 

Processing of Ikonos Data
Remotely sensed imagery covering the study area was acquired
from the University of California Santa Barbara Map and Image
Laboratory (UCSB/MIL). The main dataset is comprised of seven
individual multispectral Ikonos images (4-m spatial resolu-
tion) acquired between March and July 2001 covering the
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Figure 2. Map of the Santa Barbara South Coast area with the land-use regions derived from aerial photo-
interpretations (in black outline) and the NDVI (from Ikonos) as background emphasizing the three urban
areas: Santa Barbara, Goleta, and Carpinteria.

Figure 1. The primary ordering of image analysis elements
in visual aerial photo interpretation (from Estes et al.
(1983)).
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Santa Barbara urban area (Figure 2). The data were acquired
on different dates with varying atmospheric and illumination
conditions. Geometric rectification (polynomial image-to-
image registration) and atmospheric corrections (empirical line
method) were accomplished with standard image analysis al-
gorithms, resulting in an accurate and normalized image mo-
saic (Herold et al., 2002b). An object-oriented land-cover clas-
sification was performed in eCognition software (Baatz et al.,
2001) using all four spectral bands. ECognition uses image seg-
mentation to homogenize the spectral variability within land-
cover segments and perform the classification based on those
objects. The software allows for the incorporation of spatial
and contextual information of object features in the image clas-
sification process (Baatz et al., 2001). Given the purpose of this
research, the image classification focused on the derivation
of three major land-cover classes: buildings, green vegetation,
and the rest, including roads, parking lots, bare soil, water
bodies, and non-photosynthetic vegetation.

Green vegetation spectrally separates fairly well. How-
ever, there are some spectral similarities between buildings or
roof types and other urban targets such as roads and bare soil
surfaces, especially given the relatively low spectral resolu-
tion of Ikonos (Herold et al., 2003). To solve this problem,
additional spatial information was included in the classifica-
tion process to improve the land-cover map. The object
length/width ratio was used to separate buildings (compact
quadratic/rectangular) from roads (linear). A minimum-object-
size rule was applied to overcome spectral confusion between
specific roof types and bare soil surfaces. The accuracy of the
land-cover classification is shown in Table 1. The error matrix
was determined by random sampling of test-object areas and
shows overall good classification results of 82.4 percent over-
all accuracy. Green vegetation is mapped with the highest
accuracy, with a tendency to be overmapped. There is still
some confusion between the buildings/roofs and the other
land-cover classes due to the aforementioned spectral similar-
ity. This problem was not completely resolved by including
spatial object information. Detailed information on the
pre-processing and image classification of the Ikonos data
is documented in Herold et al. (2002b).

Derivation of Land-Use Regions
Different ways of spatially subdividing an urban area have
been proposed based on administrative boundaries, remote
sensing and/or map analysis, and urban modeling approaches.
A common approach is to use a quadratic window or kernel to
analyze the features in the neighborhood of a pixel. Barnsley
and Barr (2000) discussed several problems related to kernel-
based approaches in urban analysis. For example, grid-based
approaches tend to smooth the boundaries between discrete
land-cover/land-use parcels; it is difficult to determine a priori
the optimum kernel size; and, a rectangular window repre-
sents an artificial area that does not conform to real parcels or
land-use units, which tend to have irregular shapes and their
own distinct spatial boundaries. In contrast, region-based ap-
proaches allow a discrete characterization of thematically and

functionally defined areas that are generally irregularly
shaped (Gong et al., 1992; Barnsley and Barr, 2000).

Regional subdivisions of urban space exhibit considerable
variation in size, shape, and purpose. Governmental and plan-
ning organizations use census tracts or zoning districts which
are designed according to the characteristics of the built envi-
ronment, socioeconomic variables, administrative boundaries,
and other considerations (Knox, 1994). Urban GIS and models
have also used a wide variety of spatial units, including indi-
vidual parcels as the spatial representations of land owner-
ship, and uniform analysis zones defined by the intersections
of multiple data layers. Automated techniques are usually
based on pattern recognition or image segmentation that pro-
vides areas with similar spectral and textural pattern (Zhan
et al., 2002). In contrast, traditional visual interpretation
approaches in region-based remote sensing analysis follow the
concepts of “analytical areas” or “photomorphic units and
regions” (Peplies, 1974; Haack et al., 1997). This approach is
used in this study. Although the air photo derived regions
provide a suitable set of land-use zones, the approach requires
additional work in delineating these areas. 

