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Abstract: In optical tomography, there exist certain spatial frequency
components that cannot be measured due to the limited projection angles
imposed by the numerical aperture of objective lenses. This limitation,
often called as the missing cone problem, causes the under-estimation of
refractive index (RI) values in tomograms and results in severe elongations
of RI distributions along the optical axis. To address this missing cone
problem, several iterative reconstruction algorithms have been introduced
exploiting prior knowledge such as positivity in RI differences or edges of
samples. In this paper, various existing iterative reconstruction algorithms
are systematically compared for mitigating the missing cone problem in
optical diffraction tomography. In particular, three representative regu-
larization schemes, edge preserving, total variation regularization, and
the Gerchberg-Papoulis algorithm, were numerically and experimentally
evaluated using spherical beads as well as real biological samples; human
red blood cells and hepatocyte cells. Our work will provide important
guidelines for choosing the appropriate regularization in ODT.
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OCIS codes: (090.2880) Holographic interferometry; (100.6950) Tomographic image process-
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1. Introduction

Measurements of refractive index (RI) provide a means to non-invasively and quantitatively
investigate the morphological and chemical information of a sample [1,2], including structures
of cells and tissues [3–6], absorptive structures [7–9], biomechanical properties of cell mem-
brane cortex [10–12], dry mass of cells [13, 14], and biochemical information about specific
molecules [15–17]. Due to its non-invasiveness and label-free imaging capability, 3-D RI to-
mography technique has rapidly grown and been actively utilized for the study of biophysics,
cell biology, hematology, microbiology, and neuroscience.

In order to experimentally measure 3-D RI distributions of microscopic objects, several quan-
titative phase imaging (QPI) or digital holographic microscopy techniques have been devel-
oped [18–40]. In general, multiple 2-D optical field images of a sample are obtained with the
modulation of illumination angle or sample orientation, from which the reconstruction of 3-D
RI maps of a sample is performed via tomography algorithms. Experimental schemes include
the rotation of a sample [18,19], the tilting of illumination beams [20–23], the rotation method
which rotates the coaxially lined illumination laser source and detector [41], the scanning of
illumination wavelengths [24–26], and the axial scanning of a sample illuminated with poly-
chromatic light [27–29].

From multiple 2-D holograms obtained with various illumination angles, a 3-D tomogram
is reconstructed either by the projection algorithm or the diffraction algorithm. The diffraction
algorithm considers the effect of light diffraction whereas the projection algorithm assumes that
the illumination beam propagates in a straight path integrating RI of a sample [21, 22, 42, 43].
Each measured 2-D hologram with various illumination angles is mapped in Fourier space as a
plane surface (projection algorithm) or a 2-D hemispheric surface or Ewald sphere (diffraction
algorithm) object function distribution, according to the used reconstruction algorithm. Then,
the inverse 3-D Fourier transformation of the objective function provides a 3-D RI tomogram
of the sample.

Importantly, regardless of experimental schemes and reconstruction algorithms, there ex-
ists missing information in the 3-D Fourier spectrum for both the projection and diffraction
algorithms due to the limited angle of acceptance of the imaging system determined by the nu-
merical aperture (NA) of an objective lens. Even with a high-NA objective lens, only fraction
of diffracted light from a sample can be utilized for the tomographic reconstruction, causing
so-called the missing cone problem. The missing cone problem results in the underestimated
RI values in reconstructed tomograms and the elongation of the reconstructed shape of a sample
along the optical axis [40, 43].

The missing cone (or data) problem is not unique in RI tomography, but has been observed
in other imaging modalities such as X-ray computed tomography (CT), electron microscopy
(EM), and magnetic resonance imaging (MRI). Addressing the missing cone problem is one of
the major research thrusts in these fields [44, 45]. A general approach to address this missing
cone problem is to use an iterative algorithm by incorporating a prior information. Gerchberg-
Papoulis (GP) algorithm [46, 47] imposes a simple non-negativity constraint to alleviate the
under-estimation of RI values. If an unknown image belongs to a function class that consists
of piecewise smooth regions separated by sharp edges, edge preserving (EP) regularization can
also be employed so that it preserves edges but smooth out noise [48, 49]. A prior knowledge
about narrow edges tends to reduce the elongation of a reconstructed image along the optical
axis caused by the missing cone problem. Charbonnier et al. proposed a non-convex EP regu-
larization using the half-quadratic regularization technique [48]. Delaney et al. further extended
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it to the limited angle tomography [49]. Among various EP regularizations, total variation (TV)
regularization is one of the most frequently used regularization methods in medical imaging
fields such as the compressed sensing reconstruction in MRI [45]. TV regularization is similar
to the EP regularization except that TV regularization uses the l1 norm of the gradient of an
image to convexify the problem.

