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This paper considers the problem of designing a genetic circuit which is robust to noise effect. To achieve this goal, a mixedH∞
and Integral Quadratic Constraints (IQC) approach is proposed. In order to minimize the effects of external noise on the genetic
regulatory network in terms ofH∞ norm, a design procedure of Hill coefficients in the promoters is presented.The IQC approach
is introduced to analyze and guarantee the stability of the designed circuit.

1. Introduction

Genetic regulatory network (GRN) is subjected to noise dis-
turbances that may occur at transcription, translation, trans-
port, chromatin remodeling, and pathway specific regulation.
The GRN diagrams that resemble complex electrical circuits
are generated by the connectivity of mRNAs and proteins [1].
Mathematical and computational tools have been utilized to
develop the genetic circuits and systems using biotechnolog-
ical design principles of synthetic GRN, which involves new
kinds of integrated circuits like neurochips inspired by the
biological neural networks [2]. This method leads to a large-
scale system composed of several interconnected subsystems.
The previous work [3] performs a hierarchical analysis by
propagating the IQC characterization of each uncertain sub-
system through their interaction channels. More specifically,
both plant states and the IQC dynamic states are used as
feedback information in the closed-loop system model, and
then the robust 𝑙2 stability analysis is performed via dynamic
IQCs.Thereby, the synthesis conditions for the proposed full-
information feedback controller are derived for the linear
matrix inequality (LMI) systems [4].

Therefore, stability analysis of uncertain GRN is a prereq-
uisite for any design issue. From the perspectives of control
engineering, 𝐻∞ is a key performance index to evaluate
the noise rejection/attenuation capability. Unlike the external
control inputs used in the conventional robust control theory

[5], the feedback regulation mechanism is embedded in the
GRN. We construct a genetic circuit by introducing a Hill
function type feedback loop from proteins (mostly from
transcription process) to regulate the expression of target
genes. By binding to promoter domain, the GRN is mean
square asymptotically stable with a given noise attenuation
level 𝛾.

Thepaper is organized as follows. Section 2 introduces the
mathematical model of GRN. A design procedure for the Hill
coefficients is proposed in Section 3. We provide an example
to illustrate the developed design method in Section 4. The
concluding remark is given in Section 5.

2. Problem Formulation

The activities of a gene are regulated by other genes through
their interactions, that is, the transcription and translation
factors [6, 7]. The underlying dynamics can be modeled as
a gene 𝑖 = 1, 2, . . . , 𝑛,

𝑑𝑚𝑖 (𝑡)𝑑𝑡 = −𝑙𝑖𝑚𝑖 (𝑡) + 𝑛∑
𝑗=1

𝐺𝑖𝑗ℎ𝑗 (𝑝𝑗 (𝑡)) + 𝑒𝑖 (𝑡) ,
𝑑𝑝𝑖 (𝑡)𝑑𝑡 = −𝑐𝑖𝑝𝑖 (𝑡) + 𝑑𝑖𝑚𝑖 (𝑡) ,

(1)
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Figure 1: Positive Hill function.

where 𝑚𝑖(𝑡), 𝑝𝑖(𝑡) ∈ R are concentrations of mRNA and
protein of the 𝑖th gene at time 𝑡, respectively, 𝑙𝑖, 𝑐𝑖 ∈ R+ are
the degradation rates of the mRNA and protein, 𝑑𝑖 ∈ R+ is
the translation rate, 𝑒𝑖(𝑡) is the external noise, and

ℎ𝑗 (𝑥) = 𝛽𝑗 (𝑥/𝑘𝑗)𝑛𝑗
1 + (𝑥/𝑘𝑗)𝑛𝑗 , 𝑗 = 1, . . . , 𝑛, (2)

is a monotonically increasing function [8] in which 𝑛𝑗 is the
Hill coefficient,𝛽𝑗 is a positive constant, and 𝑘𝑗 is the apparent
dissociation constant derived from the law of mass action,
which equals the ratio of the dissociation rate of the ligand-
receptor complex to its association rate.The family of positive
Hill functions is shown in Figure 1. In this paper, the Hill
function assumes that protein 𝑗 is an activator of gene 𝑖 [6, 7].
The matrix G = (𝐺𝑖𝑗) ∈ R𝑛×𝑛 is the coupling matrix of the
GRN and 𝑒𝑖 is defined as a base rate. System (1) can be written
into the compact matrix form:

𝑑𝑚 (𝑡)𝑑𝑡 = 𝐿𝑚 (𝑡) + Gℎ (𝑝 (𝑡)) + 𝑒 (𝑡) ,
𝑑𝑝 (𝑡)𝑑𝑡 = 𝐶𝑝 (𝑡) + 𝐷𝑚 (𝑡) ,

(3)

where 𝑚(𝑡) = [𝑚1(𝑡), . . . , 𝑚𝑛(𝑡)]𝑇, 𝑝(𝑡) = [𝑝1(𝑡), . . . , 𝑝𝑛(𝑡)]𝑇,𝐿 = diag{−𝑙1, . . . , −𝑙𝑛}, 𝐶 = diag{−𝑐1, . . . , −𝑐𝑛}, 𝐷 = diag{𝑑1,. . . , 𝑑𝑛}, 𝑒(𝑡) = [𝑒1(𝑡), . . . , 𝑒𝑛(𝑡)]𝑇, and ℎ(𝑝(𝑡)) = [ℎ1(𝑝1(𝑡)),. . . , ℎ𝑛(𝑝𝑛(𝑡))]𝑇. To simplify our exposition, we use a more
general set of notations and shift the equilibrium point of the
noiseless system to 𝑃; then model (3) can be expressed as

𝑑𝑥 (𝑡)𝑑𝑡 = 𝐴𝑥 (𝑡) + 𝐵𝐻 (𝑥 (𝑡)) + 𝐸 (𝑡) , (4)

where

𝐴 = [𝐿 0
𝐷 𝐶] ,

𝐵 = [0 G
∗ 0] ,

(5)

with ∗ being an arbitrary matrix such that |𝐵| ̸= 0,
𝑥 (𝑡) = [ 𝑚 (𝑡)

𝑝 (𝑡) ] ,

𝐻 (𝑥 (𝑡)) = [ 0
ℎ (𝑝 (𝑡))] ,

𝐸 (𝑡) = [𝑒 (𝑡)0 ] .

(6)

In this model, the system states of mRNAs and pro-
teins play different roles in regulation, for example, acti-
vators, repressers, or other factors. We name 𝑥(⋅) =[𝑥1(⋅), . . . , 𝑥𝑛(⋅), 𝑥𝑛+1(⋅), . . . , 𝑥2𝑛(⋅)]𝑇 ∈ R2𝑛 as the devia-
tion of concentration from the equilibrium point of (3).
The rate of change in 𝑥𝑖 denoted by 𝑥̇𝑖 represents the
concentration changes of the variables due to production
or degradation. 𝐻(⋅) = [0, . . . , 0, ℎ1(⋅), . . . , ℎ𝑛(⋅)]𝑇 repre-
sents the regulation function on the 𝑖th variable, which
is generally a nonlinear or linear function on the vari-
ables [𝑥1(⋅), . . . , 𝑥𝑛(⋅), 𝑥𝑛+1(⋅), . . . , 𝑥2𝑛(⋅)]𝑇, but has a form of
monotonicitywith each variable.Thedegradation parameters
matrix 𝐴 has zero elements on its nondiagonal plane; the
matrix 𝐵 defines the coupling topology, direction, and the
transcriptional rate of the GRN. When the input is 𝑢(𝑡) ≜𝐻(𝑥(𝑡)), the system model (4) can be rewritten as

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝐸 (𝑡) ,
𝑢 (𝑡) = 𝐻 (𝑥 (𝑡)) , (7)

where 𝐸(𝑡) is the vector of zero-mean white Gaussian noise.
In this paper, we aim to address the following problem.

Problem 1. Given the system represented by model (7) and
parameters 𝐴, 𝐵, the purpose of robust genetic circuit design
is to determine the parameters in𝐻(⋅) such that

(i) the whole system is stable;
(ii) H∞ norm of the noise 𝑒(𝑡) in themeasurement chan-

nel 𝑥(𝑡) is minimized (we assume full observation).

In the following section,we propose amixed𝐻∞ and IQC
approach to tackle Problem 1. The objective of this approach
is to promoteH∞ method in the design of Hill function for
GRN. We will give the theoretical analysis to underpin this
technique.