The land-use regions for the whole study area were delin-
eated by an experienced image analyst using 6-foot (1.8 m)
resolution aerial photographs acquired in 1998 (see Figure 2).
The regions represent areas with homogeneous land-cover
characteristics according to their tone/color, the size and
shape of land-cover objects, and their texture and pattern
(Peplies, 1974; Haack et al., 1997). Due to the temporal differ-
ences between the air photos and the Ikonos image acquisi-
tion, the areas were inspected for their accuracy. In areas of
urban growth and land-use change, specific regions had to be
modified and adjusted. Although each region is attributed
with a land-use category, this study only used the spatial out-
line, hence geometry, of the regions and not the attribute
information. All selections and interpretations of land-use
training and test regions were based on maps and field obser-
vations. Regions smaller than 1 acre (0.4 ha) were excluded
from the analysis, because they are too small given the scale
of the analysis. In all, over 1700 land-use regions were incor-
porated in the investigation.

Derivation and Analysis of Texture and Spatial Metrics
Texture and spatial metrics were derived for each land-use
region. For texture calculation, the near-infrared band of
Ikonos imagery was used, which carries the most significant
amount of information in terms of vegetation versus built-up
land-cover types. While there are several methods to calculate
image texture, this research uses the Gray-level Co-occurrence
matrix (GLCM) to describe image texture. GLCM is an approxi-
mation of the joint probabilistic density function of pixel
pairs and is fairly insensitive to abnormal values. GLCM is suit-
able to describe the texture of land-use regions with irregular
shape such as those in this study. A displacement of five pix-
els in an omni-directional setting was used for GLCM calcula-
tion. The five-pixel distance corresponds to 20 meters on the
ground. This approximately represents the average distance
between urban land-cover objects as identified by the spatial
autocorrelation analysis (Small, 2001). Seven commonly used
texture descriptors were examined, including energy, entropy,
contrast, correlation, variance, dissimilarity, and homogene-
ity. The statistical definitions of these descriptors are listed in
Table 2 together with a brief description of their meanings.
For a detailed discussion, readers are directed to Haralick
(1973) and Baraldi and Parmiggiani (1995). 

While texture measurement is based on continuous gray-
level pixel values, the calculation of spatial metrics is based
on a categorical, patch-based representation of the landscape
within individual land-use regions. In general, patches are
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TABLE 1. ERROR MATRIX OF LAND-COVER CLASSIFICATION USING IKONOS IMAGE

Green # of Producer
Class Veg Building Rest Samples Accuracy

Green vegetation 103 8 12 123 83.7
Buildings/Roofs 0 278 58 336 82.7
Rest 5 57 276 338 81.7

Total 108 343 346 797

User accuracy 95.4 81.0 79.8 Overall: 82.4 %
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defined as homogeneous regions for a specific landscape
property of interest such as “building” or “vegetation.” This
landscape perspective assumes abrupt transitions between in-
dividual patches that result in distinct edges. Spatial metrics
can be used to quantify the spatial heterogeneity of the indi-
vidual patches, all patches in the same class, and the land-
scape as a collection of patches. Some metrics are spatially
non-explicit scalar values, but still capture important spatial
properties. Spatially explicit metrics can be computed as
patch-based indices (e.g., size, shape, edge length, patch den-
sity, fractal dimension) or as pixel-based indices (e.g., conta-
gion) computed for all pixels in a patch (Gustafson, 1998;
McGarical et al., 2002). The data set used to calculate the
spatial metrics is the classified Ikonos imagery, consisting of
three land-cover types: building, vegetation, and the rest.
Metrics calculations are performed on the building and
vegetation classes only, using the public domain software
FRAGSTATS Version 3.3 (McGarical et al., 2002). 

Table 3 describes the spatial metrics used in this research.
A more detailed description, including the specific mathemat-
ical equations of all of the metrics, can be found in McGarical
et al. (2002). The selection of the metrics was based on their
value in quantifying specific landscape characteristics that
have been identified in previous research on urban areas
(Herold et al., 2002a). Most metrics have fairly simple and in-
tuitive values such as the percentage of the landscape covered
by the class (PLAND), the patch density (PD), the mean patch
size (AREA_MN) and standard deviation (AREA_SD), and the
measures of mean Euclidean distance (ENN_MN) and standard
deviation (ENN_SD). The largest patch index (LPI) metric de-
scribes the percentage of the total area covered by the class
concentrated in the largest patch of that class. The contagion
index (CONTAG) measures to what extent landscapes are aggre-
gated or clumped (O’Neill et al., 1988). Landscapes consisting
of relatively large, contiguous patches are described by a high
contagion index. If a landscape is dominated by a relatively
greater number of small or highly fragmented patches, the con-
tagion index is low. The fractal dimension describes the com-
plexity and the fragmentation of a patch by a perimeter-area
proportion. Low values are derived when a patch has a com-
pact rectangular form with a relatively small perimeter relative
to the area. If the patches are more complex and fragmented,