Even the missing cone (data) problem has been extensively addressed in the fields of X-ray
CT, MRI, and EM, this issue has not been fully explored in optical RI tomography. For exam-
ple, TV was theoretically studied in the work by Candes et al, however, it is for random Fourier
samples, and the sampling pattern for our ODT problem does not satisfy the RIP conditions
in the work [50] which means that extensive verifications are strongly required prior to utilize
the algorithm for ODT. Currently, only a few sets of approaches have adapted a specific regu-
larization method in constructing RI tomograms. Sung et al. proposed a regularized recovery
scheme for 3-D optical diffraction tomography (ODT) using the non-negativity constraint and
EP regularization [40, 51]. TV regularization has been applied to diffraction tomography [52];
a gradient descent method combined with data consistency step was used for the tomographic
reconstruction from limited angle data. However, in spite of the importance and implication of
the missing problem in RI tomographic reconstruction, a comparative study of the performance
of existing regularized inversion algorithms to address the missing cone problem has not been
performed in ODT. Here we perform a systematic comparative study of various reconstruc-
tion algorithms in the optical RI tomography using both numerical phantoms and experimental
data. We implemented and compared three representative algorithms: (i) globally convergent
EP algorithm [49] under the first-order Rytov approximation; (ii) TV regularization combined
with non-negativity constraint using split Bregman iteration [53, 54]; and (iii) GP algorithm.
We discuss the pros and cons of the regularized methods in measuring 3-D RI distributions of
microscopic samples.

2. Theory

The principles and details of ODT are well explained in [55]. Therefore, we briefly illustrate
the major ideas without extensive descriptions.

2.1. Optical diffraction tomography

In ODT, the fundamental forward equation is given by the scalar Helmholtz equation:

∇2U(r)+ k2U(r) =−4π f (r)U(r), (1)

where k = 2πn0
λ , λ is the incident light wavelength in free space, U(r) is a scalar electric field

distribution and

f (r) =
k2

4π

(
n(r)2

n2
0

−1

)
(2)

denotes the scattering potential, n(r) is the RI distribution of a sample and n0 is the RI of a
surrounding homogeneous medium. Suppose that the total electrical distribution is given by
U(r) = U0(r) +Us(r), where U0(r) is the electric field from the homogeneous surrounding
medium and Us(r) is the field scattered from the sample. Then, under the Born approximation,
the scattered field (UB

s (r)) can be represented as

UB
s (r) =

∫
V

f (r′)U0(r′)G(r-r′)dr′, (3)
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where G(r-r′) = eik|r-r′ |
|r-r′| is the Green’s function of 3-D Helmholtz’ equation. For the case of the

Rytov approximation, the perturbation is modeled as a phase variation: U(r) = U0(r)eUR
s (r),

which results in

UR
s (r) =

1
U0(r)

∫
V

f (r′)U0(r′)G(r-r′)dr′. (4)

2.2. Problem formulation

In this paper, our analysis is based on the first order Rytov approximation. Specifically, we as-

sume that U0(r) is a plane wave, U (m)
0 (r) = eikm·r, where km = ksm is a real-valued wavenumber

determined by the directional unit vector for the m-th illumination sm = (s(m)
x ,s(m)

y ,s(m)
z ). Using

the Fourier diffraction theorem derived in [56], the measurement of the ODT from the m-th
illumination can be written by

gm =
ks(m)

z

2πi

∫∫ +∞

−∞
U (m)

0 (r) ln
U(r)

U (m)
0 (r)

e−i(ks(m)
x x+ks(m)

y y)dxdy, (5)

under the assumption that U(r) and U (m)
0 (r) are measured at z = 0 plane. Then, the correspond-

ing forward operator Am f corresponds to the 3-D Fourier transform of a scattering potential at
(k-km) :

Am f =
∫

V
f (r′)e−i(k-km)·r′dr′. (6)

Note that Eq. (5) can be calculated using the 2-D Fourier transform after measuring U(r) and

U (m)
0 (r). Obtaining all 3-D k-space data defined by Eq. (5) for various illumination angles sm,

we can fill in the 3-D k-space of the scattering potential. The corresponding data fidelity term
can then be defined as follows

||A f −g||22 =
M

∑
m=1

||Am f −gm||22, (7)

where A=
[
AT

1 AT
2 · · · AT

M

]T
and

[
gT

1 gT
2 · · · gT

M

]T
. By adding the regularization and

the data fidelity term, we can define the cost function;

J( f ) = ||A f −g||22 +αR( f ), (8)

where R is the regularization function and α is the regularization parameter.