3. Analysis and Design

We take point 𝑃 as the equilibrium position due to the
special shape of Hill functions in Figure 1. The intuitive way
to address such an issue would be firstly to design a static
feedback 𝑢 = 𝐹opt𝑥 by which the closed-loop system can
achieve the minimum 𝛾min. Then we prove the stability of the
system with the nonlinearity involved by analysis methods
[9]. However, the optimal performance with 𝑢 = 𝐹opt𝑥 for
the linear system does not necessarily guarantee the optimal
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Figure 2: The feedback system model structure.

performance for the nonlinear system with 𝑢 = 𝐻(𝑥). In
some cases, the nonlinearity of 𝑢 = 𝐻(𝑥)might even worsen
the systemperformance to a degreewhich is far fromoptimal.
Therefore, robust performance has rarely been considered for
the nonlinear system. In the following subsections, we resolve
this difficulty.

3.1. Preliminaries. We first recall some preliminary results in
the system analysis via IQCs from [10]. Let RH𝑚×𝑛∞ be the
set of real proper rational function matrices without right-
half plane poles and let Ll2e[0,∞) be the set of functions𝑓 : [0,∞) → R𝑙 that have finite energy on the interval [0, 𝑇],∀𝑇 > 0; that is,

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩22 = ∫𝑇
0

󵄩󵄩󵄩󵄩𝑓 (𝑡)󵄩󵄩󵄩󵄩2 𝑑𝑡 < ∞, ∀𝑇 > 0. (8)

The Fourier transform for an R𝑙-valued function 𝑓 :[0,∞) → R𝑙 is denoted as 𝑓(𝑗𝜔). Consider the feedback
configuration in Figure 2,

V = 𝐺𝑤 + 𝑓,
𝑤 = ΔV + 𝑒, (9)

where 𝑓 ∈ L𝑚2𝑒[0,∞), 𝑒 ∈ L𝑛2𝑒[0,∞), and 𝐺 and Δ are two
causal operators. Note that 𝐺 is stable and Δ is bounded but
could be nonlinear, time-varying, or uncertain. Δ is said to
satisfy the IQC defined by Π if the two vectors of signal V, 𝑤
fulfill

∫+∞
−∞

[ V̂ (𝑗𝜔)𝑤 (𝑗𝜔)]
∗Π(𝑗𝜔) [ V̂ (𝑗𝜔)𝑤 (𝑗𝜔)] 𝑑𝜔 ≥ 0, (10)

in which Π : 𝑗R → C(𝑚+𝑛)×(𝑚+𝑛) can be any measurable
Hermitian-valued function defined on the imaginary axis and
the superscript ∗ denotes the complex conjugate transpose.

Lemma 2 (see [10]). Let 𝐺(𝑠) ∈ RHm×n
∞ and Δ be a bounded

causal operator. If the following assumptions hold,

(i) for every 𝜏 ∈ [0, 1], the interconnection of 𝐺 and 𝜏Δ is
well-posed;

(ii) for every 𝜏 ∈ [0, 1], the IQC defined byΠ is satisfied by𝜏Δ;
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Figure 3: The transferred system model structure.

(iii) there exists 𝜖 > 0 such that
[𝐺 (𝑗𝜔)𝐼 ]∗Π(𝑗𝜔) [𝐺 (𝑗𝜔)𝐼 ] ≤ −𝜖𝐼, ∀𝜔; (11)

then the feedback interconnection of 𝐺 and Δ is stable.

Remark 3. From Lemma 2, an important conclusion on IQC
stability analysis can be drawn: if Δ satisfies several IQCs, it
also satisfies all nonnegative linear combinations of IQCs. For
example, if V, 𝑤 satisfy the IQC defined by Π1 and the IQC
defined byΠ2, theywill also satisfy the IQCdefined by𝜆1Π1+𝜆2Π2 for all 𝜆1, 𝜆2 ≥ 0. In other words, the set of IQCs that Δ
satisfies forms a “description” for the block Δ, and the more
IQCs we know that Δ satisfies, the more precisely that we can
describe the uncertainty of Δ.
Lemma 4 (KYP lemma, [11]). Suppose M(𝑠) = 𝐶𝑐𝑙(𝑠𝐼 −𝐴𝑐𝑙)−1𝐵𝑐𝑙 + 𝐷𝑐𝑙. Assume (𝐴𝑐𝑙, 𝐵𝑐𝑙) is stabilizable and 𝐴𝑐𝑙 has
no eigenvalues on the imaginary axis. Then the following
conditions are equivalent:

(i) The systemM is stable, and ‖M‖∞ < 𝛾.
(ii) We have ∀𝜔 ∈ [0,∞),
[(𝑗𝜔 − 𝐴−1𝑐𝑙 ) 𝐵𝑐𝑙𝐼 ]

∗

⋅ [𝐶𝑇𝑐𝑙𝐶𝑐𝑙 𝐶𝑇𝑐𝑙𝐷𝑐𝑙
𝐷𝑇𝑐𝑙𝐶𝑐𝑙 𝐷𝑇𝑐𝑙𝐷𝑐𝑙 − 𝛾𝐼][

(𝑗𝜔 − 𝐴−1𝑐𝑙 ) 𝐵𝑐𝑙𝐼 ] < 0;
(12)

(iii) There exists a symmetric matrix 𝑃 > 0, such that
[𝐴𝑇𝑐𝑙𝑃 + 𝑃𝐴𝑐𝑙 𝑃𝐵𝑐𝑙𝐵𝑇𝑐𝑙𝑃 −𝛾𝐼] + [

𝐶𝑇𝑐𝑙
𝐷𝑇𝑐𝑙] [𝐶𝑐𝑙 𝐷𝑐𝑙] < 0. (13)

Lemma 5 (see [11]). By using linear fraction transformation,
we convert the system configuration from Figure 2 to Figure 3.
Let 𝑒 ∈ L𝑛2𝑒[0,∞), 𝐺𝑙(𝑠) ∈ RH∞ with corresponding
dimension, and let the system L2-gain be the performance
measurement.

Assume that Δ satisfies an IQC defined by Π having the
following block structure:

Π = [Π11 Π12Π∗12 Π22] ; (14)
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then the system in Figure 3 is stable and has robust L2-gain 𝛾,
if

(i) for every 𝜏 ∈ [0, 1], the interconnection of 𝐺𝑙 and 𝜏Δ is
well-posed;

(ii) for every 𝜏 ∈ [0, 1], the IQC defined byΠ is satisfied by𝜏Δ;
(iii) the frequency domain inequality,

[𝐺𝑙 (𝑗𝜔)𝐼 ]∗ Γ [𝐺𝑙 (𝑗𝜔)𝐼 ] < 0, (15)

holds for all 𝜔 ∈ [0,∞), where

Γ = [[[[
[

𝐼 0 0 0
0 Π11 (𝑗𝜔) 0 Π12 (𝑗𝜔)0 0 −𝛾2𝐼 0
0 Π∗12 (𝑗𝜔) 0 Π22 (𝑗𝜔)

]]]]
]
. (16)

3.2. Design Procedure. The algorithm for the design of Hill
function considering both the stability and performance of
the nonlinear system will be proposed.

Proposition6. After shifting the equilibriumpoint𝑃 (Figure 1)
to the origin, Hill function ℎ(𝑥) takes the following form:

ℎ (𝑥) = 𝛽 (𝑥 + 𝑘)𝑛𝑘𝑛 + (𝑥 + 𝑘)𝑛 − 𝛽2 , (17)

and there exist real scalars 𝛼1 ≥ 𝛼2 ≥ 0, such that ℎ(𝑥) satisfies
the IQCs defined by

𝜋1 = [ −2𝛼1𝛼2 (𝛼1 + 𝛼2)(𝛼1 + 𝛼2) −2 ] ,

𝜋2 = [[
(𝛽2)
2 𝑧 𝑦

−𝑦 −𝑧
]
]
,

(18)

where 𝑧 ≥ 0.
Proof. 𝜋1 is from a sector bound condition 𝛼2V2 ≤ ℎ(V)V ≤𝛼1V2; to see this we notice that in the time domain

[ V

ℎ (V)]
𝑇 𝜋1 [ V

ℎ (V)] = 2 (𝛼1V − ℎ (V)) (ℎ (V) − 𝛼2V)
≥ 0.

(19)

The derivation of 𝜋2 involves an approximation, in whichℎ(V(𝑡)) = 𝛿(V(𝑡))V(𝑡) with a scalar function 𝛿 ∈ L∞ with‖𝛿‖∞ ≤ 𝛽/2; then
[ V

ℎ (V)]
𝑇 𝜋2 [ V

ℎ (V)]

= V𝑇((𝛽2)
2 𝑧 − 𝛿2𝑧 + 𝛿 (𝑦 − 𝑦)) V ≥ 0.