the perimeter increases and yields a higher fractal dimension.
The fractal dimension was calculated as the area weighted
mean patch fractal dimension (FRAC_AM) and fractal dimen-
sion standard deviation (FRAC_SD). FRAC_AM averages the frac-
tal dimensions of all patches by higher weighting of larger
land-cover patches. The shape of smaller patches is often de-
termined more by image pixel size than by characteristics of
natural or manmade features. The patch Cohesion measures
the physical connectedness of the corresponding land-cover
class. The cohesion increases as the patches that comprise a
class become more clumped or aggregated in the class distrib-
ution, hence is more physically connected (Gustafson, 1998).
Overall, 22 metrics were included in the further analysis. The
Contagion metric describes the whole landscape considering
all patches of all classes (buildings and vegetation). Eleven
metrics were derived for the class “buildings,” e.g., consider-
ing all building patches or objects within a land-use region.
All of them are described in Table 3. The same class metrics
have been used for describing the class “vegetation,” except
for the LPI measure, which was excluded after correlation
analysis.

The seven texture parameters and 22 metrics were calcu-
lated for each of the land-use regions in the study area. This
produced a 29-dimensional attribute vector for each region.
To study the separability between different land-use classes
using the attribute vector, Bhattacharyya distance (B-distance)
was calculated to assess the contribution of each metric for
the land-use discrimination. The Fisher Linear Discriminant
algorithm is used to classify each land-use region into a land-
use class. Both algorithms are implemented in the public
domain program MULTISPEC. This program was designed for
the processing and analysis of hyper-dimensional datasets
(Landgrebe and Biehl, 2001) and was applied in this study.
The Bhattacharyya distance (B-distance) is a commonly used
measure of statistical distance between two Gaussian distribu-
tions (Kailath, 1967) and incorporates both first-order (mean)
and second-order (covariance) statistics. The separability
analysis was performed based on the training dataset that is
described in the next section. A more detailed analysis of
the individual contributions of the mean and covariance
component of the B-distance has shown that the mean
difference contributes most of the discrimination between 
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TABLE 2. DESCRIPTION OF THE TEXTURE PARAMETERS

Texture Descriptor Description

Energy � g(i, j) Measures texture uniformity, or pixel pair repetitions. High energy occurs when the
distribution of gray level values is constant or period. 

Entropy �  �
Ng�1

i�0
�

Ng�1

j�0
g2(i, j)log(g(i, j)) Highly correlated to energy. Measures the disorder of an image. Entropy is high when an

image is not texturally uniform. 

Contrast �  �
Ng�1

i�0
�

Ng�1

j�0
(i � j)2g2(i, j) Contrast measures the difference between the highest and lowest values of a contiguous set

of pixels. Low contrast image features low spatial frequencies.

Variance �  �
Ng�1

i�0
�

Ng�1

j�0
(i � u)2g(i, j) A measure of heterogeneity. Variance increases when the gray level values differ from their

mean. 

Dissimilarity � �
N�1

i�0
�

N�1

j�0
g(i, j)�i � j� The dissimilarity is similar to Contrast. Instead of weighting the diagonal exponentially,

the dissimilarity weights increase linearly. 

Homogeneity �  �
Ng�1

i�0
�

Ng�1

j�0
�
1�(i

1
� j)2� . g(i, j) Measure image homogeneity. Sensitive to the presence of near diagonal elements in a

GLCM.

where Ng is the number of gray levels, entry (i, j) in the Gray Level Co-occurrence Matrix and

u � �
Ng�1

i�0
�

Ng�1

j�0
i.g(i, j) and �2 � �

Ng�1

i�0
�

Ng�1

j�0
(i � u)2g(i, j).
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the land-use categories. The main reason for applying the
B-distance for this study is the large dynamic range with no
saturation value like other separability measures such as the
Transformed Divergence or Jeffreys-Matusita distance (Mausel
et al., 1990). Another advantage of using the B-distance is that
the individual B-distance scores can be aggregated to identify
the texture parameters and metrics that contribute the most in
discrimination of the land-use classes. This algorithm is com-
monly used for band prioritization in hyperspectral image
analysis and is implemented in MULTISPEC.

The land-use classification was conducted using the
Fisher Linear Discriminant (FLD) algorithm with the metrics
and texture descriptors. FDL is a supervised classification
approach that projects the original hyper-dimensional dataset
to a lower dimensional space where the distance between
classes in the new space is maximized and the distance be-
tween members within each class is minimized (Klecka, 1980).
The classification is then performed in the one-dimensional
domain. This algorithm was chosen because of the large num-
ber and variability of texture and spatial measures and the lim-
ited number of training samples for each class (described in the
next section). The actual classification used the training areas
for calibration. Three classifications have been performed:
using the 22 spatial metrics, using the six texture parameters,
and using the combination of the two.