2.3. Iterative reconstruction methods

In this section, we review two typical iterative reconstruction methods that have been used in
this study.

2.3.1. Convergent EP regularization with the non-negativity constraint

The cost function for the EP regularization can be defined as following,

J( f ) = ||A f −g||22 +α ∑
n

φ(D( f )n)+β ||P f ||22, (9)

where φ is the potential function that works as an EP regularization, D( f ) =√
(∇x f )2 +(∇y f )2 +(∇z f )2 and P is the diagonal operator that only preserves the positive
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elements of f . α and β are regularization parameters corresponding to the EP regulariza-
tion and non-negativity constrain, respectively. Here, φ is determined by the prior knowledge
about edges satisfying conditions that for σ(t) = φ(

√
t), σ : [0,∞) → [0,∞), and is mod-

eled as continuously twice differentiable and strictly concave, with σ(0) = 0,σ ′(0) = 1 and
0 < σ ′(t)≤ 1 [49]. We used φ(t) = T 2 ln(1+ t/T ) [49] satisfying conditions. T is the parame-
ter of σ(t) and it needs to be selected depending on how sharply we want to select edges. Since
Eq. (9) is not convex, it is hard to minimize. Therefore, we use the half quadratic regulariza-
tion [49]. In particular, by plugging an auxiliary variable b, we can rewrite the equation Eq. (9)
as [48, 49]

J( f ) = inf
b

J∗( f ,b)

= inf
b
||A f −g||22 +α ∑

n
(bn)[(∇x f )2

n +(∇y f )2
n +(∇z f )2

n +ψ(bn)]+β ||P f ||22. (10)

where J∗( f ) is half-quadratic since it is quadratic in f for given b, and also quadratic in b for
given f . Therefore we can find the minima of J( f ) by alternatingly minimizing with respect to
b and f . Here, bk+1 works as an edge map which can be calculated in the closed form using
bk+1 = σ ′(D( f k)), f k+1 can be obtained by finding the solution of the following equation,

(AHA+α∇T
x Bk+1∇x +α∇T

y Bk+1∇y +α∇T
z Bk+1∇z +βPk+1) f k+1 = AHg. (11)

where Bk+1 = diag(bk+1) and Pk+1 = diag(pk+1). In this paper, we used the conjugate gradient
method to find the solution of Eq. (11). It was shown in [49] that f k+1 results in convergent
subsequences and all their limits are stationary points of Eq. (9).

2.3.2. TV regularization with non-negativity constraint

Consider the constrained minimization problem :

min
f

E( f ) such that A f = g, (12)

where E( f ) is a regularization term related to TV regularization and non-negativity con-
straint. In TV approach, E( f ) = ∑n D( f ) + I( f ≥ 0) where D( f ) is the TV term D( f ) =√

(∇x f )2 +(∇y f )2 +(∇z f )2 and I is the indicator function to impose the non-negativity con-
straint. Since E( f ) is not differentiable, it is difficult to minimize Eq. (12). Instead of mini-
mizing the unconstrained cost function Eq. (12), we can modify the problem using Bregman
distance and Bregman iteration [57] :

f k+1 = min
f

E( f )−< pk, f − f k >+
μ
2
||A f −g||22,

pk+1 = pk −μAH(A f k+1 −g),
(13)

By plugging the expression of E( f ), we can get

f k+1 = min
f

∑
n

D( f )+ I( f ≥ 0)+
μ
2
||A f −gk||22, (14)

gk+1 = gk +g−A f k+1. (15)

The main technical difficulty lies in solving Eq. (14), which can be addressed using variable
splitting. The details can be found in Appendix A.
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3. Method

3.1. Experimental setup

Fused silica microsphere (44054, Sigma-Aldrich Inc., USA), red blood cells (RBCs), and hep-
atocyte cells (Huh-7 cell line, Apath, Brooklyn, NY, USA) were used as experimental samples.
All samples were prepared by following the standard protocols [58]. The samples were diluted
in Dulbeccos buffered saline (DPBS, RI = 1.337 at 532 nm [59]) and sandwiched between two
coverslips before loaded on a microscope (IX-73, Olympus Inc., Japan) which was modified
for ODT.