(20)

This ends the proof.

Remark 7. From Proposition 6, we should know that the set
of IQCs is a sufficient condition for stability; therefore, it is
conservative. Yet the challenge for nonlinear system stability
is significant, because all the existing methods, including
Lyapunov theory and IQCs, are conservative.

In Proposition 6, 𝜋1 and 𝜋2 are for the case of scalar 𝑥 andℎ(𝑥). Here we consider the case of vectors 𝑥 and ℎ(𝑥).
Corollary 8. When 𝑥 = [𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑛, 𝑥𝑛+1, . . . , 𝑥2𝑛]𝑇
and 𝐻(𝑥) = [0, . . . , 0, ℎ1(𝑥1), . . . , ℎ𝑖(𝑥𝑖), . . . , ℎ𝑛(𝑥𝑛)]𝑇, then
IQCs for𝐻(𝑥) take the following forms:

Π1 = [ Π1–11 Π1–12Π1–21 Π1–22 ] , (21)

where

Π1–11 = diag (−2𝛼11𝛼21, . . . , −2𝛼1𝑖𝛼2𝑖, . . . , −2𝛼1𝑛𝛼2𝑛) ,
Π1–12 = diag ((𝛼11 + 𝛼21) , . . . , (𝛼1𝑖 + 𝛼2𝑖) , . . . ,
(𝛼1𝑛 + 𝛼2𝑛)) ,

Π1–21 = Π𝑇1–12,
Π1–22 = diag (−2, . . . , −2, . . . , −2) ,
Π2 = [ Π2–11 Π2–12Π2–21 Π2–22 ] ,

(22)

where

Π2–11 = diag (𝑧1, . . . , 𝑧𝑖, . . . , 𝑧𝑛) ,
Π2–12 = diag (𝑦1, . . . , 𝑦𝑖, . . . , 𝑦𝑛) ,
Π2–21 = −Π𝑇2–12,
Π2–22 = diag (−𝑧1, . . . , −𝑧𝑖, . . . , −𝑧𝑛) ,

(23)

with 𝑧𝑖 ≥ 0. Combining Π1 and Π2, we obtain the following
IQCs for𝐻(𝑥):

Π = [ Λ 1Π1–11 Λ 1Π1–12Λ 1Π1–21 Λ 1Π1–22 ]
+ [ Λ 2Π2–11 Λ 2Π2–12Λ 2Π2–21 Λ 2Π2–22 ] ,

(24)

for any 𝑛 × 𝑛 nonnegative diagonal matrices Λ 1 and Λ 2.
Example 9. Take 𝑛 = 1, 𝑛1 = 3, 𝑘 = 1, and 𝛽 = 1 as an
example; therefore,

ℎ (𝑥) = (𝑥 + 1)3
1 + (𝑥 + 1)3 − 0.5. (25)

Assume that the evolution of 𝑥 is within a limited a range[−1, 1]; then a sector condition of 𝛼1 = 0.84, 𝛼2 = 0.35 with𝛿 ∈ [−0.5, 0.5] can form a good bound on ℎ(𝑥), which is
shown in Figure 4.
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Proposition 10. Consider the system configuration in Fig-
ure 5, let 𝑒 ∈ L𝑚2𝑒[0,∞), 𝐺𝑙(𝑠) ∈ RH∞ be the genetic
network, and 𝑥(⋅) = [𝑥1(⋅), . . . , 𝑥𝑛(⋅), 𝑥𝑛+1(⋅), . . . , 𝑥2𝑛(⋅)]𝑇 and𝐻(𝑥) = [0, . . . , 0, ℎ1(𝑥1), . . . , ℎ𝑖(𝑥𝑖), . . . , ℎ𝑛(𝑥𝑛)]𝑇 represent
the designed feedback Hill function. We denote with Δ𝐻 the
uncertainty derived from 𝐻(𝑥), which satisfies the IQCs in
(24).