Urban Land-Use Characteristics
The investigations considered nine different urban land-use
categories. Given the extent of the study area, the definition
of the classes had to represent the whole land-use variability

within the Santa Barbara South Coast region. The nine
categories are described in Table 4. The table emphasizes the
number of training samples and test samples that were used
in the analysis, hence the separability assessment and the
classification. Visual examples of the spatial land-cover struc-
ture of the major urban land-use classes are presented in Fig-
ure 3. Most of the urbanized area is comprised of single unit
residential homes with different density and socioeconomic
structure. Population density measures that have been esti-
mated for each of the regions using U.S. Census data (Liu and
Clarke, 2002) were incorporated as additional indicators in
the interpretation analyses if the visual spatial pattern did not
resolve a clear distinction between low, medium, and high
density residential. 

Figure 3 emphasizes the specific differences in spatial
urban morphology between the different urban land-use cate-
gories. Important features are the sizes of buildings, their
shape, and their spatial configuration. For example, areas of
low, medium, and high-density residential land use represent a
spatial built up structure ranging from a detached irregular
structure to the regular high-density arrangement of buildings
of the typical American block pattern. Commercial/industrial
and institutional land uses indicate significantly larger build-
ings and a more aggregated spatial configuration. The spatial
structures are also reflected by the spatial heterogeneity of the
vegetated areas. The vegetation patches vary in terms of their
spatial extent and fragmentation. Vegetation represents a some-
what inverse pattern of the building structure. These variations
are important because they indicate that both the vegetation
and building spatial patterns contribute to the characterization
of urban morphology.
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TABLE 3. DESCRIPTION OF THE SPATIAL METRICS

Metric Description/Calculation Scheme Units Range

PLAND - Percentage of
landscape

PD - Patch density

AREA_MN - Mean
patch size

AREA_SD - Area
standard deviation

ED - Edge density

LPI - Largest patch
index

ENN_MN - Euclidian
mean nearest
neighbor distance

ENN_SD - Euclidian
nearest neighbor
distance standard
deviation

FRAC-AM - Area
weighted mean patch
fractal dimension

FRAC-SD - Fractal
dimension standard
deviation

COHESION

CONTAG - Contagion

Percent

Numbers per
100 ha

Hectares

Hectares

Meters per
hectare

Percent

Meters

Meters

None

None

Percent

Percent

0 � PLAND � 100 

PD � 1, no limit.

AREA_MN � 0, no limit.

AREA_SD � 0, no limit.

ED � 0, no limit.

0 � LPI � 100

ENN_MN 	 0, no limit.

ENN_SD 	 0, no limit.

1 � FRAC_AM � 2

FRAC_SD 	 0, no limit.

0 � COHESION � 100

0 � CONTAG � 100 

PLAND equals the sum of the areas (m2) of a specific land cover
class divided by total landscape area, multiplied by 100.

PD equals the number of patches of a specific land cover class
divided by total landscape area.

AREA_MN equals the average size of the patches of a land
cover class.

AREA_SD equals the standard deviation in size of the patches
of a land cover class.

ED equals the sum of the lengths (m) of all edge segments
involving a specific class, divided by the total landscape
area (m2) multiplied by 10000 (to convert to hectares).

LPI equals the area (m2) of the largest patch of the
corresponding class divided by total area covered by that
class (m2), multiplied by 100 (to convert to a percentage).

ENN_MN equals the distance (m) mean value over all patches
of a class to the nearest neighboring patch based on shortest
edge-to-edge distance from cell center to cell center.

ENN_SD equals the standard deviation in euclidian mean
nearest neighbor distance of land cover class.

Area weighted mean value of the fractal dimension values of all
patches of a land cover class, the fractal dimension of a patch
equals 2 times the logarithm of patch perimeter (m) divided
by the logarithm of patch area (m2); the perimeter is adjusted
to correct for the raster bias in perimeter.

FRAC_SD equals the standard deviation in fractal dimension of
land cover class.

Cohesion is proportional to the area-weighted mean perimeter-
area ratio divided by the area-weighted mean patch shape
index (i.e., standardized perimeter-area ratio).

CONTAG measures the overall probability that a cell of a patch
type is adjacent to cells of the same type.
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Figure 3 also highlights some of the inaccuracies in the
classification process. Confusion exists between buildings and
roads. However, given the accuracies in Table 1, the general
spatial landscape structures are clearly represented by the
classification result and were considered suitable for further
investigation.