For measuring the 3-D RI tomograms of samples, we implemented tomographic phase mi-
croscopy (TPM) based on a Mach-Zehnder interferometer using a laser source (532 nm, 50 mW,
Cobolt, Solna, Sweden)(see [9, 43] for details). We used a high-NA objective lens for the illu-
mination (UPLFLN 60x, NA= 0.9 Olympus Inc., Japan) and for the detection (UPLSAPO 60x,
NA = 1.42, oil immersion). Holograms were recorded using a CMOS camera (Neo sCMOS,
ANDOR Inc., Northern Ireland, UK). More than 300 holograms with different illumination an-
gles were captured, from which a 3-D RI tomogram was retrieved [60]. The illumination angle
was scanned in a spiral pattern using a two-axis galvanometric mirror (GVS012/M, Thorlabs,
USA). Because the NA of the condenser lens is strongly related to the solid angle of the missing
cone, algorithms may show different performances depending on the NA of the used condenser
lens. Therefore, we utilized both low- and high-NA cases by controlling the maximum voltage
to the galvanometric mirror, which results in the effective NA of NAe f f = 0.5 and 0.8, whose
respective theoretical resolutions are 0.14 μm and 0.121 μm, laterally; and 0.525 μm and 0.46
μm, axially, and experimental resolutions are 0.19 μm and 0.14 μm, laterally; and 2.944 μm
and 2.706 μm, axially. Here, the axial resolution depends on the lateral structure of the sample

Fig. 1. k-space sampling trajectories. (a) Spiral scanning trajectories in the k-space. Red and
green dots show the low and high NAe f f cases for 300 illumination angles, respectively.
(b-c) Reconstructed 3-D k-space scattering potentials for (b) low (0.5) and (c) high (0.8)
NAe f f , respectively.
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due to the gourd bottle shaped ky-kz cross section. Figure 1(a) shows the scanning trajecto-
ries for the low (red) and high (green) NAe f f cases, respectively; and Figs. 1(b)–1(c) show the
corresponding 3-D k-space sampling trajectories for the illumination beam. To compare numer-
ical and experimental results, microsphere phantoms with the same RI and size of fused silica
microsphere were created, and simulated using the experimentally measured angular scanning
trajectories. Biological samples were scanned using the NAe f f of 0.8 to achieve the higher
resolution.

3.2. Reconstruction setup

We performed reconstruction using custom-made scripts in MatLab R2014a (MathWorks Inc.,
Natick, MA, USA) on a desktop computer (Intel Core i7-4770 CPU, 3.4 GHz, 12 GB RAM). To
accelerate the ODT reconstruction speed, we utilized a graphics processing unit (GPU, Geforce
GTX 660Ti, nVidia Corp., Santa Clara, CA, USA); custom-made functions based on the Com-
pute Unified Device Architecture (CUDA) were used. Table 1 provides the information about
the data size, parameters, and the computation time. Parameters were manually selected by tri-
als and errors. The computation time depends on the number of interactions. In this study, the
number of total iterations were 20 for the GP algorithm, and 100 for EP regularization (inner
iteration : 10, outer iteration : 10) and the TV regularization (inner iteration : 20, outer iteration
: 5). For a quantitative evaluation, we calculated the mean square error (MSE) of reconstruction
images, defined as

MSE(xrecon) =
||xtrue − xrecon||2

||xtrue||2 . (16)

Table 1. Description of data, used parameters, and the computation time
Data (single type)

NAe f f
GP EP TV

Size(x×y×z) Time (s) α β T Time (s) μ α β Time (s)
phantom NAe f f = 0.5 15.80 1 1 0.2 170.79 2 2 0.1 408.60

343×320×170 NAe f f = 0.8 16.88 1 1 0.12 170.43 0.6 0.6 0.1 407.38
microsphere NAe f f = 0.5 16.47 4 5 0.1 170.37 3 3 0.5 408.29