Then the system in Figure 5 is stable and has robust L2-gain𝛾, if
(i) for every 𝜏 ∈ [0, 1], the interconnection of 𝐺𝑙 and 𝜏Δ𝐻

is well-posed;
(ii) for every 𝜏 ∈ [0, 1], the IQC defined byΠ is satisfied by𝜏Δ𝐻;
(iii) the frequency domain inequality,

[𝐺𝑙 (𝑗𝜔)𝐼 ]∗ Γ [𝐺𝑙 (𝑗𝜔)𝐼 ] < 0, (26)

holds for all 𝜔 ∈ [0,∞], where

Γ = [[[[
[

𝐼 0 0 0
0 Π11 (𝑗𝜔) 0 Π12 (𝑗𝜔)0 0 −𝛾2𝐼 0
0 Π∗12 (𝑗𝜔) 0 Π22 (𝑗𝜔)

]]]]
]
, (27)

and Π𝑖𝑗𝑠 take the form in (24).

Proof. The result follows from applying the IQCs defined by
(24) in Corollary 8.

Proposition 11. Let the Hill coefficientsHc be the set of proper
values of (𝛽, 𝑘) for a Hill function; given any (𝛽, 𝑘) ∈ Hc and 𝑛,
a Hill function can be uniquely defined and hence a set of IQCs
in the form of (24) can be formulated. Then the design of Hill
function feedback can be reformulated into the following linear
matrix inequality (LMI) problem:

inf
Λ 1,2>0,Hc,𝜔

𝛾, (28)

such that (26) is satisfied.

The frequency-dependent inequality in (26) can be
resolved by using YALMIP (https://users.isy.liu.se/johanl/
yalmip/). Since the linear matrix inequality (28) has to be
solved simultaneously for all frequencies in the frequency
domain, the basic strategy is to start with a small set of points
and then check whether the solution satisfies all 𝜔. If it does
not, add one ormore frequency points to the previous set and
solve LMI again. Another more efficient way to solve the LMI
is to transform (26) into the time domain by using the KYP
lemma of Lemma 4 if the state-space realizations of 𝐺𝑙 andΠ
have been obtained.

4. Biologically Inspired Example

In this section, we provide an example to illustrate the
algorithm and design procedures developed in Section 3.
Consider the following GRN:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝐸 (𝑡) ,
𝑢 (𝑡) = 𝐻 (𝑥 (𝑡)) , (29)

in which

𝐴 = [[[[[
[

−0.1 0 0 0
0 −0.5 0 0
𝑎1 0 −0.1 0
0 𝑎2 0 −0.5

]]]]]
]
,

𝐵 = [0 G

𝐵 0] ,

G = [0 1
1 0] ,

(30)

where 𝑎1, 𝑎2, and 𝐵 are randomly generated in MATLAB
and 𝑎1, 𝑎2, and the elements in matrix 𝐵 follow the even
distribution on the interval [0, 1]. In this simulation, the
generated data are 𝑎1 = 0.8, 𝑎2 = 0.1,

𝐵 = [0.7 0.9
0.1 1 ] . (31)

https://users.isy.liu.se/johanl/yalmip/
https://users.isy.liu.se/johanl/yalmip/
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The system gain of the original system G0 = (𝑠𝐼 − 𝐴)−1𝐵 is
94.2653. Although the system is originally stable, its perfor-
mance is far from satisfactory. In order to further investigate
the effects of noise 𝑒 on 𝑢, the procedure of designing 𝐻(𝑥)
is slightly modified in this example. Specifically, it is an
undesirable result if a small 𝑒 causes a large 𝑢. Therefore,
rather than minimizingH∞ norm from 𝑒 to 𝑥, we minimize
H∞ norm from 𝑒 to [𝑥, 𝛼𝑢], where 𝛼 is a constant. With
Hc = {(𝛽, 𝑘) | 𝛽 ∈ [0.01, 100], 𝑘 ∈ [1, 100]} ([8]) and 𝛼 = 2,𝑛 = 2, we solve the LMI problem stated in (28), resulting in
the feedbackHill functionwith (𝛽1, 𝛽2) = [10, 100], (𝑘1, 𝑘2) =[1, 10]. As a result, H∞ norm of the closed-loop system is
upper bounded by 𝛾1 = 72.3593. Comparedwith 𝛾0, a distinct
improvement has been made for the system performance in
terms ofH∞ norm.

5. Conclusion

This paper tackles the problem of designing robust genetic
circuit via constructing parameters of the Hill function. Tar-
geting to minimize the noise effect in the genetic regulatory
network, a design procedure is proposed. With the help of
IQC approach, stability and performance of the designed
circuit are guaranteed.
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