The number of training and test areas used for the classi-
fication is presented in Table 4. The training areas were se-
lected from representative regions in each land-use category
through visual image interpretations and ground observations.
The training data were used for the separability analysis based
on B-distance and the calibration of the supervised classifica-
tion. The test regions were used to assess the accuracy of the
final classification. To provide a statistically rigorous and
robust evaluation of the mapping product, test regions were
randomly selected from all land-use regions and were inter-
preted or inspected on the ground. Additional samples of
recreation/open space and institutions were added so that
each class has a minimum of 20 test regions. 

Results and Discussion
Urban Land-Use Separability
The B-distance separability scores between individual land-
use classes are shown in Table 5. The scores are derived from
the training regions and all 29 texture and metric measure-
ments. The values range from 6.5 to 64.9, indicating that the
categories do separate. Some scores, however, seem compara-
tively low. There is some confusion between residential
classes, e.g., low versus medium density single unit and be-
tween medium/high density residential and multi-unit resi-
dential. These confusions were expected because all residen-
tial classes consist of similar land-cover types, e.g., buildings
and vegetation. High-density residential and commercial
classes show some degree of similarity. They are known to
have a similar degree of imperviousness and, if commercial

uses are combined with residential housing, the pattern is
expected to appear similar in most of the textures and metrics.
Institutions, multi-unit residential, and commercial/industrial
sometimes share a similar spatial pattern of large, compact
houses, resulting in comparatively low B-distance scores. The
land-use types dominated by vegetation also indicate a rela-
tively low separability, e.g., between agriculture, forest, and
low-density residential housing.

Assessment of Most Suitable Texture and Spatial Metrics
As discussed previously, the individual B-distance scores pre-
sented in Table 5 can be aggregated over all classes to identify
the combination of texture parameters and metrics that con-
tribute the most discrimination between different land-use
categories. The calculation was focused on a set of six mea-
surements of 29 texture/metrics overall. This “most suitable”
set of metric or texture parameters represents the set that pro-
vides either the best average or best minimum separability for
all classes. The analysis was done for two sets of land classes:
including all nine categories and for only the built up land-
use types (excluding agriculture and forest) to emphasize the
focus of this study on spatial urban morphology. To provide a
“suitability” score for each texture or metric, the top five rank-
ing sets of six measures (metric or texture) were calculated
and considered in the interpretation. The next ranked sets of
optimal texture/metric combinations only showed minor dif-
ferences in their determining B-distance scores compared to
the top ranked combination. The analysis required four calcu-
lations, given two sets of categories (all nine and just seven
built up) and consideration of the best minimum and average
separability for both of them. Each calculation provided the
five most suitable combinations of six metric/texture, i.e.,
each measure has a theoretical chance to be chosen a maxi-
mum of 20 times. The frequency of each individual texture or
metric appearing in this analysis is considered the suitability
score. The more often a metric/texture is determined to be
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TABLE 4. DEFINITION OF LAND-USE CLASSES

# of Training # of Test
Land Use Class Description and Characteristics Areas Areas

Low density single unit
residential

Medium density single
unit residential

High density single unit
residential

Multi unit residential

Commercial and
Industrial

Institution

Recreational and open
spaces

Agriculture and
rangeland

Forest and wetlands

Low density detached housing, high income areas with low population
density, large buildings with irregular spatial arrangement, large parcel size
with dominant vegetation land cover 

Medium density housing, areas with medium population density, average too
large residential buildings and some degree of distinct spatial arrangements
along roads, landscape dominated by vegetation cover

High density low income housing, small homogenous building units with
distinct regular spatial structure and small and fragmented intermediate
vegetation patches

Residential areas with multiple unit or multi-family housing and mixed
residential land uses including condos, apartment buildings etc., large
building units with regular shape and distinct spatial arrangement, large
intermediate vegetated areas

Large regular commercial and industrial building structures, sometimes in
combination residential housing, high degree of imperviousness and only
few small fragmented vegetation patches

Educational and research institutions, churches and other distinct religious
buildings, and hospitals, large spatially clumped building structures
surrounded by large vegetated areas

Parks, open urban space, vacant lots and other recreational facilities such as
golf courses, soccer and baseball fields etc., dominated by vegetation and
non-impervious cover types, sporadic isolated buildings 

Areas with intensive and extensive agriculture (field crops, orchards,
vineyards) and lifestock (cattle), dominated by vegetated surface types with
distinct spatial cultivation pattern 

Natural or quasi-natural, uncultivated areas including protected areas and
riparian zones, dominated by tree and natural vegetation with indistinct
spatial pattern