343×320×170 NAe f f = 0.8 17.83 2 3 0.3 169.48 0.5 0.5 0.5 409.15
RBC

NAe f f = 0.8 12.93 1 1 0.2 145.59 1 1 10 364.77
256×256×256

hepatocyte
NAe f f = 0.8 22.27 1.5 1 0.15 221.60 1 1 1 506.65

374×350×170
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4. Results

4.1. Numerical simulation

We first performed numerical simulations with a phantom, a microsphere with a homogeneous
RI of 1.44 and the diameter of 5 μm. We compared various reconstruction algorithms under
two cases, NAe f f = 0.5 and 0.8, respectively. Figures 2(a)–2(d) show cross-sectional slices of
the RI tomograms reconstructed with each algorithm (FT stands for the inverse 3-D Fourier
transform of 3-D k-space filled according to diffraction algorithm with zero-padding). In the
case of GP, the shape of a reconstructed RI tomogram along the z-axis is not confined even for
the high NAe f f . For a more precise analysis, we considered the histogram of RI values and the
RI profiles along the optical axis as shown in Figs. 2(e)–2(h). Although all three reconstruction
algorithms show the increase in the RI value, the most frequent RI values are different and were
obtained as 1.416 (GP), 1.43 (EP) and 1.44 (TV) as in Fig. 2(e) for the case of NAe f f = 0.5.
In the case of NAe f f = 0.8, all three reconstruction algorithms generate RI tomograms with
the RI peaks near 1.44 as in Fig. 2(f). While GP shows the increased RI values compared to
FT, the distributions of reconstructed RI values are in broad ranges even for the case with high
NAe f f . In contrast, TV shows the narrowest RI distributions. EP also shows more concentrated
distributions compared to GP. Figures 2(g)–2(h) show the RI profiles along the optical axis.
The width of RI profiles are 8.52 μm (GP), 6.80 μm (EP) and 6.49 μm (TV), respectively,
as in Fig. 2(g) for the case of NAe f f = 0.5. In case of NAe f f = 0.8, the improved reduction of
elongations are observed along the optical axis converging to the original value of RI (gold line)
as in Fig. 2(h). GP shows the underestimation at the rim of the phantom. However, EP and TV
show piecewise constant regions since they suppress noise preserving edges at the same time.
Although EP results in the lowest MSE for the case of the high NAe f f , the results are dependent
upon the NAe f f , which is not the case of TV.

As a reference, we performed the simulation in case of noisy data in two cases (SNR = 5dB
and 10dB, respectively). They are attached as the supplementary figure in Appendix B.

4.2. Fused silica microsphere

The experimental data of a fused silica microsphere were measured under two different NAe f f s,
NAe f f = 0.5 and 0.8, respectively. Different slice images (xy and yz slices) of reconstructed RI
tomograms for each algorithm are shown in Figs. 3(a-d). Reconstruction results using GP show
the elongation of RI tomograms along the optical axis. Therefore, even though the reconstructed
RI tomogram is reliable at the z = 0 plane, it shows defocused structures at high z planes. In
particular, in Fig. 3(b), coherent optical noises are noticeable, which may cause difficulties in
observing the intra-structures of a sample. The peak points of the histogram of RI distributions
are 1.41 (GP), 1.412 (EP), and 1.44 (TV) as in Fig. 3(e) for the case of NAe f f = 0.5. With
NAe f f = 0.8, RI values increase forming peak points at 1.438 (GP), 1.436 (EP) and 1.442 (TV)
as shown in Fig. 3(f). Overall, reconstructed RI values are lower compared to the previous
numerical simulation. Also, GP and EP do not converge even for the high NAe f f case; in the
case of GP, the distributions of RI tomograms become wider with the increase of the NAe f f .
We also compared the width of reconstructed RI profiles along the optical axis in Fig. 3(g) and
3(h). As the NAe f f increases, the width changes from 8.62 μm to 6.20 μm (GP), from 8.42 μm
to 5.48 μm (EP), and from 6.29 μm to 4.97 μm (TV), respectively. As shown in the numerical
simulation, EP and TV regularization show less fluctuations in the RI tomograms compared to
GP. TV shows the most piecewise constant regions and the lowest dependency on the NAe f f .
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Fig. 2. Numerical simulation results of a 5-μm-diameter fused silica bead phantom : 3-D RI
tomograms numerically reconstructed by (a) FT, (b) GP, (c) EP, and (d) TV regularizations.
(a-d); left column: z = 0 slice, right column: x = 0 slice, upper row: NAe f f = 0.5, lower
row: NAe f f = 0.8, and the boundary of ROI is shown in white line. (e-f) Histograms of RI
values in ROI divided by the total number of pixels in the ROI. (g-h) RI profiles along the
z-axis. For figures (e-h), NAe f f = 0.5 [(e) and (g)] and NAe f f = 0.8 [(f) and (h)] were used.
All scale bars are 2 μm.
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Fig. 3. Experimental results of a 5-μm-diameter fused silica bead : 3-D RI tomograms
numerically reconstructed by (a) FT, (b) GP, (c) EP, and (d) TV regularizations. (a-d);
left column: z = 0 slice, right column: x = 0 slice, upper row: NAe f f = 0.5, lower row:
NAe f f = 0.8, and the boundary of ROI is shown in white line. (e-f) Histograms of RI
values in ROI divided by the total number of pixels in the ROI. (g-h) RI profiles along the
z-axis. For figures (e-h), NAe f f = 0.5 [(e) and (g)] and NAe f f = 0.8 [(f) and (h)] were used.
All scale bars are 2 μm.
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4.3. Biological samples:RBCs and hepatocytes

Thanks to its capability of 3-D stainless visualization, the ODT has been utilized for imaging
3-D structures of live biological cells, and quantification of the physical characteristics of the
individual cells such as shape, volume, and mass [1, 2, 61]. Therefore, in this subsection, we
compared the algorithms using real biological cells: RBCs and hepatocytes. Figures 4 and 5
illustrate the reconstruction results. RBCs should have narrow RI distribution, since RBC does
not have subcellular structures. However, the central dimple region of a RBC reconstruction is
thinner due to the loss of information at the missing cone, so the reconstructed distribution is
not uniform [40]. This problem can be remedied with a higher NAe f f such as a water-immersed
objective lens [62].

For real biological samples, the noise-amplifying drawbacks of the GP algorithm can be more
significant due to movements, fluctuations, and floating debris of living cells as in Figs. 4(b) and
5(b). The EP shows the capacity of denoising and preserving the texture at the same time, as
observed in the texture of RBC in Fig. 4(c) and the cytoplasm region of hepatocyte in Fig. 5(c).
TV regularized reconstruction shows the highest RI value similar to the previous microsphere
case. However, in Fig. 4(d) and Fig. 5(d), TV results show the cartoon-like artifacts. Cartoon-
like artifacts appear when we impose the total variation regularization on the cost function too
much. It means that an image becomes cartoon-like with sharp jumps between nearly piecewise
constant regions which appears in Fig. 4(d) [63]. Especially in case of Fig. 5(d), we can see the
stair-shaped artifact which appears in the cytoplasm region of the hepatocyte. Therefore, we
found that TV regularization is not appropriate for samples with inhomogeneous RI distribu-
tions, such as cytoplasms of hepatocyte cells. EP results, however, show reasonable RI values
and textures compared to the raw tomogram.

 

Fig. 4. Experimental results of RBC RI tomograms obtained with (a) FT, (b) GP, (c) EP,
and (d) TV regularization. The white dotted lines represent the slices of the complementary
figures. All scale bars are 3 μm.
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Fig. 5. Experimental results of hepatocyte RI tomograms obtained with (a) FT, (b) GP, (c)
EP, and (d) TV regularization. For figures (a-d), the white dotted lines represent the slices
of the complementary figures. All scale bars are 5 μm.

5. Conclusion

In this paper, we conducted the systematic comparative study on the effects of existing regu-
larization algorithms to 3-D RI tomograms. GP, EP, and TV algorithms were compared both
numerically and experimentally using 5-μm-diameter fused silica microspheres, RBCs, and
hepatocytes. Using GP, EP, and TV, RI values increase. However, GP shows the limitation in
the mitigation of the elongation of RI tomograms and noise handling capacity. The TV regu-
larization shows excellent reconstruction performance for samples with relatively homogenous
RI values, even for low NAe f f condition. However, RI tomograms with many textures could
not be reconstructed correctly using TV regularization. The EP regularization is more efficient
than TV even though EP regularization shows higher dependency of the NAe f f .

Appendix A

We can rewrite the equation Eq. (14) by splitting variables

( f m+1,dm+1,vm+1) =min
f ,d,v

|d|+ I(v ≥ 0)+
μ
2
||A f −gk||22 such that d = D( f ), v = f . (17)

The associated unconstrained cost function is

( f m+1,dm+1,vm+1) = min
f ,d,v

|d|+ I(v ≥ 0)+
μ
2
||A f −gk||22 +

α
2
||d−D( f )||22 +

β
2
||v− f ||22.