23

22

33

29

32

20

24

37

22

39

30

41

34

43

22

23

45

28
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ple, the percentage of area covered by vegetation (PLAND) re-
ceived a score of 16. These “most suitable” metric/texture
measures are most informative in differentiating the land-use
types within a region. In terms of vegetation land cover, patch
size (AREA_MN) and its standard deviation (AREA_SD) are con-
tributions, as well as COHESION, which describes the degree of
spatial clustering. The spatial building structure of the land-
use categories are most distinctively characterized by the av-
erage distance between the buildings (ENN_MN_U) and their
standard deviation (ENN_SD_U). In areas where buildings dis-
play similar pattern, the distance between two adjacent build-
ings (ENN_MN_U) tends to be regular and thus has a small stan-
dard deviation (ENN_SD_U). The percentage of built up land
(PLAND_U) and the largest patch index (LPI_U) describe the
concentration of built-up area in a land-use region. The spa-
tial fragmentation or heterogeneity of the buildings (ED_U)
provides further important information in discriminating
urban land use. CONTAGION is a measure of the heterogeneity
of the overall urban landscape and appears as a suitable met-
ric also. HOMOGENEITY is considered an important texture
parameter because it contributes to the separation of all cate-
gories. It also has high suitability for the minimum separabil-
ity of the built-up land use.

In general, the spatial metrics and texture descriptors that
contribute best to the average separability provide a good
overall contribution in discriminating all land-use types. In
contrast, the minimum separability is associated with the
classes with low separation, and Figure 4 highlights the bands
that provide the largest amount of information for that pur-
pose. Given this, it is obvious that the vegetation related met-
rics have their highest contribution for best average separabil-
ity. The metrics describing housing structure and texture
parameters appear more often for best minimum separability.
Accordingly, the spatial structure and configuration of the
vegetation patches are the most important and distinct level of
information for general urban land-use discrimination. Al-
though this result is evident, it might be somewhat biased by
the fact that vegetation has a higher accuracy in the land-
cover classification. Inaccuracies in the mapped building class
might be reflected in metrics in a way that distorts distinct
differences between the land-use types. Figure 4 further indi-
cates that the spatial metrics are the major contributor for
land-use separability. However, the texture measurements do
appear to have an effect and add an additional level of infor-
mation. It should be noted that the texture measurements
were calculated using the near-infrared band of Ikonos only. A
multi-band texture analysis with different lag-distances might
improve the separability. The results in Figure 4 also empha-
size that spatial structure and configuration of the land-cover
classes provide more distinct information than the simple
area coverage measure (PLAND and PLAND_U) alone. Simple
area measures are quite often used as a discriminator for
urban land-use characterization. In fact, a detailed classifica-
tion of urban land use requires the information about the spa-
tial land-cover structure and related high-spatial resolution
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TABLE 5. B-DISTANCE SEPARABILITY MATRIX BETWEEN THE INDIVIDUAL LAND-USE CLASSES (VALUES LESS THAN 15 ARE HIGHLIGHTED IN BOLD)

Class 1: low_d 2: med_d 3: high_d 4: multi 5: institut 6: recreat 7: com 8: agri 9: forest

1: low_dens_res 12.3 25.4 19.7 22.1 21.4 27.8 14.3 20.4
2: med_dens_res 15.3 13.3 18.7 31.6 18.6 24.1 36.9
3: high_dens_res 6.5 12.3 50.9 9.2 38.5 64.6
4: multi_unit_res 8.8 27.4 6.7 23.4 53.9
5: institution 22.4 9.1 22.1 44.2
6: recreation_open 24.6 7.8 13.9
7: commerc_ind 24.4 48.6
8: agric_range 7.2
9: forest_wetland

Figure 3. Examples of spatial land-cover configuration for
major urban land-use categories shown as an Ikonos false-
color composite, as an Ikonos classification result with
buildings in red and vegetation in green, and as digital vec-
tor data. (A color version of this figure can be found at
www.asprs.org.)

most suitable, the higher the contribution in separation of the
urban land-use classes or the spatial land-cover pattern that
characterizes them.

The results of the assessment of most suitable texture and
spatial measurements are presented in Figure 4. The graph in-
dicates some measurements with very high scores. For exam-

03-915.qxd  8/7/03  5:29 PM  Page 997



data that represents these surface properties with sufficient
accuracy.
Land-Use Classification
The final step of the study was to classify all 1700 regions into
urban land-use categories based on spatial metrics, texture pa-
rameters, and a combination of the two. The error matrix of the
classification using all measures derived from the test areas is
shown in Table 6. An overall accuracy of 76.4 percent and a
Kappa coefficient of 73.4 percent indicate that the overall clas-
sification is good. Classes with a producer’s accuracy above 85
percent are low density residential and institutions. Most cate-
gories have a producer’s accuracy between 73 and 78 percent
with agriculture and rangeland showing the lowest value of
62.2 percent. In terms of user’s accuracy, commercial/industrial
and low density residential seem to be most accurately mapped

while medium density residential, recreation/open space, and
multi-unit residential are overmapped. The overall accuracy is
relatively low. However, it must be stressed that the classifica-
tion performed in this study is based on metrics and texture in-
formation only. Classes such us agriculture and forest (which
happen to have low accuracy) can usually be easily differenti-
ated using the spectral information of multiple bands. If color
and tone information is incorporated, the classification accu-
racy is expected to improve further.