(18)
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By specifying dx = ∇x f , dy = ∇y f and dz = ∇z f , the split Bregman iterations are given by,

( f m+1,dm+1
x ,dm+1

y ,dm+1
z ,vm+1)

= min
f ,d,v

||dx,dy,dz||2 + I(v ≥ 0)+
μ
2
||A f −gk||22 +

α
2
||dx −∇x f −bm

x ||22

+
α
2
||dy −∇y f −bm

y ||22 +
α
2
||dz −∇z f −bm

z ||22 +
β
2
||v− f −bm

v ||22,
bm+1

x = bm
x +(∇x( f m+1)−dm+1

x ),

bm+1
y = bm

y +(∇y( f m+1)−dm+1
y ),

bm+1
z = bm

z +(∇z( f m+1)−dm+1
z ),

bm+1
v = bm

v + f m+1 − vm+1,

(19)

where ||dx,dy,dz||2 = ∑
n

√
d2

x,n +d2
y,n +d2

z,n. To calculate f m+1, we have to solve the subprob-

lem
min

f

μ
2
||A f −gk||22 +

α
2
||dm

x −∇x f −bm
x ||22 +

α
2
||dm

y −∇y f −bm
y ||22

+
α
2
||dm

z −∇z f −bm
z ||22 +

β
2
||vm − f −bm

v ||22.
(20)

By differentiating it, we can get the following equation

(μAHA−αΔ+β I) f m+1 = rhsm, (21)

where Δ =−(∇T
x ∇x+∇T

y ∇y+∇T
z ∇z) and rhsm = μAHgk +α∇T

x (d
m
x −bm

x )+α∇T
y (d

m
y −bm

y )+

α∇T
z (d

m
z −bm

z )+β (vm −bm
v ). To calculate dx,dy and dz, we have to solve subproblems

min
d

||dx,dy,dz||2 + α
2
||dx −∇x f m+1 −bm

x ||22 +
α
2
||dy −∇y f m+1 −bm

y ||22 +
α
2
||dz −∇z f m+1 −bm

z ||22.
(22)

The equation Eq. (22) can be minimized with respect to dx,dy and dz respectively using a gen-
eralized shrinkage formula.

dm+1
x = max(sm − 1

α
,0)

∇x f m+1 +bm
x

sm ,

dm+1
y = max(sm − 1

α
,0)

∇y f m+1 +bm
y

sm ,

dm+1
z = max(sm − 1

α
,0)

∇z f m+1 +bm
z

sm ,

(23)

where sm =
√
|∇x f m+1 +bm

x |2 + |∇y f m+1 +bm
y |2 + |∇z f m+1 +bm

z |2. Finally, we can get vm+1

by solving the subproblem

min
v

I(v ≥ 0)+
β
2
||v− f m+1 −bm

v ||22, (24)

which corresponds to the proximal mapping of indicator function [54]

vm+1 = max( f m+1 +bm
v ,0). (25)
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Appendix B

We added noise in fused silica microsphere simulation data with the different levels of SNR:
5dB and 10dB, as shown in Fig. 6 and Fig. 7, respectively. The overall tendency is similar
with the noiseless case. Although GP algorithm shows the limitation in noise handling capacity
considering MSE, EP and TV show better results in denoising.

Fig. 6. Numerical simulation results of a 5-μm-diameter fused silica bead phantom with
noise (SNR = 5dB) : 3-D RI tomograms numerically reconstructed by (a) FT, (b) GP, (c)
EP, and (d) TV regularizations. (a-d); left column: z = 0 slice, right column: x = 0 slice,
upper row: NAe f f = 0.5, lower row: NAe f f = 0.8, and the boundary of ROI is shown in
white line.

Fig. 7. Numerical simulation results of a 5-μm-diameter fused silica bead phantom with
noise (SNR = 10dB) : 3-D RI tomograms numerically reconstructed by (a) FT, (b) GP, (c)
EP, and (d) TV regularizations. (a-d); left column: z = 0 slice, right column: x = 0 slice,
upper row: NAe f f = 0.5, lower row: NAe f f = 0.8, and the boundary of ROI is shown in
white line.
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