The confusion between different land-use classes echoes
the separability matrix presented in Table 5. Most misclassifi-
cations of residential land uses happen among residential
classes, except that some confusion exists between multi-unit
residential and commercial/industrial use. Low density mixes
with medium density residential and high density residential
confuses with medium density and multi-unit residential. The
other group of major confusion appears for the land uses that
are dominated by vegetation, i.e., between recreation/open
space, agriculture, and forest. One possible reason for the con-
fusion between different land uses is probably because of the
large size of the study area. The area consists of three cities
and unincorporated urban areas and thus includes a wide
variety of different land-use structures. Moreover, some areas
are characterized by distinct topographic variations that dis-
tort the spatial land-cover characteristics. Consequently, the
metric/texture variability within the categories is fairly high,
and causes some inaccuracies and confusion between the
classes that might be distinct if only one city were investi-
gated. Furthermore, the inaccuracies in the land-cover classifi-
cation certainly propagate into the land-use classification and
represent another source of error. Another more general issue
that relates to the accuracy of the classification is the problem
of representing a continuous variable in a categorized manner.
For example, the boundaries between different densities of
residential use are indistinct and cannot be perfectly described
by a categorical variable (Knox, 1994). Spatial metrics and tex-
ture measurements describe the continuous nature of residen-
tial areas. This is reflected by the classification result where
confusion happens among different types of residential land
use. On the other hand, the continuous nature of texture para-
meters and spatial metrics may allow the description of the
continuity of residential morphology and socio-economic and
demographic characteristics. This offers a new avenue in de-
scribing and representing spatial urban form.

Figure 5 compares the classifications results using the
spatial metrics, the texture parameters, and both measures.
It shows that the combined application of both metrics and
texture provides the highest classification. The spatial metrics,
however, represent the most amount of information to sep-
arate between the land-use classes, with the KAPPA coefficient
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Figure 4. Suitability of each texture parameter and spatial
metric in discriminating urban land-use categories. The dif-
ferent gray values correspond to the calculations consider-
ing the best minimum and best average separability for all
land-use classes, and for just the built-up land-use classes
(excluding agriculture and vegetation). The first 22 metrics
on the x-axis show the spatial metrics. The ones indicated
with *_U refer to the land-cover class “buildings.” The
other spatial metrics corresponds to the class vegetation;
the contagion metric relates to the whole landscape. The
last seven bands on the x-axis represent the texture
parameters.

TABLE 6. ACCURACY ASSESSMENT OF THE FINAL LAND-USE MAP USING TEST AREAS

Producer # of low_d Med_d high_d multi institut recreat com Agri forest
Class Accuracy Samples 1 2 3 4 5 6 7 8 9

Low_dens_res 1 87.2 39 34 4 — — — — — — 1
Med_dens_res 2 76.7 30 3 23 — 4 — — — — —
High_dens_res 3 78.0 41 — 3 32 5 — — 1 — —
Multi_unit_res 4 76.5 34 — 2 4 26 2 — — — —
Institution 5 86.4 22 — — — 2 19 — 1 — —
Recreation_open 6 73.9 23 1 — — — — 17 1 4 —
Commerc_ind 7 74.4 43 — 1 1 5 4 — 32 — —
Agri_rangl 8 62.2 45 1 1 — — 2 7 — 28 6
Forest_wetland 9 78.6 28 — — — — — 2 — 4 22

Total 305 39 34 37 42 27 26 35 36 29

User Accuracy 87.2 67.6 86.5 61.9 70.4 65.4 91.4 77.8 75.9

Overall Accuracy (250�332) � 76.4% Kappa � 73.4%
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improving from 45.4 percent for texture-based classification,
63.7 percent for metric-based classification, and 73.4 percent
for classification using metrics and texture. This result reflects
the hierarchy of image interpretation elements (Figure 1), with
the metrics providing a more complex level of information
about size, shape, and pattern of land-cover elements. The su-
perior performance of the metrics is especially obvious for the
built-up categories (except for high-density residential) where
the texture parameters add only minor additional information.
For the class agriculture and rangeland, the texture parameters
show a better accuracy than do metrics. This is related to the
simple land-cover classification scheme used for the metric cal-
culations that only considered buildings and green vegetation.
Typical agricultural land-use patterns are not well reflected
in this scheme, and the texture better represents this spatial
feature of the landscape. This emphasizes that, although the
texture parameters alone only provide an insufficient overall
classification accuracy of about 51 percent, they add an impor-
tant level of information that is not captured by the metrics.

Despite the described inaccuracies, the results of the
land-use classification from the spatial metrics and the tex-
ture parameters are certainly encouraging and show that it is

possible to capture several high-order interpretation elements
known from visual image analysis (Figure 1) within a digital
environment. The resulting final land-use map is presented
in Figure 6. The map clearly represents forests and wetlands
usually appearing as linear features of riparian areas. The
downtown area of Santa Barbara is characterized by commer-
cial use, which includes mixed commercial/residential uses.
The closest surrounding ring indicates multi-unit residential
and the next ring represents lower income areas of high density
residential. Following this concentric concept, medium den-
sity residential builds the next ring and then high-income low
density residential in the areas of Hope Ranch and Montecito
that build the intermediate areas to the other urban centers of
Goleta and Carpinteria. Goleta is a subsidiary center of Santa
Barbara. This area is dominated by high-density residential
areas that are clustered around the downtown core and other
commercial areas. Agricultural areas are located near the cities
of Goleta and Carpinteria. The major application of this land-
use map is the incorporation into investigations of the UCIME
project and related efforts in studying the spatial urban struc-
ture of the region and the integrated exploration of spatial
planning support systems.
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Figure 5. Comparison of the classification results (producer and user accuracy) using the spatial metrics,
the texture parameters, and the combination of the two. The accuracy values for the classification using
both metrics and texture correspond to that in Table 6.

Figure 6. Final land-use map for the Santa Barbara South Coast urban area. (A color version of this figure can
be found at www.asprs.org.)
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Conclusions
In this study, we have examined the potential of using an
object-oriented method to extract detailed urban land-use in-
formation from Ikonos imagery. An object-oriented approach
was first applied to classify the land cover in the study area
into three categories: building, vegetation, and the rest. Geo-
metric information was then obtained from an additional
source to aggregate land cover into land-use regions. Spatial
metrics and image texture were calculated for each land-use
region to describe its spatial characteristics. The Fisher linear
discriminator was applied to classify the regions into nine
land-use categories using the spatial metrics and texture mea-
surements. The separability of different land uses was also
examined, and the utility of each measurement has been eval-
uated and assessed. 

Twenty-two spatial metrics and seven texture measure-
ments were examined in the study. The results show that both
spatial metrics and image texture contribute to the differentia-
tion of nine urban land-use categories in the study area. For
spatial metrics, metrics describing the spatial characteristics
of vegetation patches seem to be most informative. Area cov-
erage, the size and standard deviation (Mean patch size and
standard deviation) as well as the spatial aggregation of the in-
dividual vegetation patches (Cohesion) provide most land-use
discrimination. Building configuration is best characterized
by area coverage, the regularity of the spatial arrangement
(Nearest neighbor metrics), the dominance of one large build-
ing structure (Largest patch index), and the spatial hetero-
geneity of the individual building objects (Edge density).
CONTAGION, as a measure of the overall spatial heterogeneity
of a land-use region, provides another important land-use
discriminator. The homogeneity has been identified as the
most suitable texture measurement that makes an additional
contribution to the differentiation of urban land uses. 

The overall accuracy of land-use classification is 76.4 per-
cent. This result is encouraging considering the level of classi-
fication detail and the large size of the study area. Spatial met-
rics contribute the most information to image classification,
especially for separating built-up categories. The texture para-
meters alone do not result in sufficient classification accuracy,
but they provide additional discriminating information that is
not captured by spatial metrics. Most confusion in the classifi-
cation appeared among different residential land-use types, and
between the vegetation dominated classes such as recreation/
open space, agriculture/rangeland, and forest/wetland. In gen-
eral, the proposed approach can potentially provide a quantita-
tive and consistent framework to identify urban land use struc-
tures. Considering the traditional air photointerpretation keys
in identifying urban land-use categories (Bowden et al., 1975;
Haack et al., 1997), this study indeed provides a bridge between
the traditional approaches of visual image interpretation and
the analysis of high-spatial-resolution satellite data. The spatial
metrics and texture are able to represent higher-order image in-
terpretation elements and capture the most important spatial
characteristics that determine urban land-use categories. The
quantitative nature of the metrics and textures make them com-
prehensive measurements to describe spatial urban morphol-
ogy and structure with a potential for automating the process of
identification and mapping of urban land-use classes. Further
research should build on the results presented here and espe-
cially focus on the exploration of a more continuous representa-
tion of urban land-use configuration and its relationship to
socio-economic and demographic characteristics, or environ-
mental indicators. A general constraint of the study is the use of
air-photo-derived land-use regions. The repeatable and trans-
parent nature of the approach would be significantly improved
if more automated land-use zone derivation algorithms would
be used, an issue that will be addressed in further research.